
Intra- and inter-industry misallocation and comparative
advantage∗

José Pulido†

December 2017
[Job Market Paper, latest version here]

Abstract

What are the implications of allocative inefficiency in an open economy? This paper
shows how firm-level resource misallocation can affect the relative unit cost of producing
a good across sectors, distorting the “natural” comparative advantage of a country. First,
sectors with a larger extent of within-industry factor misallocation face larger productivity
losses, which reduce their relative export capability. Second, misallocation of factors across
industries can alter sectors’ sizes and distort their average productivity through firms’
selection effects, affecting their comparative advantage too. After presenting evidence on
how metrics of intra- and inter-industry factor misallocation are related to the observed
patterns of comparative advantage, this paper explores the general equilibrium effects of
both types of misallocation in an open economy and their role in shaping industry export
capabilities. For this, I use a model of international trade with endogenous selection
of heterogeneous firms, in which the allocation of factors within and across industries is
inefficient. I compute a counterfactual equilibrium in which misallocation in capital, skilled
labor and unskilled labor is removed in one of the countries (Colombia). The reallocation
of factors allows Colombia to specialize in industries with “natural” comparative advantage
and generates a substantial change in its industrial composition, which leads to a rise in
the ratio of exports to GDP by 18 p.p. This industrial composition effect is absent in the
workhorse models of factor misallocation under closed economies.
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1 Introduction

What are the implications of allocative inefficiency in an open economy? In recent years, a
growing body of research has strived to understand how factor misallocation across heteroge-
neous firms can account for differences in aggregate productivity across countries1. The main
insight from this literature is that, given a fixed endowment of production factors in the econ-
omy and a certain distribution of physical productivity across firms, the inefficient allocation
of inputs across production units generates sizable losses in aggregate TFP. Regardless of the
underlying cause of the inefficient use of resources (regulations, financial constraints, informa-
tion asymmetries, crony capitalism, etc.), the amount of misallocation can be measured by
the extent to which the marginal returns to factors varies within countries. Some evidence
suggests a broader dispersion of the returns to factors in developing economies (Banerjee and
Duflo, 2005; Hsieh and Klenow, 2009; Bartelsman et al., 2013), implying larger productivity
losses for those countries.

Most of the work on the effects of firm-level misallocation on the aggregate economic per-
formance has focused on closed economies2. In an open economy, if the extent of resource
misallocation varies not only across countries but also across industries, allocative inefficiency
could also shape comparative advantage. For example, consider the broad range of industrial
policies that several East Asian countries introduced during the post-war period, intended to
promote some strategic industries. Such policies could have generated not only reallocation
of factors towards targeted industries but also an increase in resource misallocation across
firms within those sectors given the distortionary nature of some instruments used: selective
investment tax credits, public enterprises, depreciation allowances, etc3. Thus, the likely im-
provement in the export capability of targeted sectors due to the average reduction in their
returns of the factors, compared to untargeted industries, could have been countered by de-
creases in their sectoral TFP, due to their larger extent of within-industry factor misallocation.
A relevant question here is then how to assess the role of those policies in shaping comparative
advantage through their effect on the allocation of resources. Did those policies accentuate or
distort the “frictionless” patterns of industrial specialization?

As the previous example suggests, the final impact of allocative efficiency on comparative
advantage is a combination of the effects of both inter- and intra-industry factor misallocation.
This paper explores how those two types of misallocation can influence the core determinants
of industries’ export capabilities in an open economy, and hence, the patterns of industrial

1For an extensive review, see Restuccia and Rogerson (2013) or Hopenhayn (2014a).
2In the trade literature, most of the analysis has been addressed from a different angle: the effect of trade

on a metric of firm-level misallocation, such as mark-ups dispersion (Epifani and Gancia, 2011; Edmond et al.,
2015) or how much plant survival depend on productivity (Eslava et al., 2013). Others have studied the effects
of trade liberalization for welfare in economies with factor misallocation, papers that are mentioned below.

3For details of East Asian industry policies, see for example Rodrik (1995), Chang (2006) or Lane (2017).
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specialization. I do this by addressing the following two questions. First, does resource misal-
location explain observed industries’ export capabilities once we control for the “frictionless”
sources of comparative advantage? Second, if so, could allocative inefficiency lead to changes
in the ranking of comparative advantage?

I use the term comparative advantage to describe the differences in the average unit cost
of a good across industries relative to the same differences in a reference country. Hence,
the sources of comparative advantage comprise all primitive variables that affect the three
determinants of the unit costs in an industry: sectoral average productivities, factors prices
and the number of varieties that the industry produces. Those sources include not only
“natural” differences in technology distributions or factor endowments, but also differences in
the primitive determinants of industries’ scale (entry barriers)4, and, in allocative inefficient
economies, the extent of resource misallocation within and across industries. To verify the role
of both types of factor misallocation as determinants of comparative advantage, I first present
empirical evidence on how measures of intra- and inter-industry misallocation are related to
the observed patterns of export capability for Colombian producers5. As my metric of export
capability, I use the estimates of the exporter-industry fixed effect derived from a gravity
equation, an approach that has gained popularity as a measure of “revealed” comparative
advantage, RCA hereafter (Costinot et al., 2012; Levchenko and Zhang, 2016; Hanson et al.,
2015; French, 2017). I regress the Colombian RCA measure relative to the United States on
indicators of both intra- and inter-industry misallocation, exploiting their variation over time.
I control for the “natural” sources of comparative advantage using total endowments interacted
with factor intensities and the efficient TFP, which capture Heckscher-Ohlin and Ricardian
forces respectively. I find that both types of misallocation have a quantitative importance for
shaping Colombian RCA similar to the magnitudes of the “natural” determinants.

Next, I examine the general equilibrium channels with which both types of factor misallo-
cation can shape relative industries’ unit costs and hence comparative advantage. This explo-
ration, which is the main contribution of this paper, takes into account several adjustments
that are absent when removing factor misallocation under a closed economy. For example,
consider first the impact of intra-industry misallocation only. As it is well known, this type of
misallocation generates losses in sectoral TFP, due to decreases in average sectoral efficiency.
In a closed economy setting with a fixed mass of firms, as in Hsieh and Klenow (2009), HK here-
after, removing intra-industry misallocation does not generate reallocation of factors across

4With endogenous entry in monopolistically competitive sectors, there are “scale effects”: entry increases
the number of varieties and reduces the price index. Commonly, these “scale effects” are produced both through
endogenous entry and selection (Costinot and Rodríguez-Clare, 2014). However, only those generated by entry
are independent of the size of the destination market, and thus are actual sources of comparative advantage.

5The choice of Colombia is due to the fact that it has arguably one of the richest firm-level manufacturing
surveys in the world (De Loecker and Goldberg, 2014). A unique feature of the data is the possibility to
obtain direct measures of firms’ physical productivity (TFPQ) using plant-level deflators for firms’ inputs and
outputs, which allow me to construct a direct measure of the efficient TFP at the industry level.
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sectors, under the common two-tier (Cobb Douglas-CES) aggregator. The efficiency gained
by each industry, translated into a lower aggregate price index, is automatically followed by
an increase in demand, so the revenue shares across sectors remain constant, and factor prices
do not adjust6. However, in an open economy, even with the same two-tier utility function
and a fixed mass of firms, the revenue shares are endogenously determined and depend on how
substitutable goods are across sectors. Removing intra-industry misallocation in a country
leads to two types of adjustments on factor prices. First, it produces a change in the relative
factor prices across countries to restore trade balance equilibrium, a result analogous to the
introduction of a set of sectoral-specific productivity shocks in standard Ricardian models.
And second, it changes the relative real factor returns depending on the adjustment of relative
prices of goods, as in the standard Heckscher-Ohlin model.

Furthermore, when allowing for endogenous entry and selection across firms, as in the
closed economy models of Bartelsman et al. (2013) or Yang (2017), TFP gains and their general
equilibrium effects on factor prices are magnified by the adjustment in the extensive margin
(the number of operating firms) after removing misallocation. This effect is sizable since it
involves a drastic recomposition of incumbent firms: a withdrawal of low-efficiency firms that
survived because of factor misallocation plus the addition of potential high-efficiency firms
that were not able to operate under allocative inefficiency. In monopolistically competitive
sectors this recomposition of firms affects net entry and can lead to the introduction of new
varieties, which is a third channel that impacts industries’ relative unit costs. Finally, the
marginal returns of the factors might differ on average across sectors, suggesting the presence
of inter-industry misallocation as well. Simultaneously removing this type of misallocation
affects the direction of sectoral factor reallocations and the magnitude of the adjustments on
relative factor prices, which produces further adjustments on average productivities through
firms’ selection effects.

To consider all these general equilibrium channels, I use a tractable multi-country, multi-
factor and multi-sector model of international trade à la Melitz (2003) in which the allocation
of factors across heterogeneous firms is inefficient. I employ wedge analysis to reflect the
observed dispersion in the marginal returns of the factors abstracting from the underlying
cause of misallocation, an approach introduced by Restuccia and Rogerson (2008) and HK in
this context and inspired by the business cycle literature7. Under this approach, each firm is
represented by a draw of “true” efficiency – physical productivity or TFPQ – and a vector of
wedges, whose elements represent the differences between the returns of each primary factor

6Under a more general demand (two-tier CES) there is reallocation of factors across sectors, but abstracting
from inter-industry misallocation, the effect on factor prices is marginal (see HK and Appendix D).

7Wedge analysis was first developed as accounting methodology in the business-cycle literature by Cole
and Ohanian (2002), Mulligan (2005), Chari et al. (2007) and Lahiri and Yi (2009) among others. For recent
uses in the literature on factor misallocation, see for example Adamopoulos et al. (2017), Brandt et al. (2013),
Bartelsman et al. (2013), Gopinath et al. (2015), Hopenhayn (2014b), Oberfield (2013), Święcki (2017), Tombe
(2015) and Yang (2017) among others.
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for the firm and the average returns in the economy. I derive a theoretically consistent gravity
equation along the lines of Chaney (2008), Arkolakis et al. (2012) and Melitz and Redding
(2014) that incorporates the impact of wedges on the determinants of bilateral exports, in
particular on the exporter industry fixed effect, my measure of RCA. I then investigate the
effect of removing both – and separately – intra and inter-industry misallocation of a country
on its bilateral exports and hence on its RCA.

To this end, I obtain counterfactual equilibria solving the model in relative changes, using
the “exact hat algebra” method proposed by Dekle et al. (2008). Each counterfactual incor-
porates the whole set of general equilibrium effects of reallocating factors to their efficient
allocation and is not demanding in terms of data requirements. I perform the exercises using a
world composed of 48 countries, three production factors and 25 tradable sectors, to evaluate
the effect of Colombian allocative inefficiency on its comparative advantage schedule. I use
Bils et al.’s (2017) method to estimate the dispersion in marginal products in the presence of
additive measurement error in revenue and inputs. Since overhead factors are analogous to
an unobservable additive term in measured inputs, this method allows me to overcome the
problem of inferring the variance of the marginal products of the factors directly from the
observed dispersion of their average products in the presence of fixed costs; an issue empha-
sized in Bartelsman et al. (2013) and a key feature of trade models with endogenous entry and
selection.

The results of the counterfactual exercise suggest that in Colombia resource misallocation
plays a major role in shaping comparative advantage. In the case of an extreme reform
in which factor misallocation is entirely removed within and across industries, the ratio of
exports to manufacturing GDP rises by 18 p.p. and welfare, measured as real expenditure,
grows 75%8. The large boost in exports is due to the increase in the dispersion of the schedule
of comparative advantage, which leads to higher degrees of industrial specialization in the
frictionless equilibrium. For instance, the whole chemical sector (both industrial chemicals and
other chemicals such as paints, medicines, soaps or cosmetics) climbs to the top of the national
export capability ranking, and ends up in the first percentile of the counterfactual RCA world
distribution. The opposite case occurs in industries whose comparative advantage in the
actual data seems to be due to only factor misallocation, particularly computer, electronic
and optical products, transportation equipment, petroleum and machinery and equipment.
These four industries shrink and practically disappear, indicating a non-interior solution in
the counterfactual equilibrium9.

The direction and the magnitude of the change in the RCA measure depend on the extent of
the misallocation removed. For example, in the case of removing intra-industry misallocation,

8The growth in real expenditure is equivalent to the TFP gains in a closed economy model.
9The feasibility of non-interior solutions in multi-sector Pareto-Melitz type of models is established by

Kucheryavyy et al. (2017). Under a similar setup to the one used in this paper, it is guaranteed that the
general equilibrium is unique, but not necessarily an interior solution.
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sectors with the largest within-industry variance of firms’ revenue productivity (food, industrial
chemicals and tobacco), the typical indicator of intra-industry misallocation, face substantial
improvements in their RCA measure. And in the case of removing inter-industry misallocation,
the change depends on how misaligned the average returns are in each sector with respect to
other industries. Thus, industries that exhibit the largest positive deviations in the average
returns of the factors relative to the economy-wise mean (e.g., other chemicals or glass), face
the largest increases in their RCA measure. The final effect of the overall allocative inefficiency
on comparative advantage is a combination of the two effects, but the results show that in the
Colombian case, intra-industry misallocation is quantitatively more important.

The model also delivers a decomposition of the change in the RCA measure into three
terms, each of which corresponds to a single component of the relative unit cost across indus-
tries: the average TFP, factors prices, and the number of produced varieties. I find that for
both types of misallocation the adjustment in the relative number of produced varieties (i.e.,
in the extensive margin), which is generated by the reallocation of factors across industries,
contributes the most to the change in the RCA. This is because in the intensive margin the
gains in average TFP relative to the rest of the world are offset in large part by the rise
in the relative factor prices, and the remaining effect does not vary much across industries,
particularly when we remove only intra-industry misallocation.

Related literature

This paper is mainly related to the recent literature that evaluates the effects of trade in
economies with resource misallocation, particularly Ho (2012), Tombe (2015) and Święcki
(2017). The model most closely related to that used in this paper is Ho (2012), who stud-
ies India’s trade liberalization under a multi-sector and multi-country setting with firm-level
wedges, although with different approaches in several aspects10. In turn, Tombe (2015) and
Święcki (2017) provide multi-sector and multi-country models to study welfare and gains from
trade under the presence of sectoral frictions, and thus only inter-industry misallocation. My
focus is different from the mentioned works: instead of analyzing the effect of trade liberaliza-
tion in a distorted economy, my objective is to evaluate the effects of the observable resource
misallocation in the RCA derived from actual bilateral trade flows. Further, my Melitz-type
of framework allows me to endogenously generate across-industry misallocation as the conse-
quence of different distributions of the returns of the factors across sectors, making possible
interactions between intra- and inter-industry misallocation.

This paper is also related to the recent literature on the implications of misallocation of
factors for aggregate productivity. The effect of factor misallocation on the set of operating

10In the model used here misallocation can derive from any factor market, as opposed to a unique scale-
dependent distortion, plus differences in the marginal product distributions across sectors can derive in inter-
industry misallocation. Moreover, I do not rely on the calibration of the full set of parameters of the model to
obtain counterfactuals.
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firms in my model is similar to the one described by Bartelsman et al. (2013) and Yang (2017),
who study the effect of firm-level distortions under endogenous selection in closed economies.
Here, the introduction of international trade enriches the determinants of firm profitability,
making firms’ selection depend not only on domestic variables but also on the demand for
foreign goods in importing countries and bilateral trade frictions. Additionally, the model
incorporates the adjustments of relative factor prices across countries that take place once
sectoral productivities change, which generate further selection effects. This paper also takes
into account both intra- and inter-industry misallocation, as in Oberfield (2013) or Brandt
et al. (2013). These papers present decompositions of the total TFP gains of reforms that
simultaneously remove both sources of misallocation, but in closed economies with a fixed
mass of firms. I contribute to these quantitative assessments evaluating the welfare cost of the
two types of misallocation in an open economy with endogenous selection of firms, a dimension
that, to the best of my knowledge, has not been previously studied.

Regarding the trade literature, my theoretical framework has the same interactions be-
tween country, industry, and firm characteristics in general equilibrium as the multi-factor
models that exhibit reallocation of factors both within and across industries in response to
trade shocks, particularly Bernard et al. (2007) and Balistreri et al. (2011). Here, the intro-
duction of resource misallocation generates a new source of comparative advantage that alters
the frictionless trade equilibrium. Instead of a full characterization of the properties of the
inefficient equilibrium, my focus here is mostly on the implications of allocative inefficiency for
the patterns of industrial specialization, so my primary interest relies on the counterfactual
exercise of removing misallocation. Finally, my paper is also related to the trade literature
that estimates gravity equations to derive indirect measures of relative export capability, as
Costinot et al. (2012), Hanson et al. (2015) and Levchenko and Zhang (2016). I use the same
approach here to assess the effect of allocative inefficiency in the RCA, but drawing on a
gravity equation derived from a multi-sector and multi-factor Melitz’s (2003) model, instead
of using Eaton and Kortum’s (2002) model.

The organization of this paper is as follows. Section 2 presents the empirical motivation.
First, it introduces the problem of both intra and inter-industry misallocation and quantifies
the relative importance of each type of allocative inefficiency. Next, it presents empirical
evidence on how factor misallocation can alter the set of operating and exporting firms and on
how the usual metrics of resource misallocation are related to comparative advantage. Section 3
introduces the theoretical model and derives the effect of firms’ wedges on the gravity equation,
particularly on exporter-industry fixed effects, the measure of RCA. I also offer an overview
of the general equilibrium channels that each type of misallocation can trigger using model
simulations under a simple parametrization. Section 4 presents the counterfactual exercise
of removing both (and separately) the observed intra- and inter-industry misallocation in
Colombia, to compute the effect of the two types of misallocation on its industries’ comparative
advantage. I also evaluate some departures from the baseline model. Section 5 concludes.
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2 Empirical motivation

In this section, I first introduce the problem of both intra- and inter-industry factor misalloca-
tion in a simplified setup: a closed economy with a fixed number of active firms. The purpose
is to provide, in a familiar setting, a quantification of the relative importance of inter-industry
allocative inefficiency, a type of misallocation that is often left aside in the literature11. Next, I
present evidence on how factor misallocation can alter the composition of active and exporting
firms. Such a mechanism reinforces total TFP losses (Yang, 2017) and suggests the inclusion of
endogenous selection in the open economy version of the model. Finally, I present evidence on
how factor misallocation affects the comparative advantage of a country. For this, I introduce
the empirical measure of RCA derived from a standard gravity equation, to evaluate the effect
of both types of misallocation on comparative advantage.

2.1 Intra and inter-industry misallocation

The starting point to evaluate the consequences of factor misallocation relies on the distinction
between physical (TFPQ) and revenue (TFPR) productivity at the firm level, first proposed
by Foster et al. (2008). Assume a standard Dixit-Stiglitz framework where each variety m in a
manufacturing industry s is produced using a set of L homogenous factors zlm (l denotes the
factor of production; I omit industry subscripts for firm-specific variables). Industry output
Qs is a CES aggregate with elasticity of substitution σ and the production of the final good
involves the output of S industries using a Cobb-Douglass (CD) technology with revenue
shares βs. Firms use a CD technology with constant returns to scale and factor intensities
αls, common for all firms within the industry. Firms differ in terms of efficiency, i.e. on Hicks-
neutral physical productivity, or TFPQ, defined as the ratio between output qm and the input
use, given by the composite bundle

L∏
l

zαlslm . Define revenue productivity, or TFPR, as the ratio
between revenue, rm = pmqm, and the same input bundle. Since profit maximization entails
firms’ prices are a constant mark-up over their marginal cost, the cost function automatically
implies that if all firms are price-takers there is TFPR equalization within industries12. That is,
a standard monopolistic framework with heterogeneous firms and frictionless factor markets
allows firms to vary in terms of TFPQ, but imposes an equal TFPR for all firms within

11For instance, HK, which is arguably the most influential paper to quantify from firm-level data the impact
of factor misallocation in aggregate output, only considers the impact of intra-industry misallocation. As I will
argue below, the total gains of removing both types of misallocation could be considerably higher.

12In this case the marginal cost is simply MCm = 1
TFPQm

L∏
l
( wl
αls

)αls , where wl is the price of factor l. Profit

maximization implies that firm’s output price is a constant markup over its marginal cost, pm = 1
ρ
MCm, Hence,

given that marginal and unit costs are equal under constant returns to scale, revenues are 1/ρ > 1 times the
total cost. Revenue productivity for the firm is TFPRm ≡ pmqm/

L∏
l
z
αls
lm = pmTFPQm = 1

ρ

L∏
l
( wl
αls

)αls , i.e. the

return of the composite bundle
L∏
l
z
αls
lm , which does not depend on m. Thus, TFPR should be equal for all firms

within an industry, and the only differences across industries are due to factor intensities.
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industries. Therefore, under this simplified setting variation of TFPR is a signal of allocative
inefficiency.

TFPR is straightforward to compute since revenues and input use are often observable in
manufacturing surveys. Instead, TFPQ requires a measure of firm real output, and thus quan-
tities at the product level, information that is rarely available. In this regard, the Colombian
manufacturing survey constitutes a notable exception. It collects information at the product
level – with a disaggregation comparable to the 6-digit Harmonized System (HS) – of the
value and physical quantities of outputs and inputs. Product-level quantities make it possible
to compute unit values for each output and input to construct firm-specific price indices of
total output and intermediate consumption. I use the firm-level prices constructed by Eslava
et al. (2004) for the period 1984-1998 to obtain measures of TFPQ; see Appendix B1 for
details about the dataset and the cleaning procedure to reduce the influence of measurement
error and outliers. Panel A of Figure 1 shows both distributions of TFPQ and TFPR for
the Colombian manufacturing sector controlling for 4-digit International Standard Industrial
Classification (ISIC) industries and year fixed effects. I use a gross-output specification for
the production function with four inputs: capital, skilled labor, unskilled labor and materials.
Although Figure 1 shows a wider dispersion in TFPQ, the variation of TFPR suggests alloca-
tive inefficiencies. The dispersion in TFPR holds after controlling for firm observables and,
as is evidenced in recent literature, using richer structural models that consider other possible
sources of variation in TFPR13.

The observed dispersion of TFPR is a result of the misallocation of all inputs. With a
CD technology, TFPR can be expressed as the weighted geometric average of the marginal
revenue products (MRP) of the factors, using factor intensities as weights. In frictionless factor
markets, there should be MRP equalization for all firms in the economy. Constant returns
to scale imply the MRP are directly proportional to the average revenue products of factors,
which are observable measures14. Panel B of Figure 1 displays the distributions of MRP for
the homogenous inputs (capital, skilled labor and unskilled labor) used in the construction of
TFPR above, exploiting the proportionality between the marginal and average returns. The
observed dispersions suggest that although the factor with the most extensive misallocation is
capital, all factors seem to contribute in some degree to variation in the TFPR. Moreover, the
extent of misallocation varies across sectors. Figure 2 compares the same distributions for three
different industries: food, chemicals and transport equipment. Not only does the dispersion

13For instance, adjustment costs and uncertainty about firms’ fundamentals (David and Venkateswaran,
2016), heterogenous output and demand elasticities, adjustment costs and measurement errors (Song and Wu,
2015), heterogeneity in ability (Bagger et al., 2014), and misspecification in the production function due to
fixed costs and orthogonal measurement errors (Bils et al., 2017). Under all these specifications the dispersion
in TFPR holds, although to a lesser degree.

14As it is point out by Bartelsman et al. (2013), the proportionality is not valid when the production function
includes overhead factors (fixed costs), since the production function is no longer homogenous. In the empirical
implementation of my model, I measure the dispersion in the MRP allowing for an unknown additive term in
observed inputs, that can reflect the presence of overhead factors.
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vary across industries but also the expected values, suggesting the presence of inter-industry
misallocation, as I argue below.

I use wedge analysis to characterize the observed variation in the MRP of each factor.
In an efficient allocation, all firms should face the same price for inputs, say wl for factor
zlm. To replicate the observed dispersions in the factors MRP, I assume that firms face an
idiosyncratic distortion θlm in the market of factor zlm such that the observed return of the
factor is (1 + θlm)wlρ , where ρ is the inverse of the mark-up. Thus, the wedge (1 + θlm) for
the firm producing variety m represents the difference between the observed MRP of factor l,
αlsrm
zlm

, and its return in the efficient allocation, wlρ :

(1 + θlm) =
ραlsrm
wlzlm

(1)

Since the interest here is to recreate the dispersion in the factors MRP, being agnostic about
the underlying cause that creates the misallocation, factor wedges are taken as primitives
in the model. This strategy is denoted by Restuccia and Rogerson (2013) as the “indirect
approach” to quantitatively assessing the implications of resource misallocation.

I denote by (1 + θ̄ls) the harmonic weighted average (HWA) of all factor-l wedges (1 +θlm)

in sector s, with weights given by firms’ shares in total industry revenue (Rs), this is:

(1 + θ̄ls) = (
Ms∑
m

1

(1 + θlm)

pmqm
PsQs

)−1 =
ραlsRs
wlZls

(2)

where Zls is the total demand of factor l and Ms is the number of firms in sector s. The
second equality in equation (2) shows that this average wedge is the industry-analogue of a
wedge at the firm-level for each production factor. Thus, this average wedge, which only needs
information at the industry-level to be computed, can be used to quantify the amount of factor
misallocation across industries. Revenue productivity at the industry level, computed as the
ratio between sectoral revenue and total input use, can be expressed as the geometric average
of (1 + θ̄ls)

wl
ρ over all factors, with weights given by each input intensity. In this way, sectoral

revenue productivity is a measure of the returns of factors that on average firms are facing in
the industry. In the inter-industry efficient allocation, sectoral revenue productivities should
differ only by factor intensities.

To visualize the problem of both intra- and inter-industry factor misallocation, Panel A of
Figure 3 represents all firms of two industries (food and vehicles) in the space (TFPQ, TFPR).
When removing only intra-industry factor misallocation, which is the exercise proposed by HK,
all firm-level wedges (1+θlm) collapse to their industry’s HWA (1+ θ̄ls). Thus, the new values
for firms’ TFPR coincide exactly with the corresponding industry’s revenue productivities,
which are represented by the dashed lines in the graph. However, the revenue productivities
at the industry level are not necessarily allocative efficient. Frictionless factor markets require
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that sectoral revenue productivities differ only by factor intensities, so all firms face the same
prices for primary factors. Assuming values of wl such that the HWA of sectoral (1 + θ̄ls)

is equal to one15, the inter-industry allocative efficient sectoral revenue productivities are
given by the weighted geometric average of wl

ρ over all factors, with weights given by the
factor intensities. The values of the inter-industry efficient allocation are represented by the
continuous lines in the graph. Panel B of Figure 3 shows both the intra-industry and the intra
and inter-industry efficient allocation for all firms of the two studied industries.

To quantify the importance of each type of allocative inefficiency in the data, it is useful
to compute the contribution of each one to the total TFP loss due to factor misallocation. In
Appendix D, I offer the closed-form solutions to compute both contributions in the case of
a CD aggregator across sectors, and a procedure for the CES case. The importance of each
type of misallocation depends, of course, on the considered industry aggregation16. Using a
4-digit ISIC industry classification, which is the same specification used in HK’s baseline, I
find that the inter-sectoral component contributes up to 40% of the total reallocation gains of
a comprehensive reform that removes all factor misallocation in Colombia. As a robustness
check, I replicate the exercise with firm-level data from China, a country that offers external
validation using the calculations provided by HK. Figure 4 displays the breakdown over time of
the TFP loss for both countries, using 3 and 4-digit ISIC industry classification, in the case of a
value-added production function specification, the same used by HK. I find similar TFP gains
as in HK in the case of removing only intra-industry misallocation, and a contribution of 30%
of the inter-sectoral component for the complete reform. Further, in line with HK predictions,
I describe in Appendix D how for both countries the total gains and the contribution of the
inter-sectoral component increase using a higher elasticity of substitution across sectors.

Another important question about the relevance of inter-industry misallocation is whether
the TFP loss induced by its presence is larger in less developed economies, as is the case of
within industry misallocation, the core result of HK’s paper. If so, the TFP gap attributed
to factor misallocation can be higher than the one computed using only intra-industry re-
forms. In the case of the CD aggregator across sectors, the closed form solution for the TFP
gains of removing inter-industry misallocation only requires information at the industry level.
Thus, using cross-country data from the socio-economic accounts of the World Input Output
Database - WIOD (Timmer et al., 2015), Figure 5 presents how the gains from inter-sectoral
reallocation vary with the GDP per capita by country. In Appendix D I explain in detail the

15I use wl = ρR/
∑
s

Zls
αls

where R is total revenue,
∑
s

Rs. These values satisfy the solution for rel-

ative factor prices in general equilibrium for an allocative efficient closed economy, which is given by
wl
wk

= Z̄k
∑
s

αlsβs/Z̄l
∑
s

αksβs where Z̄l is the total endowment of factor l (see Appendix D). Further, these

factor prices allow me to interpret all wedges as deviations with respect to one. Firms with wedges greater
than one employ a smaller amount of the factor with respect to the efficient allocation; and vice versa.

16For example, in the extreme case in which the whole manufacturing sector is represented as a single
industry, the entire TFP loss due to allocative inefficiency proceeds from the intra-industry type, whereas in
the opposite extreme, the whole loss proceeds from the inter-sectoral type.
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procedure to construct the graph, and I perform several robustness checks. The persistent
negative correlation between the two variables across all exercises confirms that omitting the
inter-sectoral component can understate the TFP gaps attributed to factor misallocation using
only intra-industry reforms.

2.2 The importance of misallocation for firm entry and exit

The two types of misallocation are mutually derived from the moments of the observed sec-
toral MRP distributions. If entry is endogenous, it is possible that the underlying frictions
that produce factor misallocation affect the selection of operating firms, generating a difference
between the ex-post (observable) MRP distributions and the ex-ante (latent) distributions of
the frictions. Yang (2017) presents evidence on how factor distortions can affect the composi-
tion of operating firms and derives the implication that once we take into account the effect
of frictions on selection, removing the same set of measured wedges potentially induce much
larger TFP gains. As I show below, in Colombia there is evidence of the same mechanisms
found by Yang (2017), using, in this case, a more precise measure of TFPQ.

To address whether factor misallocation can affect the composition of active firms, notice
first that selection of firms is on profits: more profitable firms are more likely to remain in the
market whereas unprofitable firms tend to exit. In the above framework, profits from variety
m are proportional to p1−σ

m . Then, profits are an increasing function of firm’s TFPQ (as an
indicator of efficiency) and a decreasing function of its TFPR (as an indicator of frictions in all
factor markets). A regression of the probability of exit on the TFPQ and TFPR, controlling
for relevant observables, should display a negative and a positive sign respectively. Notice
that the common practice of using TFPR as a proxy of TFPQ under the absence of firm-level
prices would be misguided under the misallocation framework. The negative sign commonly
found in these regressions, which justifies selection supposedly driven by physical productivity,
challenges the predictions of the misallocation model.

The availability of price deflators at the firm-level in the Colombian case allows us to
construct not only a direct measure of TFPQ but also a measure of the demand shifter given
our CES demand. This offers an advantage with respect to the usual method to compute TFPQ
in the misallocation literature, which assumes firms’ prices satisfy a given demand equation.
Under this assumption, TFPQ may reflect variations not only in physical productivity but
also in any idiosyncratic demand shock. Instead, given a demand system, firm-level deflators
make it possible to separate out quantities, prices and demand shocks to obtain a measure of
TFPQ that is unaffected by the omitted price variable bias (see De Loecker, 2011).

Table 1 presents the results of the linear regressions on the probability of exit mentioned
above. First, column 1 shows the results omitting the distinction between TFPQ and TFPR.
I control for year and 4-digit industry fixed effects. Here, TFPR is taken as a proxy of TFPQ,
and its negative sign is consistent with results commonly found in empirical studies, contrary
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to what is suggested by the misallocation framework. Yang (2017) explains this result. The
latter regression suffers from omitted variable bias since true TFPQ and demand shocks are
excluded as determinants of profitability (and potentially other firm observables). Since, as
consequence of selection, TFPQ and TFPR are positively correlated (firms with low TFPQ
and high TFPR are not active) and the true sign of the TFPQ is negative, the bias is negative
and the estimated coefficient on the TFPR is less than the true value. Column 2 displays the
results of the regression including TFPQ and the measure of demand shocks. The coefficient
on the TFPR flips sign, suggesting that TFPR, conditional on TFPQ, is inversely related
to profits, as is suggested by the misallocation model. Moreover, the sign on TFPQ is the
expected. These signs are robust to the inclusion of firm observables (age and size, column 4)
and geographic fixed effects (column 5). Additionally, if we use only the standard measure of
TFPQ derived using the demand system, mixing up true efficiency with demand shocks, the
suggested signs from the misallocation framework still hold (column 3).

In an open economy setting, factor misallocation also affects the selection of exporters.
Since only firms with enough profits to pay the costs of international trade become exporters,
the decision of being an exporter is also influenced by TFPQ, TFPR, and demand shocks.
Table 2 presents the results of the regressions of the probability of being an exporter on the
same variables as in Table 1, using a shorter panel due to the availability of firm-level exports
in the Colombian data17. The signs on both TFPQ and TFPR flip in all specifications (since
in contrast to exit, being exporter indicates relatively more profits). Therefore, the resulting
signs on both sets of regressions confirm that factor misallocation plays an important role in
the selection of both operating firms and exporters, which amplifies the effect of micro-level dis-
tortions on aggregate productivity. The multi-country economy version of the model includes
the effect of factor distortions on the endogenous selection of producers for any destination.

2.3 Misallocation and comparative advantage

In this section, I present evidence on how the two types of misallocation are related to the
observed comparative advantage of a country. A wide range of the new trade models deliver
a structural gravity equation, in which comparative advantage has an important role as a
predictor of bilateral trade flows. In its generic formulation, bilateral exports of country i to
country j, denoted by Xij , can be expressed as the combination of three forces: i) a factor
that represents “capabilities” of exporter i as a supplier to all destinations; ii) a factor that
characterizes the demand for foreign goods of importer j; iii) a factor that captures bilateral
accessibility of destination j to exporter i, which combines trade costs and other bilateral
frictions. The gravity equation can be estimated at the industry level, in order to reduce

17Eslava et al.’s (2004) dataset does not include information on exports. So I match my original dataset
with the panel employed by Bombardini et al. (2012b) for 1978-1991, which has been used extensively in the
literature, to obtain exports. See details in Appendix B1.
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aggregation bias18. With cross-sectional data the standard procedure involves taking logs and
estimating a regression with fixed effects:

lnxijs = δis + δjs + δij + εijs (3)

where δis, the exporter-industry fixed effect, characterizes factor i), “capabilities” of exporter i
in industry s; δjs, the importer-industry fixed effect, captures factor ii), the demand for foreign
goods of importer j in industry s; and δij + εijs represent factor iii), bilateral accessibility of
j to i, a component that involves characteristics of the bilateral relation independent of the
sector (distance, common language, etc.), absorbed by the exporter-importer fixed effect δij ,
plus sector-specific bilateral frictions and measurement error, represented by the term εijs.

In this way, the estimate of the industry-exporter fixed effect characterizes the country’s
productive potential in an industry and, given the structure of the gravity equation, it is
“clean” from other determinants that affect bilateral trade flows. Since it is only identified up
to a double normalization, that is, it has meaning only when it is compared to a reference
country and industry, it can be interpreted as a measure of “revealed” comparative advantage
(RCA), an approach that has increasingly gained relevance in the trade literature (Costinot
et al., 2012, Hanson et al., 2015 and Levchenko and Zhang, 2016). In contrast to traditional
measures of RCA, as Balassa’s (1965) index, the fixed effect estimate is a valid measure of
countries’ fundamental patterns of comparative advantage (French, 2017). Moreover, it has
better statistical properties than Balassa’s index, especially lower ordinal ranking bias and
higher time stationarity (Leromain and Orefice, 2014).

Figure 6 displays the RCA measures for 25 manufacturing industries in Colombia. I rely on
the CEPII trade and production database, developed for de Sousa et al. (2012). I use bilateral
trade flows among 47 countries plus a rest of the world aggregate for 1995. The list of industries
and countries is presented in Tables 3 and 4 respectively19. Similar to Hanson et al. (2015), I
use as a reference country and industry the mean over all countries and industries, so the RCA
can be interpreted as a measure of Colombian industries’ capabilities relative to a “typical”
country and a “typical” sector20. The logarithmic transformation in equation (3) poses two
well-known econometric issues for an estimation by OLS. First, zeros in bilateral exports are
not likely random in the data, and since OLS drops those observations, it introduces sample-

18For a detailed explanation about the necessary conditions for a trade model to yield a structural gravity
equation, see Head and Mayer (2014). On the aggregation bias see Anderson and Yotov (2010, 2016).

19From the original 26 industries available in the database (3-dig. ISIC rev.2), industries 384 and 385 were
merged into one sector for cross-database compatibility with TiVA, whose data is used in the counterfactual
exercise.

20Therefore, letting δ̂is be an estimate of δis in regression (3), RCA of country i in sector s is defined as:

RCAis =

[
exp(δ̂is)/exp(

S∑
s

1

S
δ̂is)

]
/

[
exp(

N∑
i

1

N
δ̂is)/exp(

S∑
s

N∑
i

1

S ∗N δ̂is)

]
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selection bias. Second, the coefficients of log-linearized models estimated by OLS are biased
in the presence of heteroskedasticity (Silva and Tenreyro, 2006). In Monte Carlo simulations,
Head and Mayer (2014) find that the Tobit model proposed in Eaton and Kortum (2001)
(EK-Tobit hereafter) and the Poisson pseudo-maximum-likelihood estimator (PPML hereafter)
proposed in Silva and Tenreyro (2006) are the two estimating methods which, depending on the
structure of the error of the underlying data generating process, produce unbiased coefficients
for exogenous variables in a gravity formulation21. Thus, Figure 6 compares the estimates
obtained by EK-Tobit (vertical axis) and PPML (horizontal axis). Noticeably, the ranking
across sectors in the cross section is not strongly affected by the estimation method.

The determinants of the exporter-industry fixed effect vary according to the sources of
comparative advantage in the theoretical framework. However, a common feature across all
standard models is that such determinants are collapsed in the reduced-form of the relative
producer price index at the industry level compared to a reference country (PisPi′s′Pis′Pi′s

), as a
measure of the relative unit cost of producing across industries (French, 2017)22. For example,
in Ricardian models, as in Eaton and Kortum (2002), such ratio depends only on sectoral
fundamental efficiencies, the source of comparative advantage at the heart of the Ricardian
theory23. In a Hecksher-Ohlin model, as in Deardorff (1998), the ratio depends on the factor
prices weighted by sectoral factor intensities, reflecting the balance between the relative sizes
of factor endowments and the technology requirements. In the Krugman (1980) model, it
depends only on the relative number of varieties produced, reflecting the effect of gains from
variety in the aggregate price. In the Pareto version of Melitz (2003), the ratio is analogous to
that in Krugman (1980), adjusted by the Pareto lower bound of the productivity distribution.
Multi-factor models with heterogenous firms, as in Bernard et al. (2007) or in this paper,
combine all mentioned sources of comparative advantage in the reduced form of the relative
price index.

The open-economy version of the model with resource misallocation in the next section
delivers an analytical expression of the exporter-industry fixed effect taking into account en-
dogenous entry and selection of firms, which will provide a rich theoretical grounding to the
RCA measure. However, at this point we can indeed use the simplified version of the mis-
allocation framework presented above to empirically test whether the extent of intra- and
inter-industry allocative efficiency is related to the observed schedule of comparative advan-
tage, once we control for the remaining determinants of export capability. For this, notice

21Under heteroskedasticity in the form of a constant variance to mean ratio PPML performs better, whereas
under homoskedastic log-normal errors the Tobit proposed by Eaton and Kortum (2001) is preferred.

22Strictly, French (2017) shows that country i has comparative advantage in sector s, compared to country
i′ and industry s′, if the relative price of country i in sector s in autarky is smaller than the same price in
country i′: P̄isP̄i′s′

P̄is′ P̄i′s
< 1 where P̄is is the counterfactual price index in industry s of country i in autarky.

23The implicit assumption is that sectors share the same intra-industry heterogeneity in the distribution
of varieties’ productivities. If the heterogeneity varies across sectors, the productivity dispersion can be an
additional source of comparative advantage (Bombardini et al., 2012a).
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that the sectoral price index in a country i can be expressed as the ratio between the sec-
toral revenue productivity TFPRis, defined as above, and the industry TFP, Ais. In turn,
industry TFP can be written as the product between the efficient TFP, Aeis, and a measure of
intra-industry allocative efficiency, AEMis ≡ Ais/A

e
is, with 0 ≤ AEMis ≤ 1 (values closer to

1 reflect less intra-industry misallocation). That is:

Pis =
PisQis
Qis

=
Ris

Ais
L∏
l

Zαlsils

=
TFPRis
AeisAEMis

=

L∏
l
(1 + θ̄ils)

αlswαlsil

ρAeisAEMis
(4)

where in the last equality I used the definition of sectoral revenue productivity in terms of
inter-industry wedges and factor prices. Thus, the decomposition in equation (4) reveals the
theoretical determinants of the RCA measure under resource misallocation: i) the efficient
TFP, Aeis, which depends on the distribution of physical productivities across firms and the
number of varieties produced in the sector; ii) the geometric average of factor prices,

L∏
l

wαlsil ,

which are constructed from the interaction between factor endowments and intensities (see
footnote 14); iii) the geometric average of HWA wedges,

L∏
l
(1 + θ̄ils)

αls , my measure of inter-

industry misallocation; and iv) the measure of intra-industry misallocation, AEMis. I use
these four determinants as explanatory variables in a reduced-form regression of the RCA
measure derived from the fixed effects to test our hypothesis.

Ideally, the latter regression would require measures of the four variables in a large set
of countries and industries, for which I would need comparable firm-level data for several
countries. Given the infeasibility of this approach, I propose a two-stage strategy that exploits
the time variation in the measures of RCA for Colombia relative to the United States (US)
using panel-data. In the first stage, I estimate the panel data-version of equation (3), allowing
the fixed effects in each cross section vary over time. That is, with data for the same set of
countries in the period 1991-1998, I run the regression:

lnXijst = δist + δijt + δjst + εijst (5)

where the exporter-industry-year fixed effect δist identifies the triple difference of bilateral flows
across exporters i and i′, sectors s and s′ and years t and t′; that is, the variation of RCAis
between time t and t′, denoted by dRCAist. To compute dRCAist, instead of global means, I
take as the reference country i′ the US, the reference year t′ the first year in the panel (1991),
and the reference industry s′ the sector with the median number of zeros bilateral flows in
the data (footwear)24. In the second stage, I regress the estimates of dRCAist for Colombian
industries on the four theoretical determinants of comparative advantage, constructed using

24Therefore, letting δ̂ist be an estimate of δist in the regression (5), dRCAist of country i in sector s at time
t is defined as:
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micro-level data. Each variable is transformed to be expressed as the double difference first
with respect to the reference industry and second with respect to the reference year, and
then is normalized by the corresponding difference in the producer price index in the US
(obtained from the NBER-CES manufacturing database), using the same industry and year
of reference25.

The introduction of the time-dimension poses an additional challenge for the fixed effects
estimators. Particularly, we must appraise the incidental parameter problem (Neyman and
Scott, 1948), which generates an asymptotic bias for the fixed effects estimators when the
number of time periods is small. Fernández-Val and Weidner (2016) prove that under ex-
ogenous regressors, in a Poisson model this bias is zero, which make PPML preferable over
EK-Tobit as estimating method in the first stage. Thus, Table 5 displays the results for the
standardized coefficients of the regression in the second stage, using PPML to obtain the
exporter-industry-year fixed effects in the first stage26. As a robustness check, I also display
in the second column the results substituting the intra-industry allocative efficiency measure
by the within-industry variance of the TFPR, a variable that should be negatively correlated
with the former27.

In both specifications, the measures of intra and inter-industry misallocation, once we
control for the “natural” sources of export capability, are significantly correlated with our
RCA measure and display the expected signs: positive for the intra-industry misallocation
measure AEMis (negative in the case of the within-industry variance of TFPR) and negative
for the inter-industry misallocation measure

L∏
l
(1 + θ̄ils)

αls . Moreover, the magnitude of the
standardized coefficients suggests that both types of misallocation have a similar impact for
shaping Colombian RCA, and they are not less important relative to the “natural” determi-
nants. These results are robust to the choice of the reference industry and the aggregation of
countries. For instance, in column 3 I replicate the first specification using the sector with the
lowest number of zeros as reference industry (machinery exc. electrical) whereas in column 4 I

dRCAist =

[
exp(δ̂ist)

exp(δ̂is′t)
/
exp(δ̂i′st)

exp(δ̂i′s′t)

]
/

[
exp(δ̂is91)

exp(δ̂is′91)
/
exp(δ̂i′s91)

exp(δ̂i′s′91)

]
where i′ =US and s′ = Footwear (7). As I show below, the results are not very sensitive to the choice of s′.
25This transformation intends to reflect the fact that the variation in RCA should be related to the change

in the relative producer price indices compared to the same change in the country of reference: dRCAist =
F (( Pist

Pis′t
/ Pis0
Pis′0

)/(
Pi′st
Pi′s′t

/
Pi′s0
Pi′s′0

)). Notice that in this approach we compare the growth on the relative prices
(with respect to the reference year) across countries, so any difference in the measurement of relative prices
across countries is absorbed by the difference over time.

26Given the high-dimensionality of the set of fixed effects involved in the non-linear regression by PPML in
the first stage, the estimation is infeasible in standard econometric software as rSTATA. I take advantage of
the sparsity pattern of the problem and use a specialized solver that deals efficiently with this type of problems
(SNOPT).

27In the case of a log-normal distribution of wedges the correlation is perfect, see Chen and Irarrazabal
(2015) for the proof.
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aggregate the 48 countries into 20 regions. The results are qualitatively similar. Therefore, we
have empirical evidence that both intra- and inter-industry resource misallocation play a role
shaping the schedule of comparative advantage in Colombia. The model in the next section
offers theoretical grounding to this insight.

3 A model of intra- and inter-industry misallocation in an open
economy

In this section, I introduce a model of international trade à la Melitz (2003) in which the
allocation of factors within and across industries is inefficient. Next, I derive a theoretically
consistent gravity equation following the lead of Arkolakis et al. (2012) and Melitz and Redding
(2014), assuming certain restrictions on the ex-ante joint distribution of TFPQ and factor
distortions. Finally, I study the effects of both intra- and inter-industry factor misallocation
on the reduced-form expression of the exporter-industry fixed effect derived from the gravity
equation, my measure of RCA, using model simulations under a simple parametrization.

3.1 Model setup

Denote by m a single variety, i the exporting country, j the importing country, s an industry
and l a homogenous production factor. Assume there are N possibly asymmetric countries,
S industries and L homogenous primary factors. Hereafter capital letters denote aggregates,
lower case letters firm-specific variables and for simplicity, I omit again sector subscripts for
firm-specific variables. Each country i consumes according a two-tier utility function, with
an upper-level CD with expenditure shares βis across sectors and a lower-level CES with
elasticity of substitution σ across varieties; let ρ = σ−1

σ . Each firm produces a variety m using
L homogenous primary factors (each one denoted by zilm) and a CD production technology
with factor intensities αls (different factor intensities across industries, but equal for the same
industry across countries). Firms are characterized by a Hicks-neutral physical productivity
(TFPQ) aim and a vector of L factor-distortions: ~θim = {θi1m, θi2m, ...θiLm}, which are drawn
from a joint ex-ante distribution Gis(a, ~θ). There is a fixed cost of production fis in terms of
the composite input bundle, and each industry faces an exogenous probability of exit δis.

There is a fixed cost fxijs to access market j from country i in sector s, defined in terms
of the composite input bundle, and a transportation iceberg-type cost τijs ≥ 1, with τiis = 1.
Let wil denote the price of factor l in country i in absence of distortions, unobservable and
common for all firms. Firms in country i face an idiosyncratic distortion θilm (given by the
l-th element of ~θim ) in the market of primary factor l, such that the input price perceived by
the firm is (1 + θilm)wil. Define fijs = fxijs if j 6= i; fijs = fxiis + fis otherwise (so domestic
market fixed costs incorporates both “market access” and fixed production costs, whereas the
export cost includes only the market access cost). The minimum “operational” cost to sell a
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variety m of country i in country j is:

cijm(qijm) = ωisΘim(
τijsqijm
aim

+ fijs) (6)

where Θim =
L∏
l
(1+θilm)αls is a factor-intensity weighted geometric average of firm wedges and

ωis =
L∏
l
(wil/αls)

αls is the prevalent factor price of the composite input bundle for the firms

with zero draws of ~θim. Hereafter I refer to this cost as the total “operational” cost, which
includes the variable cost of production and the fixed costs of production and delivery. Notice
that this is a standard cost function in a multi-factor Melitz-type setting, the only difference
here is that the composite input bundle’s price perceived by the firm is a combination of both
distortions and the underlying factor prices. Moreover, this cost function could be derived
from a primal problem considering the following technology to produce and deliver one unit
of variety m of country i in country j:

qijm =
aim
τijs

(

L∏
l

zαlsijlm − fijs) =
aim
τijs

(zijm − fijs) (7)

Here zijlm represents the total amount of primary factor l “embedded” in the production and
delivery of variety m from country i in country j, and zijm the corresponding composite input
bundle. Notice that zijlm includes the demand of primary factor l to pay both variable and
fixed costs.

Profit maximization implies a firm charges a price pijm in each destination j equal to a
fixed mark-up (1

ρ) over its marginal cost: pijm =
τijsΘimωis

ρaim
. Quantities, revenues and profits

of variety m from country i sold in country j are (respectively):

qijm = p−σijmEjsP
dσ−1
js ; rijm = p1−σ

ijmEjsP
dσ−1
js ; π̆ijm =

1

σ
rijm − ωisΘimfijs (8)

where Ejs is the total expenditure of country j in varieties of industry s and P djs the cor-
responding consumer price index, variables that are defined below. It is straightforward to
show the following relation between revenues from destination j and the corresponding total
“operational” cost: cijm = ρrijm + ωisΘimfijs. Revenue productivity (TFPR) of selling vari-
ety m in destination j, denoted by ψijm, is the ratio between revenue and the input used in
production: ψijm ≡ rijm/(zijm − fijs) = pijmaim/τijs = Θim

ωis
ρ . Notice that although this

destination-specific TFPR is not directly observable, since the allocation of factors to produc-
tion for a given destination is unobservable, profit maximization implies that firms equate this
value across all destinations, as the natural consequence of the absence of destination-specific
frictions at the firm level. Hence, total TFPR must coincide with this value. In the absence of
frictions in factor markets, there is TFPR equalization across firms within an industry (factor
intensities make TFPR vary across sectors) for all destinations. Thus, in an efficient allocation,
a firm’s performance with respect to its competitors depends uniquely on relative TFPQ. In
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contrast, in the presence of factor misallocation, firms with higher TFPQ or lower TFPR (due
to a low geometric average of firm wedges, Θim), holding the rest constant, set lower prices
and hence sell higher quantities, obtaining higher revenues and profits in all markets.

Denote by ξijlm the marginal revenue product (MRP) of factor l “embedded” in the produc-
tion of variety m from country i to country j. Once again this MRP is not directly observable,
but it is a useful concept to illustrate the consequences of factor misallocation. After some
manipulation, it is possible to obtain the following relation between ξijlm and the total “oper-
ational” cost: ξijlm = αlscijm/ρzijlm. Notice that because of the presence of fixed costs, the
MRP is no longer directly proportional to the average revenue product, rijm

zijlm
, a result empha-

sized in Bartelsman et al. (2013). From the FOC of the minimization cost problem of the firm,
we know that (1+θilm)wilzijlm = αlscijm, which derives into ξijlm = (1+θilm)wilρ . That is, an
efficient allocation of factors in an open economy requires MRP equalization across firms over
all industries for all destinations, TFPR equalization within industries for all destinations28,
but because of fixed costs, there is not average revenue products equalization.

Firms produce for a given destination only if they can make non-negative profits. Since
profits in each market depend on both TFPQ and TFPR, this condition defines a cutoff
frontier a∗ijs(Θ) for each destination j, such that π̌ijs(a∗ijs(Θ),Θ) = 0 ∀ i,j, s. For a given
combination of factor wedges Θ of firms in country i industry s, i.e., a given value of TFPR,
a∗ijs (Θ) indicates the minimum TFPQ required to earn non-negative profits in destination j .
Define a∗ijs as the TFPQ cutoff value for firms with TFPR equal to ωis

ρ in destination j, i.e.
firms with draws of distortions equal to zero: a∗ijs ≡ a∗ijs(1). It is straightforward to derive the
specific functional form of the cutoff functions in terms of a∗ijs and Θ:

a∗ijs(Θ) = a∗ijsΘ
1
ρ with a∗ijs ≡ a∗ijs(1) =

τijs
ρ

(
EjsP

σ−1
js

σfijs
)

1
1−σω

1
ρ

is ∀ i, j, s. (9)

The function a∗ijs(Θ) is increasing in Θ (and thus in TFPR) reflecting the fact that larger
wedges reflect higher marginal cost of the inputs, becoming more difficult to sell to the corre-
sponding market. The existence of these cutoff functions, instead of unique threshold values
for physical productivity, implies that the introduction of factor misallocation triggers selection
effects that are absent in the efficient allocation. For example, some firms productive enough
to operate in an undistorted counterfactual can no longer keep producing either because their
distortions draws turn their profits negative or because even with a small “good” draw, the
possible strengthening of competition due to the presence of highly positive distorted firms
does not make it profitable for them to stay in the respective market. And the opposite could
occur with some low productive firms, which will be able to survive in each market leading to

28Notice also that TFPR of variety m sold in destination j can be expressed as a factor-intensity weighted
geometric average of the MRP: ψijm =

L∏
l
(ξijlm/αls)

αls .
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misallocation of resources29.
To analyze the selection effects of resource misallocation, notice first that all cutoff func-

tions across destinations share the same functional forms. Particularly, cutoff values for ex-

porting to destination j are Λijs = τijs(
EjsP

dσ−1
js fiis

EisP
dσ−1
is fijs

)
1

1−σ times larger than domestic cutoff
values. Thus, a simple representation of the firms in an open economy can be done in the
space a×Θ, illustrated in Figure 7, which is comparable to Figure 3 in the previous section.
In this space, each firm in sector s, characterized by a pair of draws (a,Θ), is represented by a
single point. Profits are an increasing function of TFPQ and a decreasing function of TFPR,
so firms with draws closer to the upper-left corner are more profitable. For simplicity, consider
the destination j different to i with the lowest ratio Λijs for country i in sector s in Panel A.
Only firms with draws (a,Θ) above a∗ijs(Θ) export to destination j, those with draws below
a∗ijs(Θ) and above a∗iis(Θ) produce only for the domestic market, and those with draws below
a∗iis(Θ) do not produce. Panel B represents the selection mechanism that distortions trigger.
Let ã∗M represent the domestic productivity cutoff value in an allocative efficient economy
(Melitz economy), and Λ̃ijs the corresponding value of Λijs

30. In such economy, firms with
productivity above Λ̃ijsã

∗
M export to j, those with productivity between Λ̃ijsa

∗
M and a∗M pro-

duce only for the domestic market, and those with productivity less than a∗M do not produce.
Thus, each cutoff function in the allocative inefficient economy creates two effects in the set
of firms that sell to each market, which can be represented by two sets of areas: the regions
under the density function that show firms that as consequence of distortions can no longer
produce (light dotted area A) or export to j (light dotted area B) and the regions that display
firms that because of distortions operate in the domestic market (dark dashed area A) or in
the exporting market (dark dashed area B). The difference between dotted and dashed areas
represents the net impact of distortions on the set of firms of country i and sector s, operating
in the domestic and country-j markets (differences in A and B respectively).

The timing of information and decisions is as follows. Each time, there is an exogenous
probability of exit given by dis. A total of His potential entrants at country i industry
s decide whether to produce and export to each destination conditional on their draws of
physical productivity and distortions from Gis. All potential entrants pay a fee feis to draw
from Gis, which is paid in terms of the composite input bundle. The number of potential
entrants is pinned down by the condition in which the expected discounted value of an entry
is equal to the cost of entry. As usual in this kind of setup, let us consider no discounting and
only stationary equilibria. Hence, the free entry condition is:

N∑
j

Mijs∑
m
π̆ijm = ωisf

e
isHis ∀ i, s (10)

29These selection channels are also present in the closed economy models of Bartelsman et al. (2013) and
Yang (2017).

30In general, a∗iis and Λijs are not related to ã∗M and Λ̃ijs respectively. In Figure 7 it is arbitrarily assumed
a∗ijs > ã∗M .
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Where Mijs denotes the mass of operating firms in sector s of country i that is selling to
country j. Aggregate stability requires that in each destination the mass of effective entrants
is equal to the mass of exiting firms:

disMijs = [1−Gis(a∗ijs(Θ),Θ)]His ∀ i, j, s (11)

Given CES demand and firms prices, the consumer price index P dis in country i sector s satisfies
P dis = (

N∑
k

P 1−σ
kis )

1
1−σ , with:

P 1−σ
ijs = (1

ρωisτijs)
1−σ

Mijs∑
m

( aimΘim
)σ−1 (12)

Total expenditure in country i and sector s is Eis = P disQ
d
is. By the upper-level utility function,

the overall consumer price index (equal to unit expenditure) is P di =
S∏
s
(P dis/βs)

βs and satisfies

Eis = βsEi, with Ei =
S∑
s
Eis total country-i expenditure.

Now consider the aggregate variables. Let Xijs =
Mijs∑
m
rijm be the value of total exports

from country i to destination j in industry s. Analogously as at the firm-level, the total
“operational” cost of exporting to country j incurred by all firms of country i in industry

s can be written as Cijs = ρXijs + Fijs where Fijs =
Mijs∑
m
ωisΘimfijs is the value of total

expenditures in fixed costs. Similarly, denote by Ris, Fis, Cis the same aggregations but at
the industry level, with Ri =

S∑
s
Ris representing total country i’s gross output. Denote the

HWA of primary factor-l wedges (1 + θl) within industry s as (1 + θ̄ils), with weights given by
the firm’s participation in Cis. It is possible to show that (1 + θ̄ils) = (ρRis + Fis)αls/wilZ

o
ils

where Zoils is the aggregate demand of factor l for “operational” uses in country i in sector s:

Zoils ≡
N∑
j

Mijs∑
m
zijlm. Thus, this average wedge is the industry-level analogue of firm-level wedges

and allows me to measure the degree of inter-industry misallocation, as in the closed-economy
framework of the previous section. The total demand of primary factor l for “operational” uses
in country i industry s can be expressed as:

Zoils =
αlsCis

wil(1 + θ̄ils)
(13)

Primary factors are used for “operational” (fixed and variable costs) and investment (entry)
costs. The sectoral demand of the composite input bundle for entry costs is simply feisHis.
Therefore, the amount of primary factor l allocated to entry costs in country i sector s is
Zeils = αlsωisf

e
isHis/wil, and the total allocation of the same factor, Zils, is given by:

Zils = Zoils + Zeils =
αlsCis

wil(1 + θ̄ils)
+
αlsωisf

e
isHis

wil
(14)

Notice that the inter-industry wedge only appears in the input allocated for operational uses.
This is a consequence of the timing of the model, in which firms allocate first real resources
(the entry fixed cost) to draw from the joint distribution. Only after this moment is the draw
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of the vector of distortions known to the firm. Factor-l market clearing condition in country
i is then:

Z̄il =
S∑
s
Zils (15)

where Z̄il is the total endowment of primary factor l in country i, and Zils is given by (14).
Finally, the balanced trade condition requires equalization of the total revenues to total ex-
penditures plus aggregate deficits31:

Ri = Ei +Di (16)

where Di is the country’s trade balance (a positive value means surplus), an exogenous value
in the model. Global trade balance requires:

N∑
i
Di = 0. A summary of the whole system of

equations and unknowns is given in Table 6. This table also offers the dimensionality of the
problem.

3.2 Comparative advantage

Bilateral exports at the industry level can be expressed in terms of sectoral expenditures in
the importer country (Ejs) and trade shares of the importer country (πijs). The latter term
can be re-written in terms of the bilateral price indices as:

Xijs = πijsEjs = (
P 1−σ
ijs

N∑
k

P 1−σ
kjs

)Ejs (17)

The trade share of country i in country-j expenditures in goods of industry s only depends
on the value of its bilateral price index Pijs, relative to the same value for all competitors
of country i in such market. As I commented earlier, this is so because the price index Pijs
is a measure of the unit price incurred by consumers of the destination country, and hence
it is an indicator of country-i’s competitiveness. To derive the reduced-form of the exporter
industry fixed effect, consider the double difference of bilateral flows across exporters i and i′

and sectors s and s′ for a given importer j, i.e., XijsXi′js′Xijs′Xi′js
. It is straightforward to see that this

double difference is given by the difference in the relative price index, (
PijsPi′js′
Pijs′Pi′js

)1−σ. From
(12) it is possible to disentangle these bilateral prices indices as follows:

31By construction, total revenues are the sum of factor payments and profits: Ri =
S∑
s

L∑
l
(1 + θ̄ils)wilZ

o
ils +

S∑
s
ωisf

e
isHis. This can be shown decomposing sectoral revenues as:

Ris = ρRis +
1

σ
Ris =

L∑
l
(1 + θ̄ls)wilZ

o
ils − Fis +

N∑
j

Mijs∑
m

(πijms + ωisΩimfijs)

where the second equality is derived from (13) and the aggregation of firms’ revenues.
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Pijs = τijsM
1

1−σ
ijs

ψ̄ijs
Aijs

(18)

where Aijs and ψ̄ijs are the industry-destination analogues of sectoral TFP and sectoral rev-
enue productivity respectively32, so Aijs represents the overall efficiency of exporting firms to
destination j and ψ̄is depicts the average cost of the factors faced by the same set of exporters.
Therefore, equation (18) disentangles the four determinants of exporters’ competitiveness: i)
their overall efficiency, which is a weighted average of exporters physical productivity and
factor market frictions; ii) the average cost of factors for exporters; iii) the mass of exported
varieties; and iv) bilateral trade costs. Of these components, factor misallocation has a direct
impact on the average TFP and an indirect impact (through general equilibrium channels)
on the formation of factor prices and the determination of the number of exported varieties.
Notice also that the unit price is a combination of both extensive and intensive margins of
trade. Thus, the model is very rich about the determinants of competitiveness. It is able
to combine the sources of relative export capability in Ricardian and Heckscher-Ohlin mod-
els (where comparative advantage is due to differences in efficiency across industries in the
first case and the interaction between the sizes of factor endowments and factor intensities
across industries that pins down relative factor prices, in the second case) with the motives
for intra-industry trade in monopolistic competition models with Dixit-Stiglitz preferences
(where the gains-from-variety effect induce reductions in unit costs) in an environment of al-
locative inefficiency, which in turn can also create “artificial” comparative advantage. In the
next subsection, I perform numerical simulations to disentangle the effects of both intra- and
inter-industry misallocation on each component of the relative unit prices.

At this point I need to impose a functional form for the joint distribution Gis to derive the
reduced-form equation of the exporter-industry fixed effect from the double difference in unit
price. Let Gais(a) be the univariate margin of Gis with respect to a, and Gθis(~θ) the multivariate
margin of Gis with respect to ~θ.33 Consider the following assumptions:

A. 1. (Pareto distribution) ∀ai > ā, Gais(a) = 1− ( āisa )κ; κ > σ − 1;

A. 2. (Ex-ante independence) Gis = Gis(a, ~θ) = Gais(a)Gθis(
~θ)

First, regarding Assumption A.1., the Pareto distribution is the common benchmark in the
trade literature to model heterogeneity on physical productivity in the Melitz model. Not only
does it have a good empirical performance approximating the observed distribution of firm

32This is: Aijs = Θ̄ijs(
1

Mijs

Mijs∑
m

( aim
Θim

)σ−1)
1

σ−1 and ψ̄ijs =
ωisΘ̄ijs

ρ
, where Θ̄ijs =

L∏
l
(1 + θ̄ijls)

αls . Here

(1 + θ̄ijls) denote the HWA of factor-l wedges of firms exporting to destination j in industry s, with weights
given by firm’s participation in the total cost of factors Cijs.

33This is, Gais(a) = lim
~θ�∞̄

Gis(a, ~θ) and Gθis(~θ) = lim
a�∞

Gis(a, ~θ)
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size34, but it also makes the model analytically tractable, allowing me to derive a particular
expression for the gravity equation. And second, although Assumption A.2. seems problematic
given the observed correlation between TFPQ and TFPR in the data, it is worth emphasizing
that the assumed independence is only between the latent (ex-ante) marginal distribution
of TFPQ and that of the vector of factor distortions. The observed (ex-post) distribution
can exhibit any kind of correlation. In fact, given the functional forms of the cutoff functions,
endogenous selection in the model implies the positive ex-post correlations between TFPQ and
TFPR observed in the data. Furthermore, there is no restriction for the joint distribution of
individual factor distortions Gθis, so covariances across factors wedges are completely allowed.
I keep Assumptions A.1. and A.2. hereafter unless otherwise indicated.

Under Assumptions A.1. and A.2., the model exhibits an interesting set of features and
offers a great simplification, which is done in detail in Appendix C.1 and summarized by
the system of equations (23)-(26) below. First, it is possible to show that the property of a
constant aggregate profits/revenue ratio of the Pareto-Melitz model still holds under factor
misallocation: Ris = κ

ρΠis = κ
ρωisf

e
isHis (see equation (C.4) in Appendix C.1). Thus, market

clearing conditions can be re-stated as:

wilZils = αls{
1

(1 + θ̄ils)
(1− ρ

κ
) +

ρ

κ
}Ris (19)

notice that the HWA wedge (1 + θ̄ils) affects only the fraction of the total revenue that is
allocated to “operational” costs: 1 − ρ

κ . Denote the term in curly brackets by vils. Here, vils
measures the effective extent of inter-industry misallocation for primary factor l, considering
all its possible uses (operational and entry costs). Let vis denote the factor-intensity weighted
geometric average of these measures: vis =

L∏
l

vαlsils . Further, aggregate the sectoral demands

of primary factors on an industry-level composite input bundle Zis =
L∏
l
Zαlsils . Thus, we can

state visRis = ωisZis and hence His = ρZis
κfeisvis

, a solution for the mass of entrants similar to
that obtained in the multi-sector Pareto-Melitz case (in which the mass of entrants is related
to the total allocation of inputs in the sector). The only difference here is the presence of the
inter-industry allocative inefficiency measure vis, which affects the total allocation of factors
across sectors.

Second, it is possible to derive a relationship between the ex-post HWA wedge and the
ex-ante joint distribution of distortions. Appendix C.2 shows that the following relation holds:

(1 + θ̄ils) =
Γis
Γils

(20)

where Γis =
∫
θi1
...
∫
θiL

Θi
1−κ

ρ dGθis(
~θ) and Γils =

∫
θi
...
∫
θiL

Θi
1−κρ

(1+θil)
dGθis(

~θ), terms that only
depend on the ex-ante joint distribution of firm-level distortions Gθis. Equation (20) makes

34See for example Cabral and Mata (2003) or Axtell (2001).
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evident the interaction between both types of factor misallocation under our assumptions, and
depending on the parametric assumptions on the joint distribution Gθis, it allows me to recover
some structural parameters from the values of observed HWA wedges.

Third, regarding the gravity equation, I show in Appendix C.3 that relative bilateral
exports can be expressed as:

log(
XijsXi′js′

Xijs′Xi′js
) =log[

%is%i′s′

%is′%i′s

ΓisΓi′s′

Γis′Γi′s

RisRi′s′

Ris′Ri′s
(
ωisωi′s′

ωis′ωi′s
)
−κ
ρ ] +Bijs (21)

where Bijs and %is are constants that do not vary when we remove misallocation. The first
term of the RHS of equation (21) is what δis identifies in the regression with fixed effects in
(3). I show in Appendix C.3 how it can be decomposed in elements that capture the influence
of each source of export capability in the model. Moreover, notice that changes in the extent
of allocative inefficiency have a direct effect on the double difference of the term Γis, and an
indirect effect (through general equilibrium channels) on the product of the double differences

of the terms Ris and ω
−κ
ρ

is . Thus, to figure out the total impact of factor misallocation on
RCA, it is necessary to solve the full model in general equilibrium, which is done in section 4 .

3.3 Simulations

To illustrate the effects of both intra- and inter-industry misallocation on comparative advan-
tage, I use numerical simulations under a simple parametrization of the model. Consider a
world with two countries, two factors and two sectors, with symmetric factor intensities across
sectors. Sector 1 is factor 1-intensive. Country 1 faces factor misallocation in sector 1 (I will
simulate distortions on each factor, so the results are totally symmetric for factor misallocation
in sector 2). Assume trade costs do not vary across sectors. Two objectives are pursued: first,
to show how both types of factor misallocation of country 1 affect its comparative advantage,
disentangling the total impact on its determinants; and second, to illustrate how sensitive
these effects are to factor intensities and trade costs.

Both sectors in the two countries have the same Pareto TFPQ distribution. Country 1 is
relatively abundant in factor 1 with respect to country 2, so in the allocative efficient scenario
it has a comparative advantage in sector 135. I am interested in the RCA of country 1 in
sector 1 relative to country 2 in sector 2, which I compute using equation (21). Assume also
a log-normal distribution for distortions, with location and shape parameters µl1 and σ2

l1 for
factor l respectively, and to simplify things, zero covariances. I show in Appendix C.4. that
using equation (20) under log-normality it is possible to obtain the following relation between

35Results do not change qualitatively in the case of the opposite relative factor endowments, or if the
comparative advantage is countered or enhanced by Ricardian comparative advantage (through differences in
the lower bound of the Pareto distribution). In those cases, there is a change in the initial RCA, but the effect
of factor misallocation is qualitatively similar.
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the ex-post HWA wedge and those parameters:

ln(1 + θ̄ils) = µils + ((1− κ

ρ
)αls −

1

2
)σ2
ils (22)

Equation (22) sheds light on the feedbacks between the two types of factor misallocation
under endogenous selection of firms. For example, consider the case in which the location
parameter is zero. Ex-ante, the average (log) distortion for the firms within the industry is
zero. However, for a given value of the dispersion on these frictions (which generates intra-
industry misallocation) we obtain (1 + θ̄ils) < 1; that is, ex-post inter-industry misallocation.
This result is due to endogenous selection, since firms with both low TFPQ and high distortions
exit for sure, pushing the value of the ex-post average of the prevalent distortions below zero,
generating inter-industry misallocation.

Only intra-industry misallocation

To represent the impact of only intra-industry misallocation on comparative advantage, I first
consider the impact of an increase in the variance of wedges of each factor separately, simul-
taneously adjusting the location parameter to ensure there is no inter-industry misallocation.
Figure 8 displays the results. The first four graphs correspond to the total impact on the
comparative advantage of sector 1 (first graph) and the decomposition of the sources of export
capability explained above (average efficiency, returns of factors, and number of the mass of
exported varieties; second to fourth graphs), following equation (C.8) in Appendix C.3. Each
of these graphs plots the difference between the value of the endogenous variable under the
parameters assumed for the distribution of distortions, which are displayed in the last graph,
and the corresponding values in the allocative efficient equilibrium, so they capture the net
effect of the considered allocative inefficiency. The fifth graph illustrates the implicit HWA of
the prevalent distortions, following equation (22), to verify the degree of inter-industry misal-
location. Blue and red lines correspond to misallocation only in factors 1 and 2, respectively. I
consider two trade regimes: free trade, represented by dashed lines36, and costly trade, repre-
sented by continuous lines. The values for the whole set of parameters used in each simulation
are displayed in Table 7.

Introducing only intra-industry misallocation of any factor used in sector 1 reduces its
comparative advantage. The effect increases the larger the variance of the (log) wedges and,
for the same value of the variance, if the misallocation affects the factor used intensively by
industry. The total effect is also marginally larger under free trade for the range of variances
considered in the graph. It is worth saying that for larger variances, there is a threshold in
which with free trade the system falls in a regime of complete specialization, so the production
of sector 1 shuts down. These results are consistent with the intuition that the larger the

36For free trade I will consider an scenario without iceberg transportation costs but with fixed costs of
exporting, since I am interested in keeping endogenous selection on exporting markets.
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possibility to substitute goods across countries, the larger the impact of misallocation on
industry revenue shares, boosting more reallocation of factors across sectors. Regarding the
determinants of relative export capability, intra-industry misallocation creates well-known
losses of TFP, as in a closed economy. However, to keep trade balanced, these losses are
followed by an adjustment in relative factor prices, absent under autarky. Given endogenous
selection, there is relative net exit of exporters in the distorted sector 1, which is a consequence
of the reallocation of factors to the undistorted sector 2. The increase in the relative demand
of the factor used intensively in sector 2 also reduces the relative price of the factor used
intensively in sector 1. The combined effect on factor prices largely counters the effect of the
loss in overall efficiency, but the sum of the two forces is still negative. Thus, the total impact
on export capability is largely due to the adjustment in the extensive margin of trade, whereas
the contribution of the intensive margin is smaller, but not zero37.

Only inter-industry misallocation

Now consider the impact of inter-industry misallocation. For this, I shift the location parame-
ter allowing it to take positive and negative values, keeping the shape parameter equal to zero.
Then, there is no dispersion in wedges (and thus no intra-industry misallocation), but the
ex-post HWA wedge varies with the location parameter, creating inter-industry misallocation.
Figure (9) displays the results with the same graphs and conventions as in the previous exer-
cise. The net impact on comparative advantage is inversely related to the sign on the location
parameter. To understand this result, it is useful to think about positive values of the location
parameter as an industry-level tax in the cost of the factor, which imply a HWA wedge greater
than 1 (or a subsidy for negative values). For instance, consider the effects of introducing an
industry-level factor tax. It becomes relatively more expensive to buy the corresponding in-
put for all firms within the taxed industry, raising the average return of the composite input
bundle. Some firms whose productivity draws prevent them from paying the new inputs’ cost
must exit. Here, there is no TFP loss due to within-industry misallocation, because all firms
in the industry face the same factor prices, so average TFP depends only on the physical
productivities of the incumbents. Instead, there is selection of the more productive firms, so
average TFP rises. Both impacts are larger if the taxed factor is the one used intensively
in the sector (since it has more weight in the composite bundle) and under free trade (since
reallocation of factors is larger). The increase on average TFP entirely compensates the loss
in export capability due to the increase in the relative return of the factors, up to the point
that net effect on comparative advantage through the intensive margin is positive, but small.
Adding the negative effect on the extensive margin due to the exit of firms, which is not very
affected by the trade regime or by the intensity in the use of the factors, the overall impact

37The prevalence of the extensive margin is probably linked to the Pareto assumption. On the consequences
on Pareto’s distribution over the two margins of trade, see Fernandes et al. (2015).
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on export capability is negative.
In conclusion, each type of factor misallocation impacts industries’ comparative advantage

through different general equilibrium channels. The extent of each impact depends on the
interaction between factor intensities and the variances of distortions, in the case of intra-
industry misallocation, and primarily on whether the HWA wedges are less or greater than
one, in the case of inter-industry misallocation. The effect of both types of factor misallocation
on the industries’ TFP is partially offset by changes in relative factor prices, so the intensive
margin contributes less to the adjustment of relative unit prices relative to the extensive mar-
gin (the change in the mass of produced varieties due to the reallocation of factors across
industries). Therefore, ignoring the general equilibrium effects caused by resource misalloca-
tion could lead to misguided inferences. The next section presents a methodology to solve
the model in general equilibrium to produce a counterfactual series of bilateral exports after
removing allocative inefficiency in a country, and hence to evaluate its frictionless RCA .

4 Empirical implementation

In this section, I perform the counterfactual exercise of removing both (and separately) the
observed intra and inter-industry misallocation in Colombia. I first show how to obtain the
counterfactual equilibrium solving the model in relative changes. Next, I comment on the data
employed, the method to measure the dispersion in the MRP of the factors under overhead
costs, and the baseline results. Finally, I conduct some robustness checks and compare the
baseline results with those obtained for the one-sector economy and the closed economy.

4.1 Counterfactual exercise

I show in Appendix C.1 that under assumptions A.1. and A.2. the entire system can be solved
in terms of the following system of equations:

wilZils = αlsvilsRis (23)

Z̄il =
S∑
s

Zils (24)

Ris =
N∑
j
πijsβjs(

S∑
s
Rjs −Dj) (25)

πijs =

(
L∏
l

wil
−καls
ρ )ΓisφijsRis

N∑
k

(
L∏
l

wkl
−καls
ρ )ΓksφkjsRks

(26)

where φijs =
f
σ−1−κ
σ−1

ijs āκis
(τijs)κfeisdis

and πijs is the share of country i in total expenditures of country

j in sector s. Denote the share of factor l allocated to sector s in country i as Z̃ils, that is:
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Z̃ils ≡ Zils
Z̄il

. Equations (23) and (24) can be re-stated as: wilZ̃ilsZ̄il = αlsvilsRis , with the

condition
S∑
s
Z̃ils = 1 ∀ i, l.

Now I use the methodology of Dekle et al. (2008), adopted in other papers38, to obtain the
counterfactual equilibrium in relative changes. This approach, known as exact hat algebra,
allows me to solve the model without assuming or estimating parameters that are hard to
identify in the data, particularly all those which are embedded in the term φijs (trade variable
and fixed costs, entry costs, lower bounds for TFPQ, probabilities of exit), and the current
measures of intra-industry and inter-industry misallocation for all industries and countries.
All these values are included in the initial trade shares, and because they do not change in the
counterfactual equilibrium, they do not appear in the system in relative changes.

For any variable x in the initial equilibrium denote x′ its counterfactual value and x̂ ≡ x′

x

the proportional change. Then, the system in the final equilibrium can be rewritten as:

ŵil =
S∑
s

Z̃ilsR̂isv̂ils (27)

RisR̂is =
N∑
j
π
′
ijsβjs(

S∑
s
RjsR̂js −DjD̂j) (28)

π
′
ijs =

πijs(
L∏
l

ŵil
−καls
ρ )Γ̂isR̂is

N∑
k

πkjs(
L∏
l

ŵkl
−καls
ρ )Γ̂ksR̂ks

(29)

The objective with this system is to analyze the impact of exogenous changes in both
intra and inter-industry misallocation (through the terms v̂ils and Γ̂is) of a country on the
equilibrium outcomes R̂is and ŵil. For this, the system can be solved for R̂is and ŵil (after

imposing the usual normalization
N∑
i
RisR̂is = 1) given values of the observable variables πijs,

Z̃ils and Ris, technological and preference parameters αls and βis respectively, and assumptions
on parameters κ and σ and the variation of aggregate trade deficits D̂j . Since my interest is
to remove factor misallocation only in a country, I set v̂ils = Γ̂is = 1 for all countries different
from Colombia, so I only need values of vils of Γis for Colombia to derive the corresponding
proportional changes.

Once R̂is and ŵil are obtained, it is straightforward to compute the relative changes in
aggregate expenditure and trade shares, Êi and π̂ijs. With these variables it is possible to
quantify the cost of each type of misallocation in terms of welfare, measured as total real
expenditure. In Appendix C.5 I show that the relative change in aggregate real expenditure
can be derived from:

38See for example Costinot and Rodríguez-Clare (2014), Caliendo and Parro (2015), Święcki (2017), among
others.
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Êi

P̂ di

=
S∏
s

[
Ê

1
κ
− 1
ρ

i

(
π̂iis

R̂isΓ̂is

) 1
κ

L∏
l

ŵ
αls
ρ

il

]−βs
(30)

Notice that in the case of the undistorted economy with one factor of production, equation

(30) collapses to the well-known Arkolakis et al.’s (2012) formula (
S∏
s

[
π̂iis
Ẑis

]−βs
κ ) to evaluate

the increase in welfare in response to any exogenous shock.

4.2 Data and model solution

I collect information on bilateral trade shares, gross output and sectoral factor shares for the
same set of countries and manufacturing sectors used in section 2.3. I use a gross output
specification for the production function with capital, materials, skilled and unskilled labor
as inputs. I set factor intensities for all countries equal to the US cost shares, under the
assumption that US cost shares reflect actual differences in technology across sectors instead
of inter-industry misallocation. The primary source of information is the OECD’s Trade in
Value Added (TiVA) database (2015’s release) for the year 1995, but I also use auxiliary
information from several other sources; for a detailed description see Appendix B.1. For the
calibrated parameters, I use in the baseline results κ = 4.56 and σ = 3.5, values consistent
with those used in the literature39. Section 4.4 verifies how sensitive are the results to changes
in those values. Given the static nature of the framework, the model is silent about the
adjustment of aggregate trade deficits. Thus, for the counterfactual exercises, I assume that
for all countries different from the RoW, trade deficits as a proportion of gross output remain
constant in the counterfactual. The trade deficit of the RoW adjusts to ensure global trade
balance.

To obtain the proportional changes in the measures of factor misallocation v̂ils and Γ̂is for
Colombia, I assume that the joint distribution of factor distortions is log-normal. In Appendix
C.4 I show how equation (20) can be used to obtain an identity that relates the ex-post HWA
wedges to the vector of location parameters and the variance-covariance matrix of the ex-ante
joint distribution of the distortions Vis (see equation (C.9)). Therefore, I only need measures
of the HWA of wedges, which can be inferred from sectoral data using (19), and estimates
of Vis to obtain the latent location parameters and, consequently, both vils and Γis. The
counterfactual exercises involve removing: i) both types of misallocation; ii) only intra-; and
iii) only inter-industry misallocation for the homogenous production factors: capital, skilled
and unskilled labor40.

39These values are averages of the ones used by Melitz and Redding (2015) (κ = 4.25 and σ = 4) and the
ones estimated by Eaton et al. (2011) (κ = 4.87 and σ = 2.98). Section 4.4 evaluates the sensitivity of the
baseline results to changes in these values.

40Given the infeasibility of decomposing intermediate consumption into amounts of homogeneous inputs,
I assume that all observed dispersion in the MRP of materials is due to actual heterogeneity in the input,
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To estimate Vis, I use Bils et al.’s (2017) method to compute the dispersion in the factors’
MRP in the presence of additive measurement error in revenue and inputs. Since overhead
factors are analogous to an unobservable additive term in measured inputs, this approach
deals with the problem of inferring the variance of factors’ MRP directly from the observed
dispersion of the average revenue products in the presence of fixed costs. The main idea of
Bils et al.’s (2017) approach is to estimate a “compression factor” λ̂ to correct the observed
dispersion on TFPR, σ̂2

TFPR, as a measure of the dispersion in the “true” TFPR, σ2
TFPR

(λ̂ = σ2
TFPR/σ̂

2
TFPR), using panel data. The methodology exploits the fact that in the absence

of measurement error the elasticity of revenues with respect to inputs should not vary for plants
with different average products. I estimate λ̂ by GMM sector by sector, using the panel data
from 1991 to 1998. In Appendix B.2, I present details about the methodology and the results
of the replication41. I correct the observed variance-covariance matrix of the average revenue
products of factors by λ̂s to obtain V̂is. Table 9 displays for each industry the employed values
for the HWA wedges, the corresponding observed variances and covariances of factors’ average
revenue products and the obtained “compressions factors” λ̂s, along with factor intensities.

The model is constituted by N × (S + L) = 1392 equations. The multiplicity of non-
linearities in the model implies that common optimization routines find multiple local solutions.
To obtain the global solution, I employ both an algorithm to choose a set of ideal initial
conditions and a state-of-the-art solver for large-scale nonlinear systems. Appendix B.3 offers
details about these two aspects.

4.3 Baseline results

First, I describe the results of “extreme” reforms that remove the total extent of intra- and
inter-industry misallocation in Colombia. The results of gradual reforms are presented in the
next section. I compute the RCA measures for each counterfactual equilibrium using PPML.
Similar to Figure 6, instead of choosing a pair importer-sector, I normalize by global means.
The resulting RCA measures are displayed in Figure 10. All panels plot the actual RCA
measures in the horizontal axis and the counterfactuals in the vertical one. Panels A and B
show the case of removing both types of misallocation. In Panel A the markers’ sizes represent
the actual industries’ export shares and in Panel B the counterfactual ones.

Once both types of misallocation are removed, welfare grows 75% and the ratio of exports
to manufacturing GDP rises from 0.15 to 0.3342. Table 8 displays a summary of the aggregate

instead of factor misallocation. Thus, the counterfactual equilibrium preserves both the observed within-
industry dispersion and the inter-industry differences in the MRP of intermediate consumption.

41The point estimates for λ̂s vary in the range [0.75, 0.87], indicating that around 20% of the observable
dispersion in TFPR is attributable to measurement error.

42A word of caution is necessary, since these results are for the counterfactual in which the allocation of
factors across all units of production is perfectly efficient, which implies zero dispersion of their returns, an
extreme scenario.
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results. The boost in exports is due to the rise in the dispersion of the Colombian schedule
of comparative advantage. This is also evident in Figure 11, which compares the location
of the Colombian industries in the RCA world distribution for the initial and counterfactual
equilibria. Each vertical line represents a single Colombian industry. Both figures also evidence
the fact that the counterfactual ranking is not related to the actual one. Industrial chemicals,
other chemicals, glass and tobacco are the industries with the largest increases with respect
to their initial RCA, whereas petroleum, machinery and equipment, transport equipment and
computer, electronic and optical products, display the largest drops. The latter industries
disappear when both types of misallocation are removed, indicating the presence of a non-
interior solution in the counterfactual equilibrium43, which explains in part the longer left tail
in the counterfactual world distribution44. The large dispersion on the frictionless comparative
advantage leads to higher degrees of industrial specialization in the frictionless equilibrium,
which is evident comparing the export shares from panel A to panel B. For instance, the
whole chemical sector (both industrial chemicals and other chemicals), an industry that ends
up in the first percentile of the counterfactual RCA world distribution, concentrates 64% of
the counterfactual Colombian exports, from 23% in the actual data.

The total impact on comparative advantage is a non-linear combination of the effects of
removing both HWA wedges and the intra-industry dispersion on the returns of the factors.
Panel C and Panel D of Figure 10 depict the RCA measures after removing only intra- and
inter-industry misallocation respectively, with markers’ sizes representing the counterfactual
export shares. In each exercise, I compute the counterfactual values v′ils and Γ′is such that
the other type of misallocation remains unchanged. Notice that in both cases the dispersion
of comparative advantage is lower than in Panels A and B, but larger with respect to the
original one. Table 8 shows that in spite of both types of factor misallocation contributing to
the total growth in exports, intra-industry misallocation seems quantitatively more important.
Removing only intra-industry misallocation leads to an increase in 13 p.p. of the exports to
GDP ratio and a rise in 56% in welfare, whereas removing only inter-industry misallocation
causes smaller increases (7 pp. and 8% in each variable, respectively).

The directions and the magnitudes of the changes in the RCA due to each type of factor
misallocation can be explained by the extent of its respective causes. The simulations per-
formed in section 3.3 suggested that the magnitude of the effect of intra-industry misallocation
depends on the interaction between factor intensities and the relative variances of distortions,

43The feasibility of non-interior solutions in multi-sector Pareto-Melitz type of models is recently evaluated
by Kucheryavyy et al. (2017). These authors show that under the standard formulation of the model in which
the elasticities of substitution do not vary between domestic and foreign varieties, as it is the case in this
paper, it is guaranteed that the general equilibrium is unique, but not necessarily an interior solution. Besides
multiple factors and resource misallocation, the other difference that makes the model here different is the fact
that fixed costs of exporting are paid in terms of factors of the source country.

44The counterfactual equilibrium also involves large contractions (between 40% and 70%) in some industries
of some of the main Colombian trade partners: 4 in Ecuador, 2 in Brazil, 1 in Venezuela and 1 in Hong Kong.
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whereas the impact of inter-industry misallocation depends on whether the HWA wedges are
less or greater than 1. Figure 12 confirms this reasoning. Panel A plots the variation in the
RCA when removing intra-industry misallocation against the intra-industry dispersion of the
TFPR, equal to ~α′sV̂is~αs for sector s, where ~αs is a L-vector of factor intensities αls. The pos-
itive correlation suggests that sectors in which firms’ TFPR is relatively more disperse, have
larger gains in comparative advantage. Analogously, Panel B plots the variation in the RCA
when removing inter-industry misallocation against the revenue productivity at the industry
level. The positive correlation implies that industries with HWA wedges greater than one gain
export capability when inter-industry misallocation is removed, otherwise they lose.

A further exploration of the latter results sheds light on the directions and extents of the
general equilibrium effects that are present in the model. Similar to section 3.3, I use the
decomposition (C.8) in Appendix C.3 to disentangle the effect of each type of misallocation
on comparative advantage into the three sources of export capability in the model: average
TFP, the cost of inputs and the number of varieties produced in each sector. Panel A of
Figure 13 displays the effect of removing all misallocation (in the top graph), only intra
(in the middle graph) and only inter-industry misallocation (in the bottom graph), in each
sector’s RCA. Towards a better understanding of the results for the RCA, Panel B shows
the same decomposition when the changes in the three sources of export capability are not
compared across industries, but instead are relative only to the same industry in the reference
country. Constructed in this way, the decomposition captures a measure that Hanson et al.
(2015) denote the “absolute advantage” index45. The numbers displayed correspond to the
log-differences between the counterfactual values and the initial values of both measures of
export capability, and the lengths of the bars represent the strength of each element in the
decomposition, so they add up exactly to the number shown.

First, regarding intra-industry misallocation, the gains on average TFP boost “absolute
advantage” of all sectors, on average by 0.91 log points. However, these gains are countered by
increases in relative factor prices, on average by 0.74 log points (a rise in relative factor prices
is shown as a negative contribution). Thus, in spite of the intensive margin plays a role in the
total adjustment of the “absolute advantage” measure, this latter is in a large part driven by the
extent to which the number of varieties adjusts, i.e., the extensive margin. When we compute
the same decomposition for RCA, its variation is almost entirely explained by the number of
varieties. This is a result of the low dispersion in the adjustment of the intensive margin of the

45Since I choose to normalize by world means, from (21) the log-differences in the measures of export
capability are exactly identified by:
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where AA denotes the “absolute advantage” index.
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“absolute advantage” across sectors, contrary to what happens with the number of varieties.
Second, regarding inter-industry misallocation, industries facing on average low returns of the
factors (Θ̄is < 1, see Table 9) increase their inputs’ cost, which improves average TFP through
the selection of the more productive firms, compensating the adverse effect of factor prices in
both RCA and “absolute advantage” measures, and vice versa. In this case, the magnitudes of
the adjustments of average TFP and factor prices in the index of “absolute advantage” are lower
than those obtained removing MRP dispersions within industries (for example, the median
positive change due to average TFP is 0.25 log points). Nevertheless, despite their smaller
magnitudes, those changes have a larger dispersion across sectors, enhancing the contribution
of the intensive margin in the effect of inter-industry misallocation on the RCA measure.

4.4 Robustness checks and additional results

In this section, I first evaluate the robustness of the previous results to changes in the pa-
rameters κ and σ. Next, I present the results of gradually removing misallocation. Finally, I
compare the baseline results with those obtained in the cases of taking the whole manufactur-
ing sector as a single industry and in the closed economy.

Changes in κ and σ

Changes in κ or in σ do not importantly alter the ranking of RCA in the counterfactual
equilibria and, if any, have a small effect on its dispersion. Figure 14 displays for the case of
removing both types of misallocation the ranking of Colombian RCA measures under different
values of κ and σ. Changes in the ranking are negligible, and only small variations in the
dispersion are noticeable (see column 5 in Table 8). However, for a given MRP distribution
and RCA schedule, the extent of factor reallocations across sectors is increasing in κ and
decreasing in σ. This is due to the fact that in each industry a fraction ρ

κ of the sectoral
demand of factors is not affected by firm-level misallocation, the fraction that is allocated to
entry. As a result, Table 8 shows that the rise in total exports and in the ratio exports to
GDP is lower for κ = 4 or σ = 4 and larger for κ = 5 or σ = 3.

Gradual reforms

Figure 15 displays the effects of reforms that gradually remove both and separately the two
types of misallocation on the welfare gains (Panel A) and exports growth (Panel B). The lines’
values in the extreme right - removing 100% misallocation - coincide with the numbers in Table
8. Even the smallest reform, which reduces 10% the extent of both types of misallocation,
has a sizable impact on both welfare and exports (6.7% and 11% respectively)46. Moreover, it

46The exports to GDP ratio only begins to increase after removing 20% misallocation, a threshold where
the ranking of industries’s RCA starts to show alterations.
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is noticeable that for any reduction in misallocation, the intra-industry type is quantitatively
more important, although its contribution varies with the intensity of the reform.

One-sector vs. multiple sectors

To quantify the importance of industrial specialization in the exports of the frictionless econ-
omy, I perform the exercise of removing misallocation, taking the whole manufacturing sector
as a single industry. By construction, there is now only intra-industry misallocation, and all
industries face the same factor intensities. Thus, I recompute the corresponding US cost shares
and the within-industry variances of firm’s wedges, values displayed in the last row of Table
9. The increase in welfare is similar to the baseline case (70%), but the increase in nominal
exports is only 43%, leading to a decrease in the ratio of exports to GDP of 5 p.p. (see the
last row in Table 8).

Closed vs. open economy

Since in the closed economy revenue shares are constant and equal to the expenditure shares in
the demand system, there is no change in the industrial composition under the Cobb Douglas
demand. However, it is possible to quantify the cost of the same measures of misallocation
in terms of welfare. For this, notice that in the closed economy we have πiis = π̂iis = 1 and
R̂is = Êis = Êi, so we can express (30) as:
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Thus, the welfare cost of misallocation in a closed economy with endogenous selection of firms
can be derived only with measures of misallocation and factor shares in autarky. The last
column in Table 8 shows the increase in welfare in the case in which Colombia was a closed
economy, under the assumption that the measures of misallocation and factor shares were the
same. Apart from the case of removing only inter-industry misallocation, the gains on welfare
due to removing allocative efficiency are larger under a closed economy, suggesting that in
the particular case of Colombia, international trade dampens the welfare cost of resource
misallocation47.

47For the inter-industry case, the results are in line with Święcki (2017), who shows that simultaneously
removing intersectoral wedges in labor in 61 countries and 16 industries leads to larger welfare gains in open
economies relative to closed ones (for Colombia, the gains are 18% in the open economy case and 11% under
autarky). The intuition for his result is that in the closed economy distorted sectors cannot expand beyond
the domestic demand for the sector’s output. However, adding firms’ endogenous selection can make the effect
of trade on the cost of misallocation dependent on the joint distribution of TFPQ and wedges. In particular,
trade will have a larger impact on welfare in an economy where the exiting plants due to trade contribute
relatively more to the total intra-industry misallocation (i.e., where their TFPR dispersion is higher). In that
sense, trade could mitigate or exacerbate the cost of misallocation, particularly of the intra-industry type.
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5 Conclusions

Resource misallocation at the firm level can alter the relative unit cost of producing a good
across sectors, distorting the “natural” comparative advantage of a country. This paper offers
a framework to compute for a country the export capabilities of its industries under frictionless
factor markets, considering the general equilibrium effects of factors reallocations both within
and across sectors. I perform the exercise with a sample of 48 countries, three production
factors, and 25 tradable sectors for the observed misallocation in Colombia, a country whose
firm-level data allows provide us with true measures of physical productivity. I find that the
reallocation of factors allows Colombia to specialize in industries with “natural” comparative
advantage, especially the whole chemical sector (both industrial chemicals and other chemi-
cals). Reallocating factors generates a rise in the ratio of exports to manufacturing GDP by
18 p.p. and an increase in welfare of 75%, for the case of an extreme reform in which factor
misallocation is entirely removed. The specialization channel that substantially transforms the
industrial composition is a omitted mechanism in the workhorse models of factor misallocation
in closed economies.

The impact of allocative efficiency on comparative advantage depends on the type of the
original misallocation, especially whether it is at the intra- or the inter-industry level. In
the case of intra-industry misallocation, I find that removing firm-level distortions increases
comparative advantage for those sectors in which the returns of the factors used intensively
are relatively more dispersed, whereas industries with the lowest dispersions can lose export
capability. These gains on comparative advantage are mainly the result of an increase in the
relative number of varieties produced, since at the intensive margin the increases on average
TFP are largely countered by the responses on relative factor prices, and there is not enough
variation across industries in the remaining effect. And for inter-industry misallocation, in-
dustries which on average face returns of the factors larger than the allocative efficient values
increases their comparative advantage when misallocation is removed. In this case, the gains in
export capability derive from the direct reduction of average factor costs, which compensates
the adverse selection of firms within the sector, plus an increase in the number of varieties pro-
duced. The overall effect of factor misallocation on comparative advantage is a combination
of these two forces.

These results suggest that the design of mechanisms that smooths the dispersion on factor
returns both at the intra- and the inter-industry level is a desirable policy. It can boost total
productivity and the economy’s welfare allowing for a more efficient pattern of specialization
across industries, in which comparative advantage responds more to “natural” differences in
physical productivity and relative factor endowments. The growing number of papers explor-
ing the causes of the dispersion on the marginal returns of the factors in the misallocation
literature is a fertile field of research to start exploring optimal policy instruments under an
open economy.
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Appendix A: Main Tables and Figures

A.1 Tables

Table 1 – Probability of exit explained by TFPQ and TFPR for Colombia

(1) (2) (3) (4) (5)
TFPR -0.026*** 0.047*** 0.042*** 0.059*** 0.058***

(0.003) (0.003) (0.003) (0.004) (0.004)
TFPQ -0.061*** -0.070*** -0.068***

(0.002) (0.003) (0.003)
TFPQ as in HK -0.055***

(0.001)
Demand shock -0.028*** -0.032*** -0.032***

(0.001) (0.001) (0.001)
Year FE Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes

Firm controls Yes Yes
Location FE Yes

N 71880 71880 71880 71880 68034
R2 0.017 0.044 0.044 0.045 0.045

* p<0.10, ** p<0.05 and *** p<0.01. Dependent variable: probability of exit. All independent variables

are in deviations over industry means. Heteroskedastic robust errors.

Source: EAM Colombia, 1982-1998

Table 2 – Probability of being a exporter explained by TFPQ and TFPR for Colombia

(1) (2) (3) (4) (5)
TFPR 0.043*** -0.178*** -0.188*** -0.140*** -0.141***

(0.004) (0.005) (0.004) (0.007) (0.007)
TFPQ 0.177*** 0.146*** 0.148***

(0.004) (0.005) (0.005)
TFPQ as in HK 0.187***

(0.002)
Demand shock 0.093*** 0.078*** 0.079***

(0.001) (0.002) (0.002)
Year FE Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes

Firm controls Yes Yes
Location FE Yes

N 47692 47692 47692 47692 47544
R2 0.058 0.219 0.219 0.226 0.229

* p<0.10, ** p<0.05 and *** p<0.01. Dependent variable: probability of being an exporter. All independent

variables are in deviations over industry means. Heteroskedastic robust errors.

Source: EAM Colombia, 1982-1991
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Table 3 – Sectors in the sample

No. Sector Sector Description ISIC Rev. 2
1 Food Food manufacturing 311-312
2 Beverage Beverage industries 313
3 Tobacco Tobacco manufactures 314
4 Textiles Manufacture of textiles 321
5 Apparel Wearing apparel, except footwear 322
6 Leather Leather and products of leather and footwear 323
7 Footwear Footwear, except vulcanized or moulded rubber or plastic footwear 324
8 Wood Wood and products of wood and cork, except furniture 331
9 Furniture Furniture and fixtures, except primarily of metal 332
10 Paper Paper and paper products 341
11 Printing Printing, publishing and allied industries 342
12 Chemicals Industrial chemicals 351
13 Other chemicals Other chemicals (paints, medicines, soaps, cosmetics) 352
14 Petroleum Petroleum refineries, products of petroleum and coal 353-354
15 Rubber Rubber products 355
16 Plastic Plastic products 356
17 Pottery Pottery, china and earthenware 361
18 Glass Glass and glass products 362
19 Other non-metallic Other non-metallic mineral products (clay, cement) 369
20 Iron and steel Iron and steel basic industries 371
21 Non-ferrous metal Non-ferrous metal basic industries 372
22 Metal products Fabricated metal products, except machinery and equipment 381
23 Mach. & equipment Machinery and equipment except electrical 382
24 Electric. / Profess. Electrical machinery apparatus, appliances and supplies & 383-385

professional and scientific, measuring and controlling equipment
25 Transport Transport equipment 384

Table 4 – Countries in the sample

OECD Country (I) Code OECD Country (II) Code
Australia AUS Korea KOR
Austria AUT Mexico MEX
Belgium BEL Netherlands NLD
Canada CAN New Zealand NZL
Chile CHL Norway NOR
Denmark DNK Poland POL
Finland FIN Portugal PRT
France FRA Czech Republic CZE
Germany DEU Spain ESP
Greece GRC Sweden SWE
Hungary HUN Switzerland CHE
Ireland IRL Turkey TUR
Israel ISR United Kingdom GBR
Italy ITA United States USA
Japan JPN

Non-OECD Country Code
Argentina ARG
Brazil BRA
China CHN
Colombia COL
Ecuador ECU
Hong Kong HKG
India IND
Indonesia IDN
Malaysia MYS
Philippines PHL
Rest of the World ROW
Romania ROU
Russia RUS
Saudi Arabia SAU
Singapore SGP
South Africa ZAF
Thailand THA
Taiwan TWN
Venezuela VEN
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Table 5 – RCA on misallocation measures and determinants of export capability

Second-stage results. First stage: FE by PPML
(1) (2) (3) (4)

Intra-ind. allocative efficiency 0.358*** 0.575*** 0.339***
(0.082) (0.088) (0.084)

Intra-ind. variance of TFPR -0.145**
(0.060)

Inter-industry wedges -0.351*** -0.241*** -0.202** -0.371***
(0.081) (0.088) (0.063) (0.085)

Efficient TFP 0.244** 0.234** 0.218** 0.272***
(0.090) (0.098) (0.103) (0.088)

Factor prices -0.318*** -0.197** -0.263*** -0.306***
(0.066) (0.076) (0.077) (0.067)

Observations 208 208 208 208
R-square 0.327 0.266 0.551 0.23

* p<0.10, ** p<0.05 and *** p<0.01. Dependent variable is dRCAist, the change in the RCA measure

with respect to the first period. All independent variables are transformed to be changes with respect

to the first period relative to the reference industry, normalized by the corresponding changes in the

US PPI. (1) and (2) are the baseline results. (3) Changes reference industry (to min. number of zeros),

(4) Changes set of countries (to 19). Standardized coefficients and heteroskedastic robust errors.

Table 6 – Equilibrium conditions and endogenous variables

Equilibrium condition Equation Dimension
Factor clearing (15) N × L
Industry factor demand (14) N × L× S
Zero profit (9) N ×N × S
Aggregate stability (11) N ×N × S
Free entry (10) N × S
Industry price (12) N × S

Industry demand Qdis =
N

(
∑
k

Mkis∑
m
qρkim)

1
ρ N × S

Aggregate price P di =
S∏
s

(
P dis
βs

)βs N

Trade balance (16) N

Endogenous variable Notation Dimension
Primary factor price wil N × L
Industry-level primary factor Zils N × L× S
Cutoffs for undistorted firms by dest. a∗ijs N ×N × S
Mass of firms by destination Mijs N ×N × S
Mass of entrants His N × S
Industry-level consumer price & demand P dis, Q

d
is 2×N × S

Aggregate consumer price & demand P di , Q
d
i 2×N
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Table 7 – Values of parameters used in simulations

Parameter Description Value

αls Factor intensities
[
0.7 0.3
0.3 0.7

]
βis Expenditure shares 0.5 ∀ i, s
σ Varieties’ elasticity of substitution 3.8
κ Pareto’s shape parameter 4.58

Z̄il Factor endowments
[
100 90
90 100

]
āis Pareto’s location parameter 1 ∀ i, s
δis Exogenous probability of exit 0.025 ∀ i, s
feis Fixed entry cost 2 ∀ i, s
fijs Fixed trade cost 2 ∀ i, j, s

τijs Iceberg trade cost Free trade: 1 ∀ i, j, s
Costly trade: 2 ∀ s ∧ i 6= j; 1 ∀ s ∧ i = j

σl1 Log-normal shape par. in sector 1 For figure 8: [0, 0.5] ∀ l
For figure 9: 0 ∀ l

µl1 Log-normal location par. sector 1 For figure 8: (1
2 − (1− κ

ρ )αl1)σ2
l1 ∀ l

For figure 9: [−0.5, 0.5] ∀ l

Table 8 – Aggregated results of the counterfactual exercises

Change in each variable after removing factor misallocation in Colombia

Variable Revenue Value
added Exports Exports

/GDP*
RCA
s.d.* Welfare Welfare -

autarky

Counterfactual R̂Col ˆGDPCol X̂Col ∆( X
GDP )Col ∆σRCACol

ÊCol
P̂Col

[
ÊCol
P̂Col

]closed
Baseline results

Both types 1.54 2.22 4.78 0.18 2.60 1.75 1.85
Only intra-industry 1.41 1.92 3.59 0.13 1.95 1.56 1.72
Only inter-industry 1.04 1.09 1.57 0.07 1.69 1.08 1.07

Robustness: Both types
Decreasing σ (to 3) 1.59 2.35 5.22 0.19 2.68 1.90 1.99
Increasing σ (to 4) 1.50 2.14 4.51 0.17 2.69 1.67 1.76
Decreasing κ (to 4) 1.44 2.01 4.14 0.16 2.40 1.64 1.75
Increasing κ (to 5) 1.61 2.38 5.36 0.19 2.61 1.84 1.92

One-sector
Only intra-industry 1.58 2.32 1.43 -0.05 - 1.70 1.87

Note: Each cell shows the proportional change in each variable between the counterfactual equilibrium and
the actual data. For variables marked by *, the simple difference in the measure is displayed.
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Table 9 – Values of factor intensities and misallocation measures used in the counterfactuals

Number Factor intensities HWA of firm-level Original intra-industry Original intra-industry BKR’s (2017)
of firms (GO specification) wedges variances of log-wedges covariances of log-wedges “compression”

Sector (in 1995) αk αs αu (1 + θ̄k) (1 + θ̄s) (1 + θ̄u) Θ̄ σ2
k σ2

s σ2
u σks σku σsu λ̂s

1 s.e.

Food 1435 0.31 0.06 0.09 1.90 1.01 1.14 1.15 1.32 1.34 1.48 0.23 0.23 1.06 0.81a 0.13
Beverage 142 0.36 0.06 0.06 1.05 0.98 1.14 1.33 1.06 0.89 0.89 0.00 -0.08 0.58 0.79 1.74
Tobacco 9 0.73 0.02 0.04 1.67 1.64 0.39 1.28 0.70 1.63 2.13 0.37 -0.45 1.24 0.76a 0.02
Textiles 465 0.22 0.08 0.18 0.81 1.08 0.88 1.02 1.57 0.83 0.81 -0.07 0.10 0.51 0.82 0.76
Apparel 944 0.23 0.10 0.17 1.25 0.40 0.26 0.72 1.46 0.75 0.71 0.12 0.18 0.34 0.87a 0.04
Leather 118 0.32 0.12 0.16 1.38 1.00 0.47 0.73 1.06 0.87 0.55 -0.02 -0.07 0.55 0.84a 0.09
Footwear 254 0.21 0.12 0.20 1.51 1.00 0.59 0.97 1.29 0.77 0.54 0.10 0.14 0.40 0.80 0.73
Wood 196 0.13 0.07 0.18 0.25 0.37 0.48 0.51 1.67 0.53 0.43 0.31 0.18 0.34 0.86a 0.12
Furniture 270 0.18 0.11 0.25 0.70 0.27 0.32 0.50 1.70 0.48 0.47 0.14 0.01 0.24 0.85 0.58
Paper 170 0.21 0.09 0.18 0.64 2.40 2.62 1.17 1.19 1.01 1.39 0.07 -0.04 0.86 0.79c 0.44
Printing 434 0.23 0.15 0.26 1.02 0.83 1.62 1.02 0.87 0.59 0.59 -0.06 -0.10 0.23 0.85a 0.03
Chemicals 177 0.37 0.07 0.08 1.23 1.96 1.77 1.08 1.72 0.95 0.92 0.14 -0.07 0.65 0.83a 0.06
Other chemicals 356 0.36 0.12 0.09 2.50 1.13 1.49 1.53 1.20 0.84 1.00 -0.08 -0.13 0.59 0.81 0.98
Petroleum 46 0.15 0.02 0.02 0.65 0.98 0.86 1.28 2.66 1.49 1.93 1.08 1.28 1.57 0.76a 0.01
Rubber 93 0.20 0.12 0.22 0.63 2.01 1.64 1.05 0.80 0.71 0.57 0.24 0.24 0.39 0.83 1.24
Plastic 428 0.10 0.08 0.28 0.38 0.95 1.74 1.04 1.00 0.74 0.71 -0.01 -0.05 0.47 0.83a 0.02
Pottery 13 0.27 0.13 0.30 1.16 1.19 1.38 1.11 0.23 0.58 0.91 -0.08 -0.11 0.70 0.80a 0.01
Glass 82 0.26 0.29 0.12 0.91 4.59 0.70 1.38 1.14 0.63 0.57 -0.17 0.02 0.39 0.80 2.72
Other non-metallic 365 0.21 0.07 0.14 0.46 1.36 1.11 1.05 1.50 0.85 1.08 0.03 -0.01 0.76 0.80 2.59
Iron and steel 86 0.18 0.10 0.21 0.50 2.74 3.01 1.28 1.17 1.38 1.72 -0.19 -0.15 1.37 0.78a 0.01
Non-ferrous metal 42 0.18 0.10 0.27 0.38 0.56 0.94 0.39 0.53 0.96 1.49 -0.17 -0.48 1.09 0.82a 0.03
Metal products 664 0.21 0.12 0.17 1.09 1.20 0.72 0.99 1.51 0.69 0.66 0.11 0.09 0.47 0.84b 0.35
Mach. & equipment 374 0.25 0.11 0.09 1.50 0.83 0.36 1.04 1.14 0.51 0.56 0.02 0.14 0.34 0.83a 0.02
Electric. / Profess. 276 0.19 0.02 0.08 1.00 1.27 0.74 1.01 1.10 0.70 0.73 0.06 0.07 0.50 0.78 0.58
Transport 274 0.24 0.15 0.13 2.23 0.45 0.91 1.20 1.11 0.57 0.87 0.23 0.27 0.46 0.84a 0.02

One-sector 7713 0.24 0.09 0.13 1.00 1.00 1.00 1.00 1.33 1.23 1.01 0.09 0.09 0.74 0.85a 0.33

1Estimates for λs using Bils et al. (2017) (see Appendix 5). Levels of significance: c p < 0.1, b p < 0.05, a p < 0.01
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A.1 Figures

Figure 1 – TFPQ, TFPR and MRP distribution in the Colombian data

Panel A: Observed TFPQ and TFPR and efficient TFPR* Panel B: Observed MRP*
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CD-GO specification, controlling for year FE. Source: Colombian AMS.

Figure 2 – MRP distribution for selected industries
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Figure 3 – Removing intra and inter industry factor misallocation

Panel A: TFPQ and TFPR in two sectors Panel B: Intra and inter-industry efficient allocation
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Figure 4 – TFP gains from factor reallocation in a closed economy

Panel A: China Panel B: Colombia
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Figure 5 – TFP gains from removing inter-industry misallocation and GDP per capita
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Figure 6 – RCA for Colombia by estimation method*
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Figure 7 – Cutoff functions and selection effects of distortions
Panel A : Cutoff functions for country i sector s* Panel B: Selection effects of distortions
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Figure 8 – Effects of intra-industry misallocation on comparative advantage and its determinants
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Figure 9 – Effects of inter-industry misallocation on comparative advantage and its determinants
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Figure 10 – Allocative efficient (AE) vs actual RCA for Colombia
Panel A: Allocative efficient vs actual RCA for Colombia Panel B: Allocative efficient vs actual RCA for Colombia
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Panel C: Intra-industry AE vs current RCA for Colombia Panel D: Inter-industry AE vs current RCA for Colombia
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Figure 11 – Colombian industries in the world distribution of RCA

Panel A: Distribution under actual data Panel B: Distribution under Colombia’s efficient allocation.
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Figure 12 – Changes in Colombian RCA and its determinants

Panel A: Change in RCA by removing intra-industry Panel A: Change in RCA by removing inter-industry

misallocation and within-industry variance of TFPR misallocation and sectoral TFPR for Colombia
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Figure 13 – Decompositions of the effects of removing misallocation on Colombian industries

Panel A: Effects on comparative advantage (RCA) Panel B: Effects on absolute advantage
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Figure 14 – Rankings of RCA for different values of κ and σ

Panel A: Changes in σ Panel B: Changes in κ
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Figure 15 – Welfare gains and export growth from gradually removing misallocation

Panel A: Welfare gains Panel B: Export growth
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Appendix B: Data and solution of the model

B.1 Description of the dataset

This paper uses two types of data: A “macro” dataset with information at the country-sectoral
level, and a “micro” dataset, with information at the firm level for Colombia.

The “macro” dataset collects sectoral information of gross output, bilateral trade flows,
intermediate consumption and shares of employment and capital for a sample of 48 countries
and 25 manufacturing industries (3-digit ISIC rev. 2 level), for the year 1995. Table 3 and
Table 4 display the considered industries and countries respectively.

Data for sectoral gross output, bilateral trade flows and intermediate consumption come
from OECD’s Trade in Value Added (TiVA) database (2015’s release). This dataset contains
a range of indicators derived from the OECD’s Inter-Country Input-Output (ICIO) database.
The latter is constructed by OECD from various national and international data sources, all
drawn together and balanced under constraints based on official National Accounts (SNA93)48.
Information on gross output and trade flows was collected for all available manufacturing
sectors in TiVA (16), and an imputation scheme was implemented to obtain output and
bilateral flows for the remaining sectors and for two countries not available in TiVA (Venezuela
and Ecuador, which were included given their relevance as Colombia’s trade partners), based
on production and trade shares computed from the CEPII database (de Sousa et al., 2012).

I derive imports from home from the difference between gross output and total exports. As
it is known in the literature, this procedure could generate negative values for some country-
industry pairs (for instance if the country-sector has high amount of reexports). To solve
this issue, I follow Costinot and Rodríguez-Clare (2014) and Święcki (2017), adjusting those
negative flows rescaling exports to all destinations until the ratio total exports to gross output
is as in the sector with the highest ratio still less than one in that country. This adjustment
was needed in the case of six country-industry observations.

Factors shares were constructed using information from several sources. For materials, I
compute the shares using the series of intermediate consumption from TiVA. Data for the
remaining industries and for Venezuela and Ecuador was imputed using shares from UNIDO’s
INDSTAT2 database (2015’s release), which contains information at the 2-digit ISIC rev. 3
level only for manufacturing industries. The information was gathered adjusting each country’s
available aggregation to the one used here. For labor, ICIO database contains information of
employment (measured in number of persons engaged) for 42 of the 48 countries considered
here. For the remaining sectors and countries, data was collected using UNIDO’s INDSTAT2
database. Skilled and unskilled labor shares were allocated using GTAP-5 database, which are

48The underlying sources used are notably: i) National supply and use tables; ii) National and harmonized
Input-Output Tables, iii) Bilateral trade in goods by industry and end-use category; and iv) Bilateral trade in
services. For more information, see www.oecd.org/trade/valueadded
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draw on labor force surveys and national censuses where they are available, or the statistical
model proposed by Liu et al. (1998) otherwise.

For capital, shares were constructed as follows. First, the Social Economics Accounts of
the World Input Output Database (WIOD, see Timmer et al., 2015) contain calculations of
the stocks of capital at the two-digit ISIC rev. 3 level or groups thereof for 36 countries of the
48 countries considered here (in the 2013’s release). For the remaining countries, I apply the
steady-state approach on the calculation of the initial stock of capital in the perpetual inven-
tory method49, using information of gross fixed capital formation (GCFC) from INDSTAT2
database. For country i-industry s the share of capital γiks was imputed as:

γiks =

GCFCis
gis+δris

S∑
s

GCFCis
gis+δris

where GCFCis is the average GCFC over the five-year window centered on the reference year,
gis is the growth rate of the GDP of the sector in the same period, and δris is an exogenous de-
preciation rate, which are computed using the NBER-CES Manufacturing Industry database
for US50. I compute capital shares using this methodology even for the countries with avail-
able information from WIOD, to assess the fit of the imputation procedure. I evaluate the
imputation results in terms of cross correlations and mean absolute errors using three approx-
imations: i) Setting gis = δris = 0 ∀i, s (thus I use only information on GCFC); ii) Setting
gis = 0 ∀i, s (hence I use information on GCFC and US depreciation rates); iii) Using the
full set of information. I found the best adjustment under the second approach. Therefore,
capital shares for the remaining countries were imputed using only series of GCFC and US
depreciation rates.

For the “micro” dataset I use the panel of manufacturing plants created by Eslava et al.
(2004) (hereafter EHKK) for the period 1984-1998 from the Colombian Annual Manufactur-
ing Survey (AMS), collected by the Departamento Administrative Nacional de Estadística
(DANE), the Colombian national statistical agency51. The AMS is a census of plants with
10 or more workers or annual sales above certain limit, which is adjusted over time52. A
unique feature of the AMS is that, in conjunction with the main variables of standard surveys
(output and sales values, overall cost, energy consumption, payroll, number of workers and
book values of equipment and structures), the DANE collects information at the product level
(with a disaggregation comparable to the 6-digit HS) on the value and physical quantities of

49For reference, see for example Berlemann and Wesselhöft, 2014
50I use five-year windows to prevent that short-run volatility in the GCFC bias the imputation results.

Notice that since I only need sectoral factor shares, a temporal shock that affects homogeneously the whole
economy does not affect the imputation results.

51The dataset was made available to research by the DANE.
52For 1998, the last year of the panel, was around US$35000. This criterium was introduced in the AMS in

1992 to increase coverage.
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outputs and inputs (valued at factory-gate prices). This allows EHKK to obtain prices as unit
values for each output and input produced and used by every plant, and hence to construct
specific firm prices of total output and materials using Tornqvist indices (see EHHK Appendix
for details).

I perform the detailed cleaning procedure of Kugler and Verhoogen (2012) to reduce the
influence of measurement error and outliers (see their data Appendix). Next, I follow HK and

remove 1% tails of the distributions of log(ψm/ψ̄s) and log(M
1

σ−1
s am/Ãs) to drop remaining

influential observations53. Following the misallocation literature, to obtain TFP measures I
use as a factor intensities average U.S. cost shares at the corresponding aggregation levels
from the NBER-CES Manufacturing Industry Database during the same period of time. Since
for the selected years the AMS uses ISIC rev-2 adapted for Colombia, I match the NAICS97
US code with the ISIC rev-3, and afterwards with the Colombian one. The purpose of using
US cost shares is to employ factor intensities that reflect true technological differences across
industries instead of frictions in factor markets, since domestic cost shares can be affected by
the extent of inter-industry factor misallocation.

The final panel contains around 4700 plants on average in a typical year. On average,
around 390 firms enter each year while 450 exit, which corresponds to an entry/exit rate of 8
and 9 percent respectively. For the computation of the misallocation measures in the coun-
terfactual exercise, I use information only for the reference year (1995). Despite its coverage,
EHHK’s dataset does not include exports. Thus, I use the panel employed by Bombardini
et al. (2012b) for 1978-1991, which has been used extensively in the literature, to obtain ex-
ports to perform the regressions on Table 2. I merge both panels using variables in quantities
(year, 4-digit ISIC, production and non-production workers and energy consumption). For the
overlapping period, plants representing between 2% and 3% of the original nominal production
were unmatched, and therefore dropped from the sample. I also keep only plants with positive
and non-missing values for production and inputs. Up to 1991, on average around 13 of each
100 firms were exporters, while the total value exported represents in average 8% of industry’s
gross revenue, with a large variation across sectors.

With the goal to ensure consistency between the macro and the micro dataset, two pro-
cedures were executed. First, since the calculation of factor shares in the macro dataset is
independent on the series of gross output and bilateral trade flows, factor shares for Colombia
were taken directly from the AMS. It is worth to say that the factor shares computed by
both sources are very similar, minor differences occur due to the exclusion of outliers in the
micro dataset. Second, revenues of all firms within each industry were re-scaled to ensure
that the revenue share included in the TiVA database coincide with the corresponding shares
on the AMS. Once again, revenue shares from the two sources are very alike, and the small
discrepancies also occur for the exclusion of outliers.

53For the definitions of ψ̄s, Ms and Ãs see Appendix D.
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B.2 Bils, Klenow and Ruane’s (2017) method and results for Colombia

Here I succinctly introduce Bils et al.’s (2017) method to estimate the dispersion in the
factors’ MRP in the presence of additive measurement error in revenue and inputs, which in the
latter case can be also interpreted as overhead factors. Define measured revenues and inputs
for firm producing variety m as the sum of the “real” values plus an idiosyncratic measurement
error: R̂m = Rm + fm and Îm = Im + gm. Denote ∆ the log-difference and N the absolute
difference. Bils et al. (2017) find, under some reasonable assumptions, that the elasticity of
∆R̂ with respect to ∆Î, β̂ =

σ∆R̂,∆Î

σ2
∆Î

, satisfies:

E{β̂ | ln(TFPRm)} =
[
Ψ + Λ(ln(TFPRm))2

]
[1− (1− λ)ln(TFPRm)]

with λ =
σ2
lnΘ

σ2
TFPR

, the ratio between the dispersion of the factor’s MRP and the dispersion of

the observed TFPR, our measure of interest; Ψ = 1 + ΩΘ − Ωf ′ , where ΩΘ =
σ∆Θ,∆I

σ2
∆I

, Ωf ′ =
σNf ′,∆Î
σ2

∆Î

, Nf ′ = Nfm
Îm

; and Λ a constant that depends on the stochastic process of Θ, which is

assumed is stationary. In the absence of measurement error (λ = 1) the elasticity of revenues
with respect to inputs should be the same (Ψ) for plants with different average products. The
quadratic term Λ(ln(TFPRm))2 is included to reflect the possibility of mean reversions in the
stochastic process of Θ, given the stationary assumption. Therefore, λ can be estimated by
GMM through the non-linear regression:

∆R̂m =φln(TFPRm) + Ψ∆Îm −Ψ(1− λ)ln(TFPRm)∆Îm (B.1)

+ Γ (ln(TFPRm))2 + Λ(1− λ) (ln(TFPRm))2 ∆Îm

+ Υ (ln(TFPRm))3 + Λ(1− λ) (ln(TFPRm))3 ∆Îm + εm

I follow closely Bils et al. (2017) for the construction of the variables. I estimate equation
(B.1) by GMM sector by sector, controlling for year fixed effects, in the panel from 1991 to
1998. Standard errors are clustered at the firm-level. The last two columns in Table 9 show
the point estimates for λ̂s and its standard errors. For sectors in which the method does
not deliver significative values, probably due to the influence of remaining outliers, I use the
results from estimating (B.1) in the whole manufacturing sector controlling for a full set of
sector-year fixed effects (as in Bils et al.), values that are displayed in the last row.

I use the estimated values of λ̂s to compress the observed dispersions in the average revenue
products of the factors to obtain variances and covariances of the MRP, and hence to derive V̂is.

B.3 Solution of the model

To obtain the global solution, I employ both an algorithm to choose ideal initial conditions
and state-of-the-art solvers for large-scale nonlinear systems. The proposed algorithm consists
of three steps. First, I solve the model for the 2-country world composed by Colombia and
an aggregate adding the rest of countries up. I perform a global search using particles swarm
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optimization a sufficient large number of times (100), plus a local solver (described below)
to find local solutions to refine the search. Second, I solve the model N − 1 times, each
iteration for a small-scale version of the world with the following three countries: Colombia,
each country in the dataset and an aggregate adding the rest of the countries up. In each
iteration I initialize the local solver using for Colombia its solution in the 2-country case, and
for the remaining two countries the solution for the RoW in the first step. Finally, I collect
the solution for each country in the second step to initialize the local solver for the full model;
while for Colombia I initialize with a median of its solutions found in the second stage (such
solutions have low dispersion).

To find local solutions, I use auto-differentiation to obtain numerical derivatives of the
gradient and the hessian of the objective function, and Knitro, a local solver that implements
both novel interior-point and active-set methods for solving large-scale nonlinear optimization
problems54.

54I use auto-differentiation and the Knitro solver through the Tomlab optimization environment in Matlab.
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Appendix C: Mathematical derivations

C.1 Model solution under assumptions A.1 and A.2

Under assumptions A.1 and A.2, it is possible to express:

Mijs∑
m

(
aim
Θim

)σ−1 = His
dis

∫
θi
...
∫
θiL

∫∞
a∗ijs(Θ)(

aim
Θim

)σ−1dGis = His
δis

∫
θi1
...
∫
θiL

∫∞
a∗ijs(Θ)a

σ−κ−2
im Θ1−σ

im dGθis

Using the formula of the cutoff function in (9), the last expression can be simplified as:

Mijs∑
m

( aimΘim
)σ−1 = His

dis
κ

1+κ−σ ( āisa∗ijs
)κa∗σ−1

ijs Γis (C.1)

with Γis defined as in the text. Applying the formulas for firm-level profits and revenues, the
free entry condition can be restated as:

N∑
j

Mijs∑
m

1

σ
(
τijsΘim

ρaim
)1−σω−σis EjsP

σ−1
js −

N∑
j

Mijs∑
m

Θimfijs = feisHis

Notice that
Mijs∑
m

Θim = His
dis

( āisa∗ijs
)κΓis. Combining with equation (C.1), it is possible to obtain:

N∑
j

1
σ (

τijs
ρ )1−σω−σis EjsP

σ−1
js

1

dis
κ

1+κ−σ ( āisa∗ijs
)κa∗σ−1

ijs Γis −
N∑
j

fijs
dis

( āisa∗ijs
)κΓis = feis

Using the definition of the productivity cutoff value for the undistorted firms in (9) to substitute
in a∗σ−1

ijs , the expression can be simplified to:

N∑
j

( āisa∗ijs
)κfijs =

disf
e
is(1 + κ− σ)

Γis(σ − 1)
(C.2)

On the other hand, applying again (C.1) and the definition of the productivity cutoff value,

bilateral exports Xijs =
Mijs∑
m
rijm are given by:

Xijs =
Mijs∑
m

(
τijsΘimωis
ρaim

)1−σEjsP
σ−1
js = ωisHis

dis
σκ

1+κ−σ ( āisa∗ijs
)κΓisfijs (C.3)

Hence, from (C.2), sectoral revenues Ris =
N∑
j
Xijs are given by:

Ris = κ
ρωisf

e
isHis (C.4)

Free entry requires that the aggregate sectoral profits, Πis, are equal to the expenditures in
entry, ωisfeisHis. This means the Pareto property of a constant profits/revenue ratio is not

59



affected by distortions: Ris = k
ρΠis. From equations (13) and (14), the sectoral demand of

primary factor l for both operational (fixed and variable costs) and entry uses is given by:

Zils = Zoils + Zeils =
ραlsRis

wil(1 + θ̄ils)
+

αlsFis
wil(1 + θ̄ils)

+
αlsωisf

e
isHis

wil

Substituting the expression for
Mijs∑
m

Θim from above in the definition of Fis and using again
equation (C.4), it is straightforward to obtain equation (19), the total demand of primary
factor l in terms of sector revenue, underlying factor prices and the HWA wedges. With the
definition of vils as in the text, equation (23) is evident.

Finally, combining (C.3) with the gravity equation, I obtain:

Xijs =
Xijs

N∑
k

Xkjs

Ejs =

ωisHis
dis

( āisa∗ijs
)κΓisfijs

N∑
k

ωksHks
dks

( āksa∗kjs
)κΓksfkjs

Ejs

By definition of the cutoff function in (9), it is possible to show the following relation between
the cutoffs for the undistorted firms of country i and country i′ for the same destination j:

a∗ijs
a∗i′js

= (
τijs
τi′js

)(
ωis
ωi′s

)
1
ρ (
fijs
fi′js

)
1

σ−1 (C.5)

Using the formula in (C.5) into the denominator of bilateral exports, I obtain:

Xijs =

1
dis
ω

1−κ
ρ

is Hisāis
κ( 1
τijs

)κ(fijs)
1− κ

σ−1 Γis

N∑
k

1
dks
ω

1−κ
ρ

ks Hksā
κ
ks(

1
τkjs

)κ(fkjs)
1− κ

σ−1 Γks

Ejs

Using (C.4) to substitute for the mass of entrants in terms of sectoral revenue, it simplifies to:

Xijs =
ω
−κ
ρ

is RisφijsΓis
N∑
k

ω
−κ
ρ

ks RksφkjsΓks

Ejs (C.6)

where φijs is as in the text. Hence, trade shares are given by (26). The model is closed
combining (C.6) with the definitions of sectoral and aggregate revenues (Ris =

N∑
j
Xijs and

Ri =
S∑
s
Ris), the Cobb-Douglas solution for sectoral expenditures, Ejs = βjsEj and the trade

balance condition: Ej =
S∑
s
Rjs −Dj , which results on equation (25).

The system can be solved for the values of Ris for a given set of values of factor inten-
sities αls, factor endowments Z̄il, expenditure shares βjs, aggregate trade deficits Dj , deep
parameters φijs, κ and ρ, and misallocation measures Γis and vils. Once the solution of Ris

60



is computed, the values of all remaining variables can be found following the next sequence:
i) factor prices and sectoral factor allocations from (23) and (24); ii) expenditures from the
trade balance condition; iii) bilateral exports from (C.6); iv) mass of entrants from (C.4); v)
bilateral cutoffs values for the undistorted firms from (C.3); vi) mass of operating firms from
(11).

C.2 Demonstration of equation (20)

Here I deduce the formula for the ex-post HWA wedge in equation (20).

Proof. Starting by the definition of the HWA wedge:

(1 + θ̄ils) ≡ (
N∑
j

Mijs∑
m

1
(1+θilm)

cijm
Cis

)−1 = (
N∑
j

Mijs∑
m

1
(1+θilm)

ρrijm+ωisΘimfijs
ρRis+Fis

)−1

Substituting firm level exports from i to j and after few algebraic manipulations we can write:

(1 + θ̄ils)

ρRis + Fis
= (

N∑
j

Mijs∑
m

ρ
(1+θilm)(

τijsΘimωis
ρaim

)1−σEjsP
σ−1
js +

ωisΘimfijs
(1+θilm) )−1

(1 + θ̄ils)

ρRis + Fis
= (ρ(ωisρ )1−σ

N∑
j
τ

(1−σ)
ijs EjsP

σ−1
js

Mijs∑
m

1
(1+θilm)(Θim

aim
)1−σ+ωis

N∑
j
fijs

Mijs∑
m

Θim
(1+θilm))−1

Similar to how it is done in the precedent section, it is possible to show that:
Mijs∑
m

1
(1+θilm)(Θim

aim
)1−σ =

Me
is

dis
( āisa∗ijs

)κa∗σ−1
ijs

κΓils
1+κ−σ and

Mijs∑
m

Θim
(1+θilm) =

Me
isΓils
dis

( āisa∗ijs
)κ, with Γils as in the text. Thus:

(1 + θ̄ils)

ρRis + Fis
= (ρ(ωisρ )1−σ Me

is
dis

N∑
j
τ

(1−σ)
ijs EjsP

σ−1
js (

āis
a∗ijs

)κa∗σ−1
ijs

κΓils
1 + κ− σ

+ωis
Me
is

dis

N∑
j
fijs(

āis
a∗ijs

)κΓils)
−1

Substituting the definition of the productivity cutoff value for the undistorted firms in (9) in
a∗σ−1
ijs , I obtain:

(1 + θ̄ils)

ρRis + Fis
= (ωis

Me
is

dis

(σ−1)κΓils
1+κ−σ

N∑
j
fijs(

āis
a∗ijs

)κ+ωis
Me
isΓils
dis

N∑
j
fijs(

āis
as∗ij

)κ)−1

(1 + θ̄ils)

ρRis + Fis
= (ωis

Me
is

dis
Γils

σκ+1−σ
(1+κ−σ)

N∑
j
fijs(

āis
a∗ijs

)κ)−1

Using the free entry condition in (C.2):

(1 + θ̄ils)

ρRis + Fis
= (ωisM

e
isf

e
is

Γils
Γis

σκ+1−σ
(σ−1) )−1
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Substituting the expression for
Mijs∑
m

Θim given in Appendix C.1. in the definition of Fis and

using again equation (C.4) it is possible to show ρRis + Fis = ωisM
e
i f

e
i
σκ+1−σ

(σ−1) and hence:

(1 + θ̄ils) =
Γis
Γils

It is possible to repeat the proof to derive an expression for the HWA wedge of the firms
able to sell in each market j. Doing so, it follows (1+ θ̄ijls) = (1+ θ̄ils), this is, the HWA wedge
does not vary across destinations. Even though this result looks at first glance counterintuitive,
since this average it is not computed for the same set of firms (for example, (1 + θ̄iils) includes
the firms that only sell in the domestic market, who must have, conditional on TFPQ, higher
wedges than the firms exporting to j), the fact that in the HWA the inverse of the wedge
is weighted by the cost share (firms that only sell in the domestic market have higher cost
shares), makes possible this equalization.

C.3 Decomposition of industry-exporter fixed effect

From the definition of bilateral price index in equation (18), the double difference across sectors
and exporters of the unit prices in each destination can be re-written in terms of the relative
bilateral iceberg costs, number of exporters, average TFP and factor returns as:

(
PijsPi′js′

Pijs′Pi′js
)1−σ = (

τijsτi′js′

τijs′τi′js
)1−σ(

MijsMi′js′

Mijs′Mi′js
)(
ψ̄ijsψ̄i′js′

ψ̄ijs′ψ̄i′js
)1−σ(

AijsAi′js′

Aijs′Ai′js
)σ−1 (C.7)

My interest is twofold. First, I will provide a proof of equation (21), and second I will de-
compose the industry-exporter fixed effect on single components that come from each of the
mentioned sources. For this reason, in the next lines I develop the RHS of (C.7) keeping each
term separated in square brackets, without simplifying across terms. Using the definitions of
ψ̄ijs and Aijs in the text, equation (C.7) can be written as:

(
PijsPi′js′

Pijs′Pi′js
)1−σ =[

τijsτi′js′

τijs′τi′js
]1−σ[

MijsMi′js′

Mijs′Mi′js
][
ωisωi′s′Θ̄ijsΘ̄i′js′

ωis′ωi′sΘ̄ijs′Θ̄i′js′
]1−σ

[

Θ̄ijsM
1

1−σ
ijs (

Mijs∑
m

( aimΘim
)σ−1)

1
σ−1

Θ̄ijs′M
1

1−σ
ijs′ (

Mijs′∑
m

( aimΘim
)σ−1)

1
σ−1

Θ̄i′js′M
1

1−σ
i′js′ (

Mi′js′∑
m

(
ai′m
Θi′m

)σ−1)
1

σ−1

Θ̄i′jsM
1

1−σ
i′js (

Mi′js∑
m

(
ai′m
Θi′m

)σ−1)
1

σ−1

]σ−1

Using the expression for
Mijs∑
m

( aimΘim
)σ−1 in equation (C.1) and the fact Θ̄ijs = Θ̄is derived in

Appendix C.2, this reduces to:
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(
PijsPi′js′

Pijs′Pi′js
)1−σ =[

τijsτi′js′

τijs′τi′js
]1−σ[

MijsMi′js′

Mijs′Mi′js
][
ωisωi′s′Θ̄isΘ̄i′s′

ωis′ωi′sΘ̄is′Θ̄i′s′
]1−σ

[(
Θ̄isΘ̄i′s′a

∗
ijsa

∗
i′js′

Θ̄is′Θ̄i′s′a
∗
ijs′a

∗
i′js

)σ−1(
Mijs′Mi′js

MijsMi′js′
)(

ΓisΓi′s′

Γis′Γi′s
)

His
dis

( āisa∗ijs
)κ

His′
dis′

(
āis′
a∗
ijs′

)κ

Hi′s′
di′s′

(
āis′
a∗
i′js′

)κ

Hi′s
di′s

( āis
a∗
i′js

)κ
]

Under assumptions A.1 and A.2. the aggregate stability condition (11) can be solved to obtain
Mijs = HisΥis

δis
( āisa∗ijs

)κ with Υis =
∫
θi1
...
∫
θiL

Θi
− k
ρ dGθis(

~θ), an expected value that depends only
on the joint distribution of distortions. Substituting this expression in the first and third
terms, and using equation (C.5), I obtain for the RHS:

=[
τijsτi′js′

τijs′τi′js
]1−σ[

dis′di′s
disdi′s′

HisHi′s′

His′Hi′s

ΥisΥi′s′

Υis′Υi′s
(
āisāi′s′

āis′ āi′s
)κ(

τijsτi′js′

τijs′τi′js
)−κ(

ωis
ωis′

ωi′s′

ωi′s
)
−κ
ρ (
fijsfi′js′

fijs′fi′js
)
−κ
σ−1 ]

[
ωisωi′s′Θ̄isΘ̄i′s′

ωis′ωi′sΘ̄is′Θ̄i′s′
]1−σ[(

Θ̄isΘ̄i′s′

Θ̄is′Θ̄i′s′
)σ−1 ΓisΓi′s′

Γis′Γi′s

Υis′Υi′s

ΥisΥi′s′
(
τijsτi′js′

τijs′τi′js
)σ−1(

ωisωi′s′

ωis′ωi′s
)σ(

fijsfi′js′

fijs′fi′js
)]

UsingHis = Ris
ωisfeis

and applying logs to separate the components that only depend on exporter-
industry terms and simplifying, I finally obtain for the RHS of (C.7):

=log[
%is%i′s′

%is′%i′s

RisRi′s′

Ris′Ri′s

ΥisΥi′s′

Υis′Υi′s
(
ωis
ωis′

ωi′s′

ωi′s
)
−κ
ρ
−1

] + log[
ωisωi′s′Θ̄isΘ̄i′s′

ωis′ωi′sΘ̄is′Θ̄i′s′
]1−σ (C.8)

+ log[(
Θ̄isΘ̄i′s′

Θ̄is′Θ̄i′s′
)σ−1(

ωis
ωis′

ωi′s′

ωi′s
)σ

ΓisΓi′s′

Γis′Γi′s

Υis′Υi′s

ΥisΥi′s′
] +Bijs

where Bijs = ln[(
τijsτi′js′
τijs′τi′js

)−κ(
fijsfi′js′
fijs′fi′js

)1− κ
σ−1 ] and %is =

āκis
disfeis

. Canceling out the double differ-
ences of Θ̄is and Υis across terms and simplifying the double differences of ωis it is straightfor-
ward to derive the gravity equation in (21). Furthermore, equation (C.8) offers a decomposition
of the exporter-industry fixed effect on the three sources of interest: number of exporters (first
term in log), average factor returns (second term in log) and TFP (third term in log).

This decomposition is used in section 3.3 as follows. Denote x̃ the value in the allocative
efficient equilibrium of x, and x̌ ≡ x

x̃ the proportional change when we introduce distortions.
Thus figure 8 plots in each chart the following terms:

log(
X̌ijsX̌i′js′

X̌ijs′X̌i′js

) =log
ŘisŘi′s′

Řis′Ři′s

ΥisΥi′s′

Υis′Υi′s
(
ω̌is
ω̌is′

ω̌i′s′

ω̌i′s
)
−κ
ρ
−1

+ log(
ω̌isω̌i′s′Θ̄isΘ̄i′s′

ω̌is′ω̌i′sΘ̄is′Θ̄i′s′
)1−σ

+ log(
Θ̄isΘ̄i′s′

Θ̄is′Θ̄i′s′
)σ−1(

ω̌is
ω̌is′

ω̌i′s′

ω̌i′s
)σ

ΓisΓi′s′

Γis′Γi′s

Υis′Υi′s

ΥisΥi′s′

with i = 1, i′ = 2, j = 2, s = 1, s′ = 2.
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C.4 Solution for Γis under log-normal

By definition of Γils in the text:

Γis =
∫
θi
...
∫
θiL

Θi
1−κ

ρ dGθis = E(
L∏
l
(1 + θil)

(1−κ
ρ

)αls)

Assume ~θis = {θi1s, θi2s, ...θiLs} has a multivariate log-normal distribution, such the trans-
formed vector ~θ∗is = {log(θi1s), log(θi2s), ...log(θiLs)} has a multivariate normal distribution
with expected value ~µis (1 × L vector) and variance Vis (L × L matrix). Let ~αs a (col-
umn) vector with elements: ~αs = {(1− κ

ρ )α1s, (1− κ
ρ )α2s, ..., (1− k

ρ )αLs}′. Then the product
L∏
l
(1 + θil)

(1−κ
ρ

)αls is log-normal distributed with location parameter (~αs)
′ ~µis and shape pa-

rameter ( ~αs)
′Vis ~αs. Under log-normality, the required expected value is then:

Γis = exp

(
( ~αs)

′ ~µis +
1

2
( ~αs)

′Vis ~αs

)
On the other hand, the definition of Γils in the text:

Γils =
∫
θi
...
∫
θiL

Θ
1−κ

ρ

i

(1 + θils)
dGθis = E[(1 + θil)

(1−κ
ρ

)αls−1 L∏
h 6=l

(1 + θih)
(1−κ

ρ
)αhs ]

By the same token, let ~αls a (column) vector with elements: ~αls = {(1− κ
ρ )α1s, ..., (1− κ

ρ )αls−
1, ..., (1− κ

ρ )αLs}′. This is, ~αls has the same elements of ~αs with exception to the element in

position l, which is (1 − k
ρ )αls − 1. Thus the product (1 + θil)

(1−κ
ρ

)αls−1 L∏
h 6=l

(1 + θih)
(1−κ

ρ
)αhs

is log-normal distributed with location parameter ( ~αls)
′ ~µis and shape parameter ( ~αls)

′Vis ~αls.
Accordingly, its expected value is:

Γils = exp

(
( ~αls)

′ ~µis +
1

2
( ~αls)

′Vis ~αls

)
Now, using the formula for (1 + θ̄ils) in (20) we obtain:

ln(1 + θ̄ils) = ( ~αs)
′~µis +

1

2
( ~αs)

′Vis ~αs − ( ~αls)
′ ~µis −

1

2
( ~αls)

′Vis ~αls

= µils +
1

2
[( ~αs)

′Vis ~αs − ( ~αls)
′Vis ~αls] (C.9)

C.5. Welfare

Combining the formula of the consumer price index in sector s and equation (C.1) we obtain:

(
P dis

)1−σ
=

N∑
k

P 1−σ
kis =

N∑
k

τkis
ρ ωks

Mkis∑
m

( akmΘkm
)σ−1 =

N∑
k

τkis
ρ

ωksHks
dks

κ
1+κ−σ ( āksa∗kis

)κa∗σ−1
kis Γks
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Inserting the definition of the productivity cutoff value for the undistorted firms in (9) in the
term a∗σ−1−κ

kis , the price index can be written as:

(
P dis

)−κ
= E

−κ
1−σ−1

is

N∑
k

( τkisρ )−κω
1−κ

ρ

ks
Hks
dks

κ
1+κ−σ (āks)

κ(σfkis)
1− κ

σ−1 Γks

Using the country i’s share of expenditure on itself within sector s from equation (C.6), we
obtain:

(
P dis

)−κ
= ςijsE

−κ
1−σ−1

is ω
−κ
ρ

is RisΓis(
1
πiis

)

where ςijs = (ρāisτijs
)κ 1
disfei

( 1
fiis

)1− κ
σ−1 ( κ

1+κ−ρ) a term that does not vary in the counterfactual
exercise. Hence, the proportional change of the price index from the initial equilibrium to the
counterfactual one can be written as:

P̂ dis = Ê
1

1−σ+ 1
k

is ω̂
1
ρ

isR̂
− 1
κ

is Γ̂
− 1
κ

is (π̂
1
k
iis)

Using the fact that P̂ di =
∏
s

(P̂ dis)
βs , Êis = Êi and equation (27) to substitute ω̂is, the derivation

of equation (30) is straightforward. Moreover, notice that in the case of the undistorted
economy with one factor production, R̂is = ω̂isẐis and ω̂is = ŵi = Êi so the increase in the
sectoral price index is P̂ dis = ŵi(

π̂iis
Ẑis

)
1
k , which leads to the Arkolakis et al. (2012)’s formula to

compute the increase in welfare in response to any exogenous shock.
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Appendix D: Intra- and inter-industry misallocation in the HK’s
economy

In this Appendix I compute the TFP gains from removing intra- and inter-industry factor
misallocation in the case of a closed economy with a fixed number of operating firms, following
the same notation as in Section 2. Denote the TFPQ and TFPR of firm producing variety m
as am and ψm, respectively, and ξlm the MRP of the input l. Let ξ̄ls denote the HWA of ξlm,
with weights given by the participations of firm’s revenues in total industry revenue. Note
that ξ̄ls = (1 + θ̄ls)

wl
ρ . Using the cost minimization condition of the CD aggregator across

sectors, total demand of factor-l in industry s can be expressed as:

Zls =
αlsβs/ξ̄ls
S∑
s
αlsβs/ξ̄ls

Z̄l (D.1)

where Z̄l ≡
S∑
s
Zls correspond to the fixed endowment of factor-l in the economy. Standard

aggregation under monopolistic competition leads to an industry production of the form Qs =

AsM
1

σ−1
s

L∏
l
Zls

αls , where sectoral TFP As can be derived from firm-level data from Aσ−1
s =

1
Ms

Ms∑
m

(amψ̄s/ψm)σ−1 where ψ̄s is the sectoral revenue productivity: ψ̄s =
L∏
l

( ξ̄lsαls )αls . If a

reform equalizes TFR across firms, the sectoral (efficient) TFP is then Ãσ−1
s = 1

M̃s

M̃s∑
m
aσ−1
m .

With the assumption of no entry or exit of firms, M̃s = Ms and the percentage gains on
sectoral TFP due to TFPR equalization are:

Gainsintras = 100(
Ãs
As
− 1) = 100(

Ms

(
∑
m

(
amψ̄s

Ãsψm
)σ−1)

1
1−σ − 1) (D.2)

These gains are the same if the reform equalizes firms’ TFPR to ψ̄s, so the factors’ MRP
are equal to their HWA in the industry, or to the inter-industry efficient allocation, in which
case the factors’ MRP are equated to wl

ρ . However, only in the first case it is ensured there
are no factor reallocations across sectors (which is evident from equation D.1), so the sectoral
TFP gains in equation (D.3) are identical to the gains in industry output, 100( Q̃sQs − 1). In
this specific case, total output gains in the economy can be computed simply by aggregating
sectoral productivities up using the CD aggregator across industries:

Gainsintra = 100(

S∏
s

(
Ãs
As

)βs − 1) (D.3)

Clearly, total gains in (D.3) are only due to resource reallocation within industries: by assump-
tion, there are not factor reallocations across sectors. In this case, there is MRP equalization

66



within industries, but not necessarily across them. In the more general case in which I impose
MRP equalization not only within but across industries (i.e. removing all wedges), sectoral
TFP gains are the same as in (D.2), but output gains in each industry are no longer equal
to the corresponding TFP gains, due to factor reallocation across sectors. From (D.1), the

allocative efficient demand of factors at the industry level is given by Z̃ls = αlsβsZ̄l/
S∑
s
αlsβs

55.

Industry’s output in frictionless factor markets is given by Q̃s = ÃsM̃
1

σ−1
s

L∏
l
Z̃ls

αls . Thus, the
variation in sectoral output due to a reform that removes all wedges is a consequence of both
a rise in the TFP and a variation in the use of factors in the whole sector, which depends ex-
clusively on the sign of θ̄ls (the extent of inter-industry misallocation). At the aggregate level,
factor endowments between the distorted economy and the allocative efficient counterfactual
are kept constant. So any change in aggregate output Q is attributable to variations in the
aggregate TFP, and it is due to resource reallocation, both within and between industries.
Gains in aggregate TFP can be caused by increases in sectoral TFP, term denoted Gainsintra

above, or by reallocation of factors between industries, given by:

Gainsinter = 100(
S∏
s

L∏
l

Z̃ls
αlsβs

Zlsαlsβs
− 1) = 100(

S∏
s

l∏
l

[

S∑
s

(αlsβs/ξ̄ls)

(
S∑
s
αlsβs)/ξ̄ls

]
αlsβs − 1) (D.4)

Where I use equation (D.1) and the expression for Z̃ls to obtain the explicit closed-form
solution. Thus, inter-industry gains only depend on the industry average MRP interacted with
technological parameters, a plain consequence of the sectoral demand of factors in equation
(D.1). These gains can be computed only with industry-level data, which allows me to make
cross-country comparisons to evaluate whether this component also explains the TFP gaps
observed across countries, an exercise that is performed below. Finally, total gains in the
economy, given by the variation on total output (or aggregate TFP), are a combination of
both sources of gains:

Gains = 100(
Ỹ

Y
− 1) = 100[(

Gainsinter

100
+ 1)(

Gainsintra

100
+ 1)− 1] (D.5)

To assess the importance of inter-industry misallocation relative to the intra-industry one,
in what follows I use firm-level data from China and Colombia to quantify the contribution
of each component in the total gains of removing distortions. For China, I use the panel from

55This is, in the case that all sectors have the same revenue shares, the efficient allocation of factors across
sectors implies that more intensive industries should have a larger proportion of the corresponding factor.
Similarly, in the case that all sectors have the same factor intensities, the factors should be allocated in
proportion only on sectoral revenue shares. The efficient factor allocation across industries is the combination
of these two forces.
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the Annual Survey of Industrial Production collected by the Chinese government’s National
Bureau of Statistics, for the period 1999-2007. For Colombia, I use the panel of manufacturing
plants described in Section 5. I first define industries at the 4-digit ISIC level of aggregation (or
the similar version adapted for each country), and then I contrast these results using a 3-digit
classification56. I use average US cost shares at the corresponding aggregation levels from the
NBER-CES Manufacturing Industry Database during the same period. I first compute both
components of gains using value added specification to replicate HK, and next I show that
qualitatively the results hold under a gross output specification.

In Figure 4 I report using continue lines the total gains (darker) and the intra-sectoral
gains (lighter) from removing distortions for both countries, when the 4-digit ISIC industry
aggregation is used. The difference between both lines is due to the gains from inter-sectoral
reallocation. In general, gains from removing distortions are larger for China, although the
time periods are not comparable. The graph shows that over time in both countries there are
not significative improvements in allocative efficiency in the considered periods; indeed, there
is a slight worsening at the end of each one. For both countries, in average, the contribution
of the gains from intra-sectoral reallocation is around 60% to the total, the remaining 40%
is explained by inter-sectoral allocation. When I move to the 3-digit ISIC classification, the
predictions from the decomposition seem to hold. The dashed lines in Figure 4 report once
again the total gains (darker) and the intra-sectoral gains (lighter) from removing distortions,
but now at the 3-digit ISIC classification. Both total gains fluctuate around a similar range.
However, the intra-sectoral gains rise in a larger proportion than the total gains, so their
average contribution is now 68%. This confirms that as the level of disaggregation increases,
these gains are lower.

The source of inter-sectoral gains is neither related to the use of US cost shares instead
of domestic factor intensities in the sectoral production function nor the use of a value-added
specification. For example, Figure D.1 displays for the Colombian case that using a gross-
output specification (Panel A) or changing the production function coefficients for Colombian
cost shares (Panel B) does not alter importantly the key insights. In the latter case, factor
intensities are now equal to the observed share costs, but they are still different to the optimal
share cost in monopolistic competition (where the total cost is ρ times the revenue), which is
what matters in the efficient allocation. However, the use of Colombian cost shares reduces
the relative importance of inter-sectoral reallocation: its average contribution shrinks to 23%
(from 43%).

56For the 4-digit classification in the Colombian case, due to small number of observations, 14 industries
were reclassified to its closest 4-digit industry or to the 4-digit sector within the same 3-digit industry that
merges the products not elsewhere classified. For China, since data does not include prices at the firm-level,
I use HK formulas to derive TFPQ. For both panels I use the cleaning procedure described in Section 5 to
reduce the influence of measurement error and outliers.
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Figure D.1 – Sensitivity to production function specification and factor intensities

Panel A : Colombia - GO specification, US Shares Panel B: Colombia - GO specification, 4-dig industries
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There is not a closed-form solution for each component in the case of a CES aggregator
across sectors, but it is possible to implement a numerical procedure to obtain them. With
a CES aggregator of the form Y ϕ =

S∑
s
βsYs

ϕ , where ϕ = φ−1
φ and φ is the elasticity of

substitution across sectors, the sectoral factor demand is now:

Zls =
αlsβ

φ
s P

1−φ
s /ξ̄ls

S∑
s
αlsβ

φ
s P

1−φ
s /ξ̄ls

Z̄l (D.6)

Thus, in the allocative efficient inter-industry allocation, not only factor intensities and
revenue shares play a role, but also the efficient sectoral price indexes as indicators of pro-
ductivity. The direction and strength of their influence depends on the magnitude of φ. For
φ > 1 (φ < 1), if factor intensities and shares of sectoral revenue are constant across sectors,
factors should be allocated to more (less) productive sectors. The interaction of these three
sectoral forces (factor intensities, revenue shares and aggregate productivities) is what deter-
mines the efficient inter-sectoral allocation. Notice that to find Z̃ls it is necessary to solve for
P̃s, which implies to find firm’s output prices in the efficient allocation. These prices can be
obtained by solving the non-linear system that includes all firm-level prices, through numerical
algorithms. Once Z̃ls are obtained, it is simple to calculate both components, using the coun-
terfactual aggregate output generated by Ãs and Zls. The variation between current output
and this counterfactual represent the intra-sectoral gains, whereas the difference between this
counterfactual and the allocative efficient aggregate output represent the inter-sectoral gains:

Gainsintra = 100(

(
S∑
s
βs(Ãs

L∏
l

Zls
αls)ϕ)

1
ϕ

(
S∑
s
βs(As

L∏
l

Zlsαls)ϕ)
1
ϕ

− 1); Gainsinter = 100(

(
S∑
s
βs(Ãs

L∏
l

Z̃ls
αls)ϕ)

1
ϕ

(
S∑
s
βs(Ãs

L∏
l

Zlsαls)ϕ)
1
ϕ

− 1)

69



Total gains can be calculated in the same way as in (D.5). With the CES case it is possible
to show how the total gains and the contribution of the inter-sectoral component increase
as larger is the elasticity of substitution across sectors. This is completely in line with the
HK prediction that when sectors outputs are better substitutes, inputs are reallocated toward
sectors with bigger productivity gains, so there are larger TFP gains. Figure D.2 shows that
for different values of φ, the components of the gains behave as predicted. The numerical
procedure replicates the results of the close-form solutions for the CD aggregator for both
components in the case φ = 1, whereas total gains and the contribution of the inter-sectoral
component increases when φ = 2 (up to 50% from 43% in the latter case) and decreases when
φ = 0.5 (to 36% in the latter case). In those exercises the change in the intra-sectoral gains is
negligible.

Figure D.2 – Sensitivity to elasticity of substitution across sectors
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If the inter-sectoral gains vary systematically across countries, omitting the inter-sectoral
component implies an under-estimation of the TFP gap attributed to factor misallocation, if
the latter is computed only with intra-industry reforms, as in HK. Since the inter-industry gains
could be calculated with sectoral data, I use information from the socio-economic accounts of
the World Input Output Database - WIOD (Timmer et al., 2015), which contains industry-
level data for 40 countries and 35 industries mostly at the 2-digit ISIC level, covering the
overall economy, to compute this dimension. Figure 5 presents how the gains from inter-
sectoral reallocation vary with the GDP per capita by country57. For this calculation, I use
a gross output specification for the sectoral production function with 3 inputs (hours worked,
capital and materials) and US cost shares. The linear correlation between both variables in
this baseline is -0.75 (Figure 5 also shows the best linear fit). The negative correlation is
robust to the use of value added specification or own country’s cost shares in the production

57Each dot corresponds to the average value between 1995 and 2007 of the intersectoral gains calculated
using (D.4) for each country and the average GDP per capita in constant 2005 US dollars obtained from the
World Bank. The results are very similar if median values are used. Two small countries with many zeros in
sectoral data were dropped from the WIOD sample (Luxembourg and Malta). Likewise, Taiwan was dropped
to make comparable WIOD and World Bank data.
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function; to restrict the set of sectors to only manufacturing industries and to measure labor
with the wage bill and materials in nominal values to control for heterogeneity in labor and for
differences in quality of intermediate inputs respectively, graphs shown in Figure D.3 below.
Therefore, there is evidence that less developed economies tend to have greater inter-sectoral
gains for removing distortions. This is consistent with the insights of multi-country studies as
Tombe (2015) or Święcki (2017) which focus on inter-sectoral misallocation, that find larger
intersectoral distortions in poor countries. Thus, omitting the inter-sectoral component of
the total gains from removing distortions understates the common TFP gaps attributed to
firm-level misallocation.

Figure D.3 – Inter-sectoral gains and GDP per capita: Alternative specifications
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Note: Averages 1994-2007. Data source: WIOD (Timmer et al., 2015), World Bank Development Indicators
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