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Abstract

Over the last fifteen years, foreign official holdings of U.S. Treasuries reached unprecedented levels,
being central banks, especially in developing countries, the first to significantly increase their
holdings; which calls for an analysis of risk-factor portfolio allocation to U.S. government bonds.
This paper focus on examining how changes in the liquidity differential between nominal and
TIPS yields influences optimal portfolio allocations in U.S. Treasury securities. Based on a non-
parametric estimation technique and comparing the optimal allocation decisions of mean-variance
and CRRA investor, when investment opportunities are time varying, I present evidence that
liquidity risk premium is a significant risk-factor in a portfolio allocation context. In fact, I find
that a conditional allocation strategy translates into improved in-sample and out-of sample asset
allocation and performance.
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1 Introduction

Foreign exchange reserves, as a key part of the asset side of the central bank’s sheet, play a fundamental
role in monetary management. Almost all foreign exchange reserves are held in five currencies: the
U.S. dollar, the euro, the Japanese yen, the British pound, and the Swiss franc; accounting dollar
reserve holdings for 61 percent of the total at the end 2014 (BIS). The dollar commands a high share
in global reserves because the deep and highly liquid market for the U.S. Treasury bonds. Indeed,
over the last fifteen years, foreign official holdings of U.S. Treasuries reached unprecedented levels,
increasing from $600 billion in January 2000 to about $4.142 billion in January 2015. Foreign Official
Institutions (FOIs), such as central banks, were the first to significantly increase their holdings, as part
of their reserve accumulation policies. The pattern of the foreign demand for U.S. Treasury securities
is showed in Figure 1, panel A. Panel B shows that on average 82% of the FOIs holdings correspond to
Treasury notes (with maturities between 1 and 10 years) and T-bonds (more than 10-year maturity),
while 18% is held in bonds with less than 1-year maturity.



Figure 1: Foreing holdings of U.S. Treasury securities
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The data in each panel include foreign holdings of U.S. Treasury bills, bonds, and notes reported every January under the Treasury International
Capital (TIC) reporting system for the years 2000 to 2015. OIL represents Oil Exporters, which include Ecuador, Venezuela, Indonesia,
Bahrain, Iran, Iraq, Kuwait, Oman, Qatar, Saudi Arabia, the United Arab Emirates, Algeria, Gabon, Libya, and Nigeria. L.A. represents
Latin American countries (except Ecuador and Venezuela).

Most of this growth is accounted for by the emerging market economies, where besides China, Latin
American countries have played an important role. As Panel C shows, over the past fifteen years, China
has steadily increased its U.S. Treasury holdings to become the largest U.S. holder, with about 30% of
the total. Similarly, Latin American countries noticeably increased the level of international reserves.
Indeed, official holdings of U.S. Treasuries increased from $17 billion in January 2000 to almost $413,9
billion in January 2015, representing 10% of the total. Holdings by the Oil Exporters (which include
Venezuela and Ecuador) have also grown in the past few years, representing 7% of the total in January
2015. Finally, Panel D depicted the market share of the Latin American major foreign holders of
U.S. Treasury securities by year. Until 2007 only Mexico and Brazil appeared in the group of major
foreign holders, however since 2008 other countries, such as Colombia, Chile, Peru and Uruguay, have
significantly increased their holdings. In such a context, the foreign officials’ portfolio of U.S. Treasury
securities became in a "self-insurance" strategy against potential external shocks, or resulted as a by-
product of interventions by Latin American central banks in foreign-exchange markets, especially in
the context of surges of capital inflows that characterized part of this period.

Investment portfolios traditionally have been constructed with a focus on what asset classes to
invest in and how much to invest in each. Recent research, however, has shown that focusing on
risk-factor allocations, rather than asset class allocations, can result in better risk-adjusted portfolio
performance. This paper contributes to this debate. In particular, I focus on examining how changes
in the liquidity differential between nominal and TIPS yields influences optimal portfolio allocations
in U.S. Treasury securities. There are a series of ways in which this study contributes to the literature.
First, it incorporates financial information (liquidity premium) in an asset allocation context, and shows
how this can be of significance for both a mean-variance and a CRRA investor. Second, it focuses on a



bond portfolio choice that is relatively unexplored in the literature, since the majority of the studies on
asset allocation examine stock-only portfolios. Additionally, portfolio of U.S. Treasury securities are
singularly important for central banks, especially in developing countries. Third, I examine portfolio
choice among multiple government bonds with different maturities. More so, I consider both the U.S.
Treasury bonds and Treasury Inflation Protected Securities (TIPS) in the investor’s asset menu.

Government debt of the United States includes Treasury bonds and TIPS. The U.S. Treasury
Department typically has issued debt in the form of Treasury bonds, including T-bills, T-notes and
T-bonds (according with its maturity). These securities, simply called Treasuries, are widely regarded
to be the safest investments because the deep and highly liquid market added to its lack significant
default risk. Therefore, it is no surprise that investors turn to U.S. Treasuries during times of increased
uncertainty as a safe haven for their investments (flight to quality). In addition to Treasuries, in 1997,
the U.S. Treasury Department started its Treasury Inflation-Protected Securities (TIPS) program.
The program is intended to provide investors with protection against inflation.! TIPS has shown a
consistent growth since its inception in 1997. In fact, the market capitalization has grown by more
than thirty times, from $33 billion dollars in 1997 to over $1.200 billion in 2013. However, it has been
characterized by be less liquid than nominal Treasury bond market. As a consequence, the lack of
liquidity is thought to result in TIPS yields having a liquidity premium relative to nominal securities.

Liquidity risk in Treasury markets, arise from the fact that investor may need to make portfolio
adjustments due to some unforeseen events, after the initial auction or before the maturity of a
Treasury security. Thus investors care about the likely costs associated with such trading, and in
response, demand a higher yield to compensate the cost to buy or sell the security in a secondary
market. Even though, nominal Treasuries and TIPS have similar trading costs (such as brokerage
fees and commissions), the cost related to the ease and convenience of trading is not the same for
both securities, and it might be related to the differences in liquidity market conditions. Hence, the
additional yield to compensate the incremental risks and higher costs of trading is referred as liquidity
risk premium. The existence of this liquidity premium in TIPS yields has been well documented in the
academic literature by Campbell et al. (2009), Dudley et al. (2009), Christensen and Gillan (2011),
Gurkaynak et al. (2010), Pflueger and Viceira (2012), Gomez (2015), among others.

Focusing on a conditional allocation technique and comparing the optimal allocation decisions of
mean-variance and CRRA investor, when investment opportunities are time varying, I present evidence
that liquidity risk premium is an significant risk-factor in a portfolio allocation context. Throughout
this paper, I assume that the investor makes decisions in real terms where the investment horizon is
one-month, one-quarter and one-year. I only consider a short-term investor in the empirical analysis.
The reason for this is related to the fact that for a buy-and-hold long-term investor, whose investment
horizon perfectly matches the maturity of the bond, TIPS offer full protection against inflation if held
until maturity.?2 Similarly, an investor who adopts a buy-and-hold strategy for TIPS mitigates risk

L TIPS help to guard against inflation by adjusting the face value with changes in the rate of inflation. Interest is then
paid on the adjusted face value of the bond.

2 TIPS are a useful hedge against inflation, but they do not guarantee a real rate of return. This is because the mechanics
of adjusting for inflation for TIPS limit the exactness of the inflation adjustment and allow only approximate inflation
hedges especially at high inflation levels. In fact, for TIPS, the reference price index is the non-seasonally adjusted
CPI-U, and the indexation lag is three months. Therefore, TIPS operate with an indexation lag of three months. In
other words, it takes three months from the incidence of price inflation (the month when a reference index reading is



arising from illiquidity, given that he/she does not face higher costs of buying or selling the bond
before it reaches maturity. However, TIPS are currently issued with only a few specific maturities:
5-year, 10-year and 30-year, therefore the investment horizon over which I consider investors who hold
assets does not match the maturity of any outstanding TIPS.? Hence, I study a short-term investor
who maximizes real wealth but is not able to invest in a risk-less asset in real terms (given that TIPS
are a risky asset both in nominal and in real terms), and also faces liquidity risk. Notice, however, that
a short-term investor benefits from the availability of TIPS in terms of a wider investment opportunity
set that allows an increase in the returns per unit of risk, investing even a small fraction of his wealth
in TIPS (Cartea et al. (2012)).

The investor’s problem is to choose optimal allocations to the risky asset as a function of predictor
variable: the TIPS liquidity premium. As risky assets, I consider equally weighted bond portfolios on
short-term bonds (1 to 10 years maturity); and on long-term bonds (11 to 20 years maturity), each of
them are computed for Treasury bonds and for TIPS. I identify the liquidity component in TIPS yields
through the difference between inflation-linked and nominal bond asset swap spreads. This difference
is capturing of the relative financing cost, the specialness and the balance sheet cost of TIPS over
nominal Treasury bonds. These characteristics influence the ease of liquidating some securities and
the attractiveness by which to hold them with respect to others. Therefore, this is a market-based
measure of the market perception (current and expected) of relative liquidity in the bond market.
The particular choice of this measure for the liquidity premium is motivated by the fact that: ) it
is highly correlated with other measures of the TIPS liquidity premium available in the literature,
which suggests that they are all capturing similar information about the liquidity differential between
nominal and TIPS yields; i7) U.S. bond excess returns can be predicted by this liquidity measure (see
Gomez (2015)); and 444) it is a market-based measure of liquidity which is straightforward to compute.

In summary, I consider the portfolio policy of an investor who is able to invest in only one risky
asset, and I differentiate various portfolio allocation problems: first, where the investor chooses between
the portfolio of short-term or long-term Treasury bonds and a risk-free asset; and second, where the
investor chooses between a portfolio of short-term or long-term TIPS and a risk-free asset. I also
study an investor with mean-variance (MV) and constant relative risk aversion (CRRA), with different
degrees of risk aversion, in order to test the sensitivity of the optimal portfolio choice to the higher
moments.

I make use of an econometric framework based on a portfolio choice problem of a single period
investor, where the investor’s problem is set up as a statistical decision problem, with asset allocations
as parameters and the expected utility as the objective. The allocations are estimated by direct
maximization of expected utility proposed by Brandt (1999). A number of key results emerge from this
analysis. First, the liquidity premium seems to be a significant determinant of the portfolio allocation of
U.S. government bonds. In fact, conditional allocations in risky assets decrease as liquidity conditions
worsen. In particular, an increase in the liquidity differential between nominal and TIPS bonds leads

recorded) until it is incorporated into the coupon payment of the inflation-linked bond. Consequently, the indexation
lag affects how well TIPS compensate for contemporaneous inflation, and prevents TIPS from guaranteeing a specified
real return.

TIPS bonds have been offered in 5-, 10-, 20-, and 30-year denominations. However, TIPS that have less than one year
remaining to maturity are not easy to find in the secondary market, given that they have extremely high transaction
costs.



to lower optimal portfolio allocations for nominal Treasury bonds, and also to lower optimal portfolio
allocations in TIPS, but at different levels of liquidity. Additionally, the effect of liquidity is a decreasing
function of investment horizons, in the sense that for the same degree of risk aversion the investor reacts
less abruptly to an increase in the liquidity premium when he/she has a longer investment horizon.
Furthermore, as the investment horizon becomes longer, the smaller the optimal portfolio weight, and
so, the less is invested in the risky asset.

The above conclusions are not determined by the level of risk aversion or the investors preferences.
The relation between optimal portfolio weights and the liquidity premium remains the same for different
values of risk aversion, and also across investor preferences. These characteristics mainly change the
level of the portfolio function, having a small impact on the shape of the function. In addition, results
do not depend on a particular choice of the maturity of the liquidity premium (similar results are found
when considering 10-year or 20-year liquidity premium), nor on a specific way to proxy liquidity (I
have similar results with both liquidity premium measures).

From the standpoint of practical advice to U.S. Treasury security investors, a final natural question
to ask is whether or not a conditional strategy translates into improved (in and out-of-sample) asset
allocation and performance. To answer this question, I compare the performance of the optimal
portfolio choices of two investors: one investor who makes portfolio allocations conditional upon
observing a particular liquidity signal (conditional strategy); and the other who ignores any change in
liquidity in making his/her portfolios allocation choices (unconditional strategy). I conclude that the
conditional strategy outperforms the unconditional strategy, improving not only the in-sample, but
the also out-of-sample asset allocation and performance.

The rest of the paper is organized as follows. Section 2 defines the conditional portfolio choice
problem and presents the non-parametric estimation technique used. I describe the data and provide
some basic statistics in Section 3. Section 4 presents the empirical results for different bond portfolios,
different types of investors and different investment horizons. Section 5 concludes.

2 The conditional optimal portfolio problem

The traditional problem of optimal portfolio choice considers an investor which maximizes the
conditional expected utility of next period’s wealth under a budget constraint. Merton (1969) provides
the solution, where the investor can trade continuously in a finite set of stocks and bank account.
However, given that the stocks and bonds differ in many ways, the theory of portfolio management
does not apply as it stands to bond portfolios (see Ekeland and Taflin (2005) for a discussion of this
point). For the bond market, Schroder and Skiadas (1999), Ekeland and Taflin (2005), Ringer and
Tehranchi (2006) and Liu (2007) have studied this problem using a theoretical approach. In particular,
Ekeland and Taflin (2005) and Ringer and Tehranchi (2006) set up, and solve the problem of managing
a bond portfolio by optimizing (over all self-financing trading strategies for a given initial capital), the
expected utility of the final wealth. Thus, optimal portfolio at time ¢ is a linear combination of self-
financing instruments, each one with a fixed time to maturity. Under this set up the value of the
portfolio changes only because the bond prices change. Price bonds behave like price stocks, that is,
it depends only on the risk it carries and not on time to maturity.



The impact of inflation on portfolio choice also has also been considered in the literature. An initial
extension of the Markowitz problem was introduced in the 1970s by Biger (1975), Friend et al. (1976),
Lintner (1975) and Solnik (1978), among others. Intertemporal portfolio choice problem under inflation
risk was studied by Campbell and Viceira (2001) in discrete time, and by and Brennan and Xia (2002)
in continuous time. Both works tell us that a long-term, risk-averse investor prefers the indexed bond
or a perfect substitution of indexed bond in order to hedge against the inflation risk. However, in
these papers all relevant state variables are assumed observable and the probability distributions of all
processes are assumed known. Bensoussan et al. (2009) and Chou et al. (2010) relax that restriction
by assuming that the expected inflation rate is unobservable to the investor.

Most of the existing studies on portfolio choice (with or without inflation risk), focus on stock-only
portfolios (Viceira and Campbell (1999), Barberis (2000), Wachter (2002)), or examine the stock-
bond mix portfolio choice (Munk et al. (2004)). Given the extensive literature for equity markets,
it is surprising to note that no effort has been undertaken to examine the influence of liquidity in
government bond portfolio choice. Filling this gap is one contribution of this paper. To follow, I define
the investor’s maximization problem, describe the conditioning information, and finally, introduce the
estimation technique.

2.1 Investor utility maximization
2.1.1 Portfolio choice without inflation

Ekeland and Taflin (2005) and Ringer and Tehranchi (2006) express the solution of optimal portfolio
choice as portfolios of self-financing trading strategies which naturally include stocks and bonds. In
particular, they fix a utility function u and a planning horizon T > 0, and consider the functional
J(p) = EF[u(W5)] where W7 is the accumulated wealth at time 7' generated by the self-financing
trading strategy ¢. The goal is to characterize the strategy that maximizes J.

Following on from this literature, I consider the problem of optimal portfolio choice when the traded
instruments are a set of risky bonds and a risk-less bond. In particular, and without loss of generality, I
consider a bond market where only zero-coupon bonds are available. Fixing a utility function u(Ws1)
and a planning horizon T" > 0, I consider an investor who maximizes the conditional expected utility
of next period’s wealth, subject to the budget constraint:

Elu(W, Z,
afgﬁ%{w [w(Wigr) | Zi] )

subject to:  Wip1 = Wi[Ry i1 + a(Rp 1 — Ry iq1)]

where Wiy is the accumulated wealth at time ¢ 4+ 1 generated by the self-financing trading strategy
¢ (which belongs to the set of admissible self-financing strategies denoted by A), ay represents the
proportion of wealth invested in a risky bond with return Rj ;41 and the remaining proportion 1 — a4
is invested in risk-free bond with return Rs; ;. The expectation is conditional on a state variable Z;.
The investor can have three different horizons: one-month, one-quarter or one-year (this represents the
difference between ¢ and ¢ + 1).



The weight that maximizes the expected utility function is the solution to the following Euler
optimality condition
Ou(Wit1) OWiia
8Wt+1 Oa

| Z| = 0. (2)

In particular, the solution of the investor’s problem is the mapping from the state variable Z; to
the portfolio weights
ar = a(Zy), (3)

and it denotes the portfolio choice of observing a signal Z; = z.

The relation between the portfolio policy and the predictability of individual moments of the
returns given the predictor Z; depends on the specification of the utility function. I consider two types
of investor preferences: mean-variance (MV) and power-utility (CRRA) preferences. An investor with
mean-variance preferences maximizes

v 2
max  E[W, Z — =V[W, VA 4
Jmax (Wesr | Ze] = SVIWEL | Z4], (4)
where v > 0 represents the coefficient of absolute risk aversion. The investor portfolio policy when the
choice includes a risk-free rate is proportional to the conditional mean-variance ratio of the tangency
portfolio
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where Riil is the return of the tangency portfolio. The reason I consider MV preferences is because
it can be stated as a primitive, or can be derived as a special case of expected utility theory. Also,
under MV preferences, portfolio weights depend exclusively and analytically on the two first moments
of returns, which serve as benchmark case in this study.*

I also consider the most popular objective function in the portfolio choice literature, which is an
investor with CRRA or power utility. In this case, the investor solves the following problem

E | Wt ity >1
max 1=y K (5)
A E log(Wiin)] iy =1
subject to the budget constraint in (1), and where v > 0 now measures the coefficient of relative risk
aversion. As is well known, unlike mean-variance preferences, CRRA does not permit a closed form
solution to the investor’s portfolio problem. However, I consider CRRA preferences to be able to test
whether or not an investor cares about higher order moments of the return distribution.

4 Although the limitations of mean-variance analysis are well established in portfolio theory, its relative simplicity and
easy intuition contributes to its continued use among investment professionals, in theoretical and empirical studies.



2.1.2 Portfolio choice with inflation

In this section, I follow Cartea et al. (2012) who solve the optimal portfolio choice problems for investors
concerned with maximizing real wealth. Here, I assume that investors make allocation decisions in real
terms, and are worried about the purchasing power of their terminal wealth, and do not suffer from
money illusion. As before, I consider the optimal investment allocation of investors who are not worried
about what may happen beyond the immediate next period but rather, care about the purchasing power
of their wealth.

To avoid exposure to inflation risk, investors can: (i) invest in a risk-less asset in real terms;
and/or (ii) invest in assets that covary with inflation. However, in this empirical analysis I only
consider investors who have a maximum investment horizon of 1-year; they cannot find TIPS with this
maturity and thus they are not able to invest in a risk-less real asset. Additionally, given that real
interest rate changes affect TIPS returns, investors consider TIPS as a risky asset in both nominal and
real terms.

An investor with MV or CRRA preferences maximizes the same problem in (4) and (5), respectively,
but are now subject to the budget constraint

Wi = WERs 1 + t(Rpgs1 — Rpsr1)],

where Wﬁl is now the terminal real wealth, and Ry ;41 and Ryf;yq are real risky and risk-free bond
returns, respectively, as already seen.® In the absence of a real risk-free asset investors face inflation risk
and deal with this through the covariances between the returns of risky assets and inflation. Securities
which are correlated with inflation help to hedge against inflation, reducing the portfolio variance in
real terms.

2.2 Non-parametric estimation

I use the methodology proposed by Brandt (1999) and Ait-Sahalia and Brandt (2001). They apply
a standard generalized method of moments (GMM) technique to the conditional Euler equation
that characterizes the investor’s portfolio choice problem. In particular, it consists of replacing the
conditional expectation with sample analogues, computed only with returns realized in a given state
of nature where the forecasting variable level is Z; = z (which is liquidity premium). Brandt (1999)
suggests estimating the conditional expectation with a standard non-parametric regression. Ait-Sahalia
and Brandt (2001) suggest a semiparametric approach to address the issue of which predictors are
important for the portfolio choice when a large number of them are available.

Let a neighborhood of Z be Z £+ h for some bandwidth A > 0. When the investor is characterized
by the power utility, a simple non-parametric estimator of the conditional Euler equation is given by
the Nadaraya-Watson estimator, where the moment condition is given by:

1 E?Zl (BU(Wt+1) aWtJrl) k(Ztv 27 h)

~ 6u(Wt+1) 8Wt+1 _ OWig1 O
oWyt oo | L= Th EtTHk(Zt, Z, h) ’ ( )

5 In this case, the real risk-free bond returns is calculated as Ry ;41 — mi+1, where m,11 is the log inflation rate.



where k(Zy, Z, h) is the kernel function which is assumed to be Gaussian. I apply exactly identified
GMM to equation (2) to obtain &(Z) which is a consistent estimate for the unknown optimal portfolio
choice a(Z) (See Ait-Sahalia and Brandt (2001) for asymptotic properties of this estimators). The
conventional solution to optimize the classical trade-off between variance and bias is to choose a
bandwidth of the form: h = Ao, T~ YK+% where \ is a constant, K is the number of predictor
variables and o, is the standard deviation of the predictor Z (see Hardle and Marron (1985)).

Finally, the optimal unconditional portfolio weight is compute by applying a standard GMM
procedure to the unconditional Euler equation. In this case the moment condition is:

E 8U(Wt+1) 8Wt+1 . 1 ET 8U(Wt+1) 8Wt+1 -0
8Wt+1 Ja =1 8Wt+1 9o ’

(7)

T

which yields the same results that directly compute weights from equation (3).

3 The Data and basic statistics

I am interested in the analysis of the empirical time-series relationship between optimal bond portfolio
allocations and alternative measures of liquidity. To that end, I calculate monthly, quarterly and
annual holding period returns from daily observations of zero-coupon nominal and real Treasury bond
yields constructed by Gurkaynak et al. (2007) and Gurkaynak et al. (2010) for observed bond yields,
respectively, available through the Federal Reserve web site. This data set contains constant maturity
yields for maturities of 2 to 20 years. I construct equally weighted bond portfolios on short-term bonds
(1 to 10 years maturity) and on long-term bonds (11 to 20 years maturity), each of them computed for
Treasury bonds and for TIPS, ending up with four risky assets. The sample period is from January 2,
2004 to December 31, 2012.

For the same period, I also collect information on one-year Treasury bills from the Federal Reserve
Board statistical releases. Following Ait-Sahalia and Brandt (2001) and Ghysels and Pereira (2008)
I assume Treasury bill is risky-free, and I fix the risk-free rate at its historical average. They argue
that the constant risk-free rate assumption guarantees that any difference in the optimal portfolio
functions across frequencies is solely due to the relation between returns and liquidity. In summary,
the asset universe consists of the short-term Treasury bonds (weight ayg), the long-term Treasury
bonds (weight anr), the short-term TIPS (weight arg), the long-term Treasury bonds (weight arr)
and the risk-free assets (weight a,.f).

I calculate liquidity premium for 10 and 20-years to maturity as the residual spread between TIPS
and nominal z-spread asset swaps using daily data from January 2004 to December 2011 I using daily
nominal and TIPS z-spread asset swaps data from Barclays Live. I denote this measure by L7 §*" and
it is going to be the predictor variable Z;. I find that this variable is highly correlated and shares the
same dynamic pattern with other measures of relative bond liquidity premium proposed in literature
by Christensen and Gillan (2011) and Pflueger and Viceira (2012). Additionally, it is strictly positive

for all maturities and shows a peak in late 2008 during the financial crisis.

Table 1 shows descriptive statistics of the liquidity predictor and holding period government bond
portfolio returns, for the three investment horizons: one-month, one-quarter and one-year. The first



lines in each panel show the mean, standard deviation, skewness and kurtosis for each liquidity measure
and returns. By construction, and to facilitate the interpretation of the results, liquidity measure has
a mean zero and standard-deviation equal to one (i.e. they have been standardized). Also, there is
evidence of fat tails in returns, especially at the shorter investment horizon. This tail risk suggests
that the distribution is not normal, but skewed, and has fatter tails. The fatter tails increase the
probability that an investment will move beyond three standard deviations. Nominal returns are
negatively correlated with liquidity while TTPS returns are positively correlated. This means that as
liquidity conditions worsen (higher liquidity premium), TIPS returns rise in order to compensate for
the higher risk in bad times.

The following lines show the autocorrelation coefficients for different lags, which do not suggest
persistence in most of the variables, especially at any frequency. The last line shows the p-value for
the Dickey and Fuller test. The p-value for the Dickey and Fuller tests suggest the rejection of the null
of a unit root for both short-term and long-term returns, and Christensen and Gillan (2011) 10-years
liquidity.

4 Empirical results

4.1 Unconditional portfolio weights

The goal in this section is to characterize the unconditional portfolio choice which serves as a benchmark
for the conditional problem. Table 2 presents estimates of unconditional portfolio choices of investors
with MV and CRRA preferences with different risk aversion degrees of v = 2, 5, 10 and 20, and
for three investment horizons. The entries in each column correspond to a portfolio choice between
Treasury bills (assumed as risk-free) and one of the four different equally-weighted portfolio bonds:
short-term nominal bonds (NS), long-term nominal bonds (NL), short-term TIPS (RS) or long-term
TIPS (RL). That they do not impose short-sell constraints suggests a less realistic environment, mainly
because the Markowitz portfolio tends to have very large quantities of individual assets (sometimes
unreasonably so), I do not impose this restriction to make my results comparable with previous papers.

Several well-known features of optimal portfolio choice emerge. Consider the mean-variance
portfolio choice weights. First, risk aversion affects how much wealth the investor allocates to risky
securities instead of to the risk-free Treasury bill. The more risk-averse the investor, the less they will
invest in the risky bond, so that long positions in risky bonds goes down with a higher degree of risk
aversion. Second, given that this investor is forming his portfolio using only bonds and the risk-free
Treasury bill, he/she will not want to short-sell the risky asset but rather will want to buy it on the
margin (i.e. a > 1). That means investors borrow money at risk-free rates and go long in risky bonds.
For instance, an investor with an annual investment horizon and v = 20 borrows 39% of wealth at
the risk-free rate to invest a total of 139% in short-term nominal bonds portfolios. Finally, we see
less large quantities of short-sales (1 — «) or, in some cases, no short-sales for the risk-free Treasury
bill, for the same degree of risk aversion as the investment horizon increases. For example, an investor
with v = 20 goes short in the risk-free bond at the monthly frequency but goes long in both long-term
nominal bonds and the risk-free bond at longer investment horizons. The same situation occurs with
long-term bonds with respect to short-term ones in the sense that we see less large quantities for a
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Table 1: Descriptive Statistics for the portfolio measures of liquidity and bond returns

Short-term Long-term
zZ-asw N TIPS Z-asw N TIPS
LigY Ry, Ripy L3o% Ry, Ry

Panel A: Monthly frequency

Mean 0.00 1.04 1.02 0.00 1.06 1.03
Stdev 1.00 0.02 0.02 1.00 0.04 0.03
Skewness 2.58 0.03 -0.34 1.91 0.49 0.10
Kurtosis 11.15 3.70 6.30 8.36 5.60 5.91
Percentiles

5% -0.95 1.01 0.99 -1.17 0.99 0.98
50% -0.19 1.05 1.02 -0.18 1.06 1.03
95% 2.15 1.07 1.05 2.06 1.11 1.07
Cross correlations

Ant 1.00 1.00

RN, 0.05  1.00 -0.13  1.00

RELES 0.33 0.46 1.00 0.18 0.59 1.00
Auto correlations

1-day 0.99 0.95 0.96 0.99 0.95 0.94
2-day 0.98 0.91 0.92 0.98 0.90 0.89
5-day 0.95 0.80 0.78 0.95 0.77 0.72
22-day 0.76 0.07 0.06 0.77 -0.06 -0.11
Unit root test

DF p-value 0.02 0.01 0.01 0.14 0.01 0.01

Panel B: Quarterly frequency

Mean 0.00 1.05 1.02 0.00 1.06 1.03
Stdev 1.00 0.03 0.03 1.00 0.07 0.05
Skewness 2.58 0.04 -0.55 1.91 0.28 -0.26
Kurtosis 11.15 2.80 6.78 8.36 3.32 4.27
Percentiles

5% -0.95 1.00 0.98 -1.17 0.95 0.95
50% -0.19 1.04 1.02 -0.18 1.06 1.04
95% 2.15 1.09 1.07 2.06 1.17 1.11
Cross correlations

An,t 1.00 1.00

Ri\il -0.14 1.00 -0.23 1.00

RIIES 037 028 1.00 023  0.59 1.00
Auto correlations

1-day 0.99 0.98 0.99 0.99 0.98 0.98
2-day 0.98 0.96 0.97 0.98 0.96 0.95
5-day 0.95 0.92 0.93 0.95 0.91 0.89
22-day 0.90 0.86 0.86 0.90 0.85 0.81
Unit root test

DF p-value 0.02 0.01 0.01 0.14 0.01 0.01

portfolio of long-term vs short-term bonds. This indicates that a smaller portion of the portfolio is
devoted to risky assets as investment horizons increase or when long-run assets are available.

Results for CRRA preferences are very similar to those for MV. In theory, what differentiates a
Mean-variance investor from a CRRA investor is that the latter has a preference for higher order
moments and not only for the expected return and its variance, thus their risky position depends
on relative risk aversion. However, empirical results in Table 2, show that investors seem not to be
primarily affected in their decisions by the first two return moments. So, the effect of higher order
moments of CRRA investors seem not to be strong enough, especially for TIPS. The biggest holding
difference is for short-term nominal bonds at the monthly frequency, where CRRA investors with
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Continuation: Descriptive Statistics

Short-term Long-term

TR, RGTT IR RN, RO
Panel A: Annual frequency
Mean 0.00 1.06 1.04 0.00 1.10 1.06
Stdev 1.00 0.04 0.05 1.00 0.09 0.08
Skewness 2.58 -0.14 0.02 1.91 0.16 0.06
Kurtosis 11.15 2.33 3.06 8.36 3.70 2.76
Percentiles
5% -0.95 0.99 0.96 -1.17 0.94 0.93
50% -0.19 1.06 1.04 -0.18 1.09 1.07
95% 2.15 1.12 1.11 2.06 1.29 1.21
Cross correlations
Ap ot 1.00 1.00
Ry, -0.50  1.00 -0.60  1.00
RILES 0.36  -0.04 1.00 0.00 0.46 1.00
Auto correlations
1-day 0.99 0.99 1.00 0.99 0.99 0.99
2-day 0.98 0.98 0.99 0.98 0.98 0.98
5-day 0.95 0.96 0.97 0.95 0.95 0.95
22-day 0.76 0.83 0.86 0.77 0.78 0.82
Unit root test
DF p-value 0.02 0.23 0.09 0.14 0.05 0.02

The liquidity measure corresponds to the TIPS Liquidity proposed by Christensen and Gillan (2011). U.S. daily data from January 1, 2004
to December 30 2012 in basis points.

different levels of risk aversion tend to hold larger quantities.

There are important differences in the optimal portfolio weights between short-term and long-term
nominal bonds with both types of preferences. In fact, equally risk-averse investors tend to hold bigger
positions on short-term bonds relative to long-term ones, i.e. the short-term bond weight typically
exceeds the long-term weight for the same kind of bond. However, these differences become smaller
when the investment horizon become longer. Bonds with a longer maturity will usually pay a higher
interest rate than shorter-term bonds. However, long-term bonds have greater duration than short-term
bonds, so interest rate changes will have a greater effect on long-term bonds than on short-term bonds.
As a result, investors are more conservative holding smaller positions in long-term bonds relative to
short-term bonds, given that they would offer greater stability and lower risk.

Investors also hold bigger positions in nominal bonds relative to TIPS bonds. These differences
could be attributed, at least in the case of CRRA investor, to the negative skewness in short-term
TIPS bond returns for monthly and quarterly frequency, as Table 1 shows. Investors prefer positive
skewness, because it implies a low probability of obtaining a large negative return. Then, investors
tend to the extreme portfolios (Sharpe ratio driven, skewness driven or kurtosis driven) and avoid
being stuck in the middle.

12
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4.2 Conditional portfolio weights
4.2.1 Non-parametric optimal portfolio function

In this section I present the optimal portfolio weights as function of the liquidity differential between
inflation-indexed bonds and nominal bonds (liquidity premium), represented by Z;. I apply the utility
maximization framework presented above with respect to Z;. For each kernel grid point,% I optimize
the portfolio weight by maximizing the representative agent’s marginal utility in that state using a
GMM inference technique. The portfolio weights that follow from the optimization of the expected
utility under MV and CRRA preferences are presented in this section.

Table 3 shows estimates of the optimal conditional portfolio choice of investors (Weight) and their
corresponding standard errors (Std) obtained by applying the Politis and Romano (1994) bootstrap
procedure. I use this stationary bootstrap procedure to preserve autocorrelation properties of the data
in the bootstrap samples.” The standard errors are presented only in order to assess the precision of the
non-parametric method used. Each panel shows a different investment horizon (monthly, quarterly and
annual), and they present the portfolio allocation problems considered before: two, where the investor
chooses between the portfolio of short-term or long-term nominal Treasury bonds and a risk-free asset,
and another two where the investor chooses between a portfolio of short-term or long-term TIPS and
a risk-free asset, with each of them considering a MV and a CRRA investor.

Figure 2 are the companion graphs to Table 3. Each figure shows the optimal portfolio weight
as a function of liquidity a(Z;) represented by the bold line. Additionally, in each figure the thinner
horizontal line represents the optimal unconditional allocation. The bars in the background represent
the histogram of liquidity premium (scaled to add up to 30). Results presented in Table 3 and in
Figure 2 correspond to the case when the coefficient of relative risk aversion is equal to v = 20. A
number of results emerge from this analysis. First, the liquidity premium seems to be a significant
determinant of the portfolio allocation to U.S. government bonds. For instance, for a MV investor and
at the monthly horizon, liquidity is a strong determinant of the allocation to short-term and long-term
nominal bonds, with the optimal weight ranging from 9.41 at Liquidity= (-1) to 2.31 at Liquidity=5,
as Table 3 shows. This indicates that an increase in the liquidity premium (i.e., liquidity conditions
worsen) is accompanied by a strong decrease in the optimal allocation in short-term nominal bonds.

I have a similar result for the long-term nominal bonds with weights ranging from 2.05 to 0.27.
Furthermore, liquidity also seems to be an important determinant of the allocation to TIPS. In this
case, an increase in liquidity premium produces a decrease in the optimal allocation to both short-term,
and long-term TIPS bonds. However, the effect is less strong with weights ranging from 3.80 to 3.16
for short-term, and from 1.31 to 0.65 for long-term for liquidity ranging between -1 and 5, respectively.

At quarterly and annual frequencies, optimal allocation still responds to changes in liquidity but
mainly at high levels of liquidity premium. What we see is that the conditional weight is very close to

6 T define fifteen not evenly spaced realizations of the liquidity ranging from its mean minus one standard deviation to
its means plus three standard deviations, which correspond to the interior 95% of the empirical distribution of the
liquidity premium. Alternatively, I also define fifteen not evenly spaced realizations of the liquidity ranging between
its minimum and maximum value, however results are broadly the same with both grids.

" This method is a variation of the standard block bootstrap that manages to create bootstrap series that are strictly
stationary which accounts for the autocorrelation in the data.
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the unconditional weight for low levels of liquidity (i.e. liquidity= -1 to 2), however optimal allocation
starts to respond to changes in the liquidity when market liquidity conditions worsen (i.e. liquidity >
2). Interestingly, the investor tends to substitute cash for nominal bonds, and TIPS bonds for cash
when the liquidity rises above its mean plus about 4 standard deviations, as Figure 2 shows.

Second, conditional allocations in risky assets decrease as liquidity conditions worsen. In particular,
an increase in the liquidity differential between nominal and TIPS bonds lead to: lower optimal portfolio
allocations on nominal Treasury bonds, and also lower optimal portfolio allocations in TIPS, but at
different levels of liquidity. When the liquidity premium is low (i.e. the liquidity differential between
nominal and TIPS bonds is small), we see that the optimal allocation to either nominal or TIPS bonds
is mostly unresponsive to liquidity premium, and it is very close to unconditional allocation. This
occurs in the negative range of liquidity and also in the center of the distribution.

Figure 2: Optimal portfolio weights as a function of 10-year liquidity premium

(a) Monthly frequency
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In each panel the thinner horizontal lines represents the optimal unconditional allocation. The bars in the background represent the histogram
(scaled to add up to 30) of liquidity premium. The bold line represents the optimal fraction of wealth allocated to the respective equally-
weighted U.S. bond return portfolios as a function of liquidity premium calculated using daily data from January 2, 2004 to December 30,
2012. In the first row, both the investment horizon and the rebalancing frequency are one-month; in the second row, one-quarter; and in the
third, one-year.

When the liquidity premium is high (i.e. in presence of big liquidity differentials between nominal
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and TIPS bonds), portfolio allocation on both nominal bonds and TIPS bonds decreases. However,
this occurs at different levels of liquidity. In particular, the investor starts to decrease their position
in nominal bonds at liquidity=2, but when there is insufficient liquidity, the investor holds a larger
position in nominal bonds. On the other hand, portfolio allocation on TIPS bonds behaves in the
reverse direction. That is, the investor only decreases asset allocation to TIPS in the upper positive part
of liquidity (i.e. when the liquidity premium is very high), while between liquidity=2 and liquidity=4
TIPS bonds allocations increases, being above the unconditional value. Thus, in general, portfolio
allocation for each type of bonds (nominal and TIPS) moves in cycles and each of them has its own
cycle. Typically, when one type of bond is performing well, the other may not be performing as well
in terms of liquidity, and the allocation rule reflects this situation.

Third, I find in general that the shape of the optimal portfolio policy functions of mean-variance
and CRRA investors, with the same degree of risk aversion, are similar even though they have different
levels. This suggest that investors seems to be primarily affected in their decisions by the first two
return moments. Thus, the effect of higher order moments of CRRA investors exist but it seems
not to be strong enough. However, this is not true at the monthly frequency. In this case, portfolio
policies differ substantially which can be attributed to time variation in the higher order moments of
the return distribution. This result is not induced by the choice of the kernel bandwidth, given that I
explicitly control for it by constraining the kernel to be the same for the mean-variance and the CRRA
preferences.®

Fourth, the effect of liquidity is a decreasing function of the investment horizon. For a given degree
of risk aversion, the size of the optimal portfolio weight differs considerably across investment horizons.
I find that as investment horizons became longer, the smaller the optimal portfolio weight, and the less
that is invested in the risky asset. In particular, for the same degree of risk aversion investors react
less abruptly to an increase in the liquidity premium when the investment horizon is one-year, than
when the investment horizon is one-month.

For instance, we can see from Table 3 that when liquidity is equal to its mean (Z; = 0) a MV
investor with v = 20 reduces the cash holdings from 2.02 to 0.62 when the investment horizon increases
from one-month to one-year. This means that the investor borrows 102% of wealth at the risk-free
rate to invest a total of 202% in short-term nominal bonds when the investment horizon is one-month.
However, when the investment horizon becomes larger, the investor takes a long position in both assets
holding 62% of their wealth in short-term nominal bonds and 38% in cash. The same occurs when I
consider a CRRA investor. For example, considering the same case, but for long-term TIPS bonds, a
CRRA investor reduces their bonds positions from 98% to 32%, as Table 3 shows.

Fifth, different degrees of risk aversion mainly change the level of the portfolio function but have

8 Non-parametric methods are typically indexed by a bandwidth or tuning parameter which controls the degree of
complexity. The choice of bandwidth is often critical to implementation. In this application, the bandwidth is given
by: h = /\aszl/K“l, where K = 1 which is the dimension of Z (I am considering only one predictor variable which
is liquidity), o(Z) is the standard deviation of the predictor variable, T' = 2086 is the sample size and ) is a constant.
For a big enough value of A, I obtain a flat portfolio weight and small A produce a very noise portfolio weight function.
I consider values ranging from 9 to 3 for A\. These values guarantee bigger weight to an observation located at the
mean of liquidity variable (which is zero), smaller weights to observations located one standard deviation away from
the mean (Z; = £1), and even smaller weights to observations located two standard deviation away from the mean,
etc. The results presented in this section correspond to A = 6.
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little impact on the shape of this function, as is shown in Figure 3. In this figure, I only plot the
portfolio policies for the long-term nominal (left column) and TIPS bonds (right column) for a one-
year investment horizon. The first row in the figure corresponds to a mean-variance investor, and the
second row to a CRRA investor. Finally, in each panel bold black lines represent an investor with
~ = 5, the bold grey line with v = 10 and the dotted line with v = 20. Looking at Figure 3, we see
that the more risk-averse the investor becomes, the smaller the optimal portfolio weight, so the less
that is invested in the risky asset. Furthermore, more risk-averse investors react less abruptly to an
increase in the liquidity premium.

Figure 3: Optimal portfolio weights as a function of 10-year liquidity premium (Mean-variance and
CRRA investor with different values for 7)
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The bars in the background represent the histogram (scaled to add up to 30) of liquidity premium. The lines represent the optimal fraction
of wealth allocated to the respective equally-weighted U.S. bond return portfolios as a function of liquidity premium calculated using daily
data from January 2, 2004 to December 30, 2012. Bold black line represent an investor with v = 5, the bold grey line for v = 10 and dotted
line for v = 20. In the first row correspond to the case of mean-variance investor and the second row to the CRRA investor. The investment
horizon and the rebalancing frequency in this figure correspond to one-year.

To summarize, and in general, results consistently show that the optimal allocation to short-term
or long-term bonds is mostly unresponsive to changes in liquidity conditions at low levels (i.e. at
liquidity= -1 to 4). However once liquidity reaches certain levels (liquidity > 4), which indicates
that market liquidity conditions have worsened, then the investor starts to respond by decreasing the
positions in TIPS and increasing the position in nominal bonds.

Additionally, the above conclusion is not determined by the level of risk aversion, the investment
horizon or the investor preferences. The relation between optimal portfolio weights and liquidity
premium remains the same for different values of risk-aversion, different investment horizons and also
across investors’ preferences. The characteristics mainly change the level of the portfolio function that
have a small impact on the function shape, except for the monthly frequency.
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4.2.2 Do weights really respond to changes in liquidity?

The main question of this paper is whether or not the weights respond to changes in liquidity. To test
whether or not a portfolio weight is statistically different from zero is pointless in this context, simply
because it does not provide an answer for the question asked above. What I do next, following Ghysels
and Pereira (2008), is to statistically test this question by using the following approximation:

L o(Z+01)—a(Z-01)

97 17=7 = 0.2 =0 ®
where the first derivative of «(Z) is approximated by a finite difference which allows me to compute
the slope of the optimal portfolio weight function at each value of the predictor variable.

Table 4 shows the point estimate slopes and t-stat computed using the standard errors obtained
also from the Politis and Romano (1994) stationary bootstrap procedure. I draw one main conclusion
from this table which is consistent with the results presented above. It is clear that optimal portfolio
policy is not linear or constant in liquidity. For the two investor preferences the short-term nominal and
the TIPS bonds portfolio policy responds to changes in liquidity. This conclusion is derived from the
fact that the null hypothesis is rejected indicating that all slopes are statistically significant at the 10%
level or less. The only case where slopes are not statistically significant is for short-term TIPS bonds
with MV preferences. The other case where we can not reject the null hypothesis is for short-term
nominal bonds with CRRA preferences. In this case, the optimal portfolio function is constant but
smaller than the unconditional weight.

For long-term TIPS, «(Z;) is almost constant and statistically not different from zero over the
negative range of liquidity until Z;, = 2. After that the slopes are positive and over the last range
of liquidity they are negative and statistically significant. I find the same results for both investor
preferences. The optimal portfolio function for long-term nominal bonds goes in the opposite way. It
starts by being flat and statistically not different from zero, then slopes become negative, and over the
the end range of liquidity, slopes are positive and statistically significant.

Overall, I can conclude that optimal portfolio choice is unresponsive over the negative and first
positive range of liquidity, however portfolio allocations start to react as liquidity conditions worsen.
This conclusion regarding the general shape of the portfolio weight functions is reliable in the sense
that non-parametric techniques used here produce a consistent estimator of the portfolio functions.

4.3 Does a conditional allocation strategy imply improved asset allocation and
performance?

From the standpoint of practical advice to portfolio investors, an additional natural question to ask is
whether or not to follow a conditional strategy translates into improved out-of-sample asset allocation
and performance. The idea is that at the start of each period (one-month, one-quarter or one-year), one
investor makes portfolio allocations conditional upon observing a particular liquidity signal (conditional
strategy). I compare his/her performance to that of another investor who ignores any change in liquidity
in making his/her portfolios allocation choices (unconditional strategy).
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I used rolling estimation approach, which consists of estimating a series of out-of-sample portfolio
returns by using a rolling estimation window over the entire data set. Specifically, I choose an estimation
window of length M =260 days (1 year). In each day, starting from ¢t = M + 1, I use the data in the
previous M days to estimate the optimal portfolio weights. In other words, each investor has an
investment horizon of one-year and uses all data available until period T'— M to choose his/her first
portfolio weights. Next, I use those weights to compute the portfolio returns. Repeating this procedure,
involve adding the information for the next period in the data set and dropping the earliest period
(keeping the window length fixed), until the end of the data set is reached. In this way, I obtain a time
series of portfolio returns for each (unconditional and conditional) strategy.

To compute out-of-sample performance of this two different strategies, I compute the out-of-sample
Sharpe ratio of strategy j, defined as the sample mean of out-of-sample excess returns (over the risk-free
asset), p, divided by their sample standard deviation, o, for strategy j = U,C

Ky
SR, =5 (9)
J O'j

In addition, I calculate the certainty equivalent rates of return (CER) for each strategy to judge
its relative performance. The C'E'R represents the risk-free rate of return that investor is willing to
accept instead of undertaking the risky portfolio strategy. Formally, I compute the CER of strategy j

CER; = ij — 30%, (10)
where p; and ajz are the mean and variance of out-of-sample excess returns for strategy j = U, C.
To test whether or not the Sharpe ratios, and the certainty equivalent returns of two strategies
are statistically distinguishable, I test the following null hypothesis Ho : SRy — SRc and Ho :
CERy—CERc. This difference represents the gain (or loss) in returns from investing in unconditional
strategy versus conditional strategy. I compute the p-value of the differences by using the Politis and
Romano (1994) stationary bootstrap procedure (pv — boot).” Finally, an useful benchmark are the
in-sample Sharpe ratios and the certainty equivalent returns (to assess the effect of estimation error),

calculated for the different portfolio strategies by using the entire time series of excess returns.

Table 6 shows results assuming both investors are mean-variance optimizer with a one-year
investment horizon, and v = 10. Panel A shows the CER and the SR calculated with the entire data
set (in-sample analysis). The in-sample Sharpe ratios are all positive (except for short-term nominal
bonds), being the performing of the conditional strategy better than the unconditional strategy for all
portfolios. For instance, for a nominal long-term portfolio the Sharpe ratio of unconditional strategy
is equal to 0.12 versus 0.36 of the conditional strategy, indicating that with the conditional strategy
the investor takes on less risk to achieve the same return. For the same portfolio, the CE Ry is equal
to 0.53 vs 0.60 of the CER¢. This means that an investor requires a higher risk-free return to give up
the opportunity to invest in the portfolio following a conditional strategy.

9 Ireplicate the process described in Appendix A 1000 times. For each such replication, I compute the optimal allocations
for each investor through one year (260 days). At every point in time, the investors are allowed to utilize just the
information available up to that point in time. I calculate the difference in certainty equivalent between the two
strategies and the adjusted Sharpe ratio for each replication. Finally, I count the proportion of times in 1000 replications
that these differences exceed the certainty equivalent and adjusted Sharpe ratio based on the original data for a given
set of results.
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Table 5: Sharpe ratios and certainty equivalent returns (Mean-Variance investor with v = 10)

Panel A: In- sample results

Unconditional Conditional Differential H o:differential=0
SR CER SR CER SRy — SR¢ CERy — CERc pv — boot pv — boot
Treasury Short-term 0.2891 1.5005 -0.1912 0.3447 0.4812 1.1558 0.0460 0.0484
Long-term 0.1286 0.5358 0.3632 0.6010 -0.2346 -0.0652 0.0479 0.0014
TIPS Short-term 0.2188 0.3602 0.4114 0.9541 -0.1926 -0.5939 0.0480 0.0004
Long-term 0.1399 0.3502 0.8102 0.8110 -0.6703 -0.4608 0.0404 0.0004
Panel B: Out-of-sample results
Unconditional Conditional Differential p — value
SR CER SR CER SRy — SR¢o CERy — CERc pv — boot pv — boot
Treasury Short-term 0.2823 1.5886 -0.2261 0.3204 0.5084 1.2682 0.0553 0.0548
Long-term 0.1220 0.5540 0.3413 0.6456 -0.2193 -0.0916 0.0504 0.0040
TIPS Short-term 0.2085 0.3351 0.3520 1.1332 -0.1435 -0.7981 0.0541 0.0005
Long-term 0.1295 0.2894 0.7521 0.8846 -0.7551 -0.5952 0.0464 0.0006

This table reports the out-of-sample C ER returns for two different investor strategies: unconditional (bond returns are i.i.d) and
conditional (bond returns are predictable) strategy. The p — values of the difference between SR, and CER from each strategy
are obtained applying the Politis and Romano (1994) bootstrap procedure. The complete data set correspond to U.S. data from
January 1, 2004 to December 30 2011.

Similarly, the difference between the in-sample SR for the unconditional and conditional strategy
shows the loss (given that I obtain negative values) from investing, based on the belief that bond
returns are i.i.d. This means that the bond return predictability translates into improved in-sample
asset allocation and performance. The comparison of in-sample certainty equivalent returns and their
differences, confirms the conclusions from the analysis of Sharpe ratios. Finally, the difference between
the Sharpe ratios and certainty equivalent returns of each strategy are statistically significant in all
cases, as pv — boot values indicate.

Next, I assess the magnitude of the potential gains that can actually be realized by an investor,
using the out-of-sample performance of the strategies. From panel B of Table 6, we see that in all
cases the SR for the portfolios from the conditional strategy is much higher than for the unconditional
strategy. I find the same results for CER. This means that a conditional strategy outperforms the
unconditional strategy. This suggests also that conditional strategy might improve, not only in-sample
but also out-of-sample performance. The significance of the CER differential and the SR differential,
which is measure using the stationary bootstrap technique proposed by Politis and Romano (1994),
implies that this result is statistically significant.

Finally, the difference between the in-sample and out-of-sample strategies allows me to gauge the
severity of the estimation error. From the out-of-sample Sharpe ratio, reported in Panel B of Table 6,
the unconditional strategy does not have a substantially lower Sharpe ratio and certainty equivalent
returns out-of-sample than in-sample. This means that the effect of estimation error seems not to be
so large. Consequently, it does not erodes the gains from optimal diversification given that differences
turn out not to be economically important.

5 Conclusions

I consider the portfolio problem of a mean-variance and a power utility investor whose portfolio choices
are between the asset of interest and a risk-free asset. The investor’s problem is to choose optimal
allocations to the risky asset as a function of predictor value: liquidity premium. The goal is to assess
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whether or not liquidity changes influence optimal portfolio allocations in the U.S. government bond
market. While these issues have been well studied for stock-only portfolios, in general, less has been
done to provide empirical evidence for the optimal portfolio choice of Foreign Official Institutions
investing in U.S. Treasury securities, conditional upon observing a particular liquidity signal. This
analysis is particularly important for central banks, specially in developing countries, given that
collectively the have accumulate a large holdings of U.S. securities during the last fifteen years.

Overall, results show that optimal portfolios vary substantially with regards to predictor value.
In particular, the effect of liquidity is a decreasing function of the investment horizon. Additionally,
conditional allocations in risky assets decrease as liquidity conditions worsen. However, once the
liquidity differential between U.S. nominal Treasury and TIPS bonds is sufficiently large, it leads
to: (i) lower optimal portfolio allocations in TIPS; and (i) higher optimal portfolio allocations on
nominal bonds with respect to the risk-free bond. To summarize, this paper suggests that market
liquidity signals could provide valuable guidance to central banks as one of the main FOIs investing in
U.S. Treasury securities, and adds to the evidence found for stock portfolios by Ghysels and Pereira
(2008), which suggests the existence of a dependence of the optimal portfolio choices on changes in
liquidity.
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