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Abstract

The BP Deepwater Horizon oil spill of 2010 has focused considerable attention on the poten-

tial liability and the operating conduct of big oil companies. This paper shows that, limiting the

ability of a company to insure and diversify its risks, creates incentives to internalize the welfare

effects of catastrophic events, leading to a welfare improvement. We model an economy with

complete financial markets where one agent’s actions impose an externality on other agents by

altering the probability distribution of their risks. Then, a Pareto improved allocation can be

reached via an asset reallocation, essentially restricting this agent’s choice of portfolio of assets.

Hence, in the presence of externalities, disturbing the functioning of perfect financial markets

can be socially beneficial.

JEL classification: D52; D53; D62; Q50

Keywords: externalities; financial markets; constrained suboptimality

Deepwater Horizon was an oil extraction rig owned by drilling company Transocean, which

operates the largest fleet of deep-water offshore rigs in the world, and leased to BP, one of

the world’s leading energy companies, part of a conglomerate with interests that cover the

whole range from oil and gas transportation fuels, to a diverse types of petrochemicals.1 On

April 20th, 2010, Deepwater Horizon was deployed some 66km off the coast of Louisiana,

in the US portion of the Gulf of Mexico, when a concrete seal in the Macondo well burst

as a consequence of a surge of natural gas. During the installation of that seal, contractor
� Umeå University; maria.arvaniti@econ.umu.se,
y University of California–Davis; acarvajal@ucdavis.edu
1 The use of which, in turn, extends to products as diverse as clothes and packaging.
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Halliburton had used nitrogen to accelerate the “curing” of the concrete; this technique is

known to weaken the pressure that this type of seal withstands.

The most immediate consequence of the explosion was the death of eleven members of

the rig’s crew, and the injuries caused to 17 more. After that, the oil spill that occurred

during the next 87 days constitutes the largest one in the history of petroleum production,

and the worst environmental catastrophe in US history. The damages caused to the ecosys-

tem, to the local economy and to the population of the area remain largely unquantified,

but some indicators are known.

During the sixth months following the explosion, some 8,000 dead animals were collected,

with causes of death attributed directly to oil contamination. Later studies have shown that

the number of local sea turtles becoming stranded onshore have multiplied five-fold, and

that one half of the dolphins in the area exhibit serious health disorders known to be linked

to oil exposure.2 In the longer term, the number of seabird deaths attributed by scientists

to the explosion ranges from 600,000 to 800,000.

Besides oil drilling, the economies of Louisiana, Mississippi and Alabama depend heavily

on their fishing and tourism industries. Immediately after the explosion, the moratorium

imposed on further drilling activities left an estimated 8,000–12,000 local workers unem-

ployed. In response to the spill, government agencies deemed it necessary to close parts of

the Gulf to all fishing activities, both commercial and recreational. At its peak, this ban

covered 88,522 square miles, about one third of the US portion of the Gulf. Also, with 22%

of the total news coverage in the US devoted to the incident during its first 100 days, the

perception that seafood sourced in the gulf would be polluted is likely to have affected its

demand, as it did the demand for tourism: according to a poll, in the first four months

after the incident, almost one third of travellers to the coast of Louisiana had cancelled or

postponed their visits because of the spill.

And while much more difficult to measure, especially in the short run, the incident had

significant consequences for the lives of people local to the area. Again in the four months

following the explosion, the clinical diagnoses of depression increased by about 25%, and

more than half of the people responding a local survey reported to have been worried “almost

constantly” about the spill.

In 2011, a report commissioned by the US government concluded that the explosion of

the well could have been prevented, and that its causes could be traced directly to decisions

made by BP, Halliburton and Transocean.

By the time the well was successfully re-sealed, 4.9 million barrels of oil had been released
2 This figure refers to a sub-area of the Gulf of Mexico, the Barataria Bay, in Louisiana.
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to the waters of the Gulf. Three quarters of this oil could not be intercepted during the

recovery efforts,3 and while a significant part of this oil has naturally dispersed or evaporated,

at least one quarter of it remained as residue, either at the water surface, floating as tar

balls, washed ashore, or buried in sediment.

Shortly after the explosion, at the request of the US government BP placed in escrow a

fund of $20bn to help address the financial losses caused by it. Later, it was also required

to pay the $14bn cost of the clean-up efforts led by the US Coast Guard and other agencies,

and on October 2015 the company reached a settlement agreement with the US Department

of Justice for $20.8bn, which is meant to be comprehensive of all past and future damage at

federal, state and local levels. One year after the incident, BP’s market capitalization had

decreased by about 23% (valued in Sterling) and during the first three quarters of 2010 the

company stopped paying dividends to its shareholders. But by the fourth quarter of that

year the dividends were reinstated at about one half the value of the last quarter of 2009,

and between then and the second quarter of 2015 they have grown by 51%. Interestingly,

while the company estimates the cost it has had to incur, up to the third quarter of 2015,

in $55bn, its market capitalization has dropped only by some $32bn.

In January, 2011, American oil producer Marathon split its refinery activities from its

exploration arm, after which its shares increased by 23%, gaining the company over $14bn

in capital. The third-largest oil company in the country, ConocoPhillips, followed that

strategy in May, 2012, and, even in the aftermath of the Deepwater Horizon spill, financial

analysts stressed that doing the same would increase BP’s market value by about $100bn.4

It is apparent that the strategy of oil companies, in response to the lessons learnt during the

Gulf of Mexico catastrophe, aims at isolating the revenue they make from other business

from the potential losses caused by an exploration incident.5 More in general, their intent

appears to be to further diversify away the risk they bear from such incidents.

This paper studies whether limiting the ability of an agent to insure, or in general to

participate in financial trading to diversify their risks, can induce a Pareto improvement
3 The methods used to attempt interception, which included burning some of the oil at the surface and

the application of chemical dispersers, are themselves likely to have a detrimental impact on eco-systems.
4 See www.bloomberg.com/news/2011-07-24/bp-breakup-worth-100-billion-to-jpmorgan.html,

which reports on a JPMorgan ’s statement on this matter, and on similar positions held by analysts at UBS

and Bank of America.
5 This response would resemble the one that the industry had after the Exxon Valdez oil spill of March

24th, 1989. That incident occurred when the vessel of that name, through a series of human and operational

errors, ran aground on Prince William Sound, Alaska. Before Deepwater Horizon, the spill that follows was

the largest one ever, and its consequences affect the area even today: there still is oil residue affecting the

Sound’s beaches, waters and ecosystems. In 1993, the vessel’s owner, Exxon, spun off all its shipping activities

to a subsidiary.

3



in the allocation of resources in the economy. That this may be the case is not obvious:

the literature on financial economics shows that financial markets where not all the agents

can trade freely fail to deliver Pareto efficiency. But this result is established under the

assumption that no agent in the market causes an externality on others.

When Halliburton, Transocean and BP decided to accelerate the curing of the concrete

on the seal of the Macondo Well, they increased the probability that an environmental

catastrophe could occur in the Gulf. When they made their financial decisions, presumably

they considered such increased probability, but only up the losses that they themselves

would have to bear in the event of that catastrophe. The increased probability of losses for

other agents is, in the language of Public Economics, an externality that the three companies

did not internalize.

If the agent that causes an externality through the probability distribution of risks

is limited in his access to financial markets, he certainly will respond by altering those

probabilities in a way that is optimal to him. It seems easy to conclude that such policy

can then be used to effect a Pareto improvement: in a partial equilibrium argument, this

is immediately the case. The general equilibrium trade-off that we study, and which makes

the conclusion less immediate and more interesting, is that in the presence of this kind

of externalities, disturbing the functioning of perfect financial markets may be socially

beneficial. The more obvious effect that a partial equilibrium argument ignores is the

reaction of asset prices to the perturbation of the agent’s financial portfolio. More subtle, but

equally important, is the fact that, through market clearing, other agent’s in the economy

will have to change their portfolios too.

We study an economy where, initially, all agents participate in the trading of a complete

set of financial assets. The only market failure in this economy is the externality that one

agent imposes on the others via the probability distribution of their risks. We then show

that, in a generic sense, everybody can be made better-off if the agent that causes the

externality is not allowed to choose his portfolio of financial assets in an optimal manner,

while everybody else continues to trade without constraints. Besides the restriction of that

agent’s financial decisions, lump-sum transfers are used to make sure that all agents are,

indeed, made better-off. We first allow for a lump-sum transfer to the agent who imposes

the externality. Being lump-sum, it is obvious that this transfer does not affect that agent’s

incentives, only his welfare. Still, it may be that for institutional reasons such transfer

is not possible. Under the assumption that there is an external source of funding for the

rest of the agents (which we call “relief aid”), we show that the Pareto improvement is still

generically possible, even when the agent that imposes the externality is excluded from any

lump-sum aid.

While the spirit of our results, and the techniques used by us, are similar to those in the

4



literature on incomplete financial markets, it is worthwhile noticing that in our economy

there is only one commodity per state, so that it is not via relative commodity prices that

the Pareto improvement is induced by our financial policies.

1. Existing Literature

It is well known that any equilibrium allocation is Pareto efficient in competitive economies

with complete financial markets. Constrained optimality is a weaker version of optimality

that takes into account the financial structure and is appropriate for the case of incomplete

markets. As Stiglitz [25], Greenwald and Stiglitz [16] and Geanakoplos and Polemarchakis

[13] have argued, in a numéraire asset model with incomplete markets, generically, every

equilibrium is constrained sub-optimal provided that there is more than one commodities

and there is an upper bound in the number of individuals: reallocations of existing assets

support superior allocations. Following Geanakoplos and Polemarchakis [13], Citanna, Kajii

and Villanacci [11] show that equilibria are generically constrained inefficient even without

an upper bound on the number of households. They also show that perfectly anticipated

lump-sum transfers in a limited number of goods are typically effective.

The inefficiency of incomplete markets is the benchmark for the financial innovation

literature. Hart [18] was the first to construct an example of a competitive economy where

the equilibrium allocation with a single asset is Pareto dominated by one without no asset

at all. Therefore, contrary to what one might have thought, the introduction of a new

asset does not always improve upon welfare. As Cass and Cittana [8] and Elul [12] have

argued, introducing a new asset in an economy with incomplete markets can be Pareto-

improving or Pareto-impairing. Therefore, the choice of which assets to introduce has

important welfare effects. This result has given rise to the literature on optimal security

design. Prime examples of this strand of literature include Allen and Gale [1, 2], Chen [10]

and Pesendorfer [22], where the main focus is the trade-off between profitable innovation and

the cost of financial intermediation as a source of the incompleteness of the financial markets

in equilibrium. Bisin [4] shows that in a environment with profit maximizing intermediaries

and intermediation costs, markets are endogenously incomplete in equilibrium. Carvajal,

Rostek and Weretka [7] show that competition among issuers of asset-backed securities who

maximize asset value results in incomplete financial structures and inefficient risk sharing

opportunities for the (prudent) investors, even if innovation is essentially costless.

This work is related also to the literature on moral hazard and financial innovation.

In the moral hazard literature, the focus is on solving the principal-agent problem or in

the case of multi-agent setup, on the reallocation of resources among individuals in order

to solve trade-offs between incentives and risk sharing. Prime examples of this literature
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include Grossman and Hart [17] and Prescott and Townsend [24]. Helpman and Laffont [19]

extend the moral hazard setup to a general equilibrium model with exogenously complete fi-

nancial markets and non-exclusive transactions. A natural extension of this framework is to

endogenize the financial design. In this direction, Lisboa [21] presents a general equilibrium

model with individual and aggregate risk, moral hazard and a large number of households

where insurance is supplied by a collection of profit maximizing firms that behave strate-

gically. He shows that, given the assumptions of Bertrand competition and exclusivity, an

equilibrium exists and is constrained optimal. On the other hand, Braido [6] presents a

general equilibrium model as a two-stage game where agents act as producers, as consumers

and as financial intermediaries with intermediation costs. Each individual is allowed to

design a financial structure that consists of specifying securities pay-offs in each state and

transaction constraints that restrict the participation of some agents in some markets, while

allowing for non-exclusivity. He shows that an equilibrium exists and he offers examples

and a reasoning as to why the equilibrium might be constrained inefficient and the markets

incomplete. As he points out, apart from the financial technology and the strategic nature

of financial innovation as standard sources of inefficiency, the main source would be the

non-exclusivity of contracts. The inefficiency of equilibria in economies with moral haz-

ard and non-exclusive contracts has been extensively studied by Helpman and Laffont [19],

Arnott and Stiglitz [3], Bisin and Guaitoli [5] and Kahn and Mookherjee [20], where the

main conclusion is that exclusivity is necessary for constrained efficiency of equilibria. It is

important to point out the relevance of the work of Braido [6] for our model. To show how

markets can be endogenously incomplete in equilibrium and how this might be optimal, he

offers an example with two agents where only one of them is risk averse. This agent faces

a production risk where the probability of the “good” state is increasing in the costly unob-

servable effort he exerts. In this setup, Braido shows that an incomplete financial structure,

in the form of trading constraints, is Pareto superior to complete markets. Our framework is

more general: all agents are risk-averse and face aggregate and/or idiosyncratic risk. In our

setup, the agent who exerts effort creates an “externality.” Moreover, by imposing trading

constraints, we are limiting the insurance opportunities of the whole society and, since the

rest of the agents are risk averse too, it is therefore more demanding to show that a Pareto

improving policy exists.

The welfare improving policies that we analyze have been the subject of the restricted

participation literature. As Polemarchakis and Siconolfi [23] point out, incomplete markets

are just a special case of an asset market with restricted participation. In this setting,

they prove the generic existence of competitive equilibria when agents face asymmetric

linear constraints on their portfolio incomes. Cass, Siconolfi and Villanaci [9] extend the

literature by accommodating a wide range of portfolio constraints, including any smooth,
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quasi-concave inequality constraint on households’ portfolio holdings. Gori, Pireddu and

Villanacci [15] focus on price-dependent borrowing restrictions. After proving existence of

equilibrium, they show that equilibria associated with a sufficiently high number of strictly

binding participation constraints in the financial markets can be Pareto improved upon by

a local change in these constraints.

For the case of abstract economies with externalities and multiple commodities, Geanako-

plos and Polemarchakis [14] show that competitive equilibrium is, generically, constrained

inefficient: there exists an anonymous taxation policy that leaves all agents better off. While

the concept of equilibrium used in that paper is the same as ours, neither the setting nor the

type of externality are the same, and the mechanism through which the Pareto improvement

is induced differs too.

2. An Externality Via Probabilities

Consider a two-period economy populated by I + 1 individuals, who are denoted by i =

0, . . . , I. In period 0, agents receive an endowment of a single consumption good. In period

1, there is uncertainty regarding endowments: there are (only) two states of the world,

which we denote by s = 1, 2, and agents receive an endowment eis of the the consumption

good in state s.6

Rather than being exogenous, the probabilities of the two states depend on some action

of agent 0. In period 0, he has the choice of exerting costly effort, ε, which makes state 1

more likely. The cost of this effort is that it subtracts from the agent’s consumption at

date 0.

The preferences of the agents, who derive utility only from the single consumption good,

are represented by

ci0 + π(ε) · ui1(ci1) + [1− π(ε)] · ui2(ci2), (1)

where π(ε) ∈ (0, 1) is the probability of state 1. We allow for negativity of present con-

sumption, ci0, so it is not necessary for us the specify date-0 endowments.

We assume that π is an increasing and concave function. Each state-dependent cardinal

utility index uis is assumed to be continuous, strictly increasing and strictly concave, and

to satisfy standard Inada conditions.

The assumption that all individuals have preferences that are quasilinear in present con-

sumption simplifies the mathematical arguments, but, of course, implies a loss of generality.
6 The results below will hold true if there are multiple commodities in the second period. In fact, results

of the type we are studying are easier to argue in that case, only at the cost of heavier notation.
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The gained simplicity is that, since utility is transferable in this case, we can express our

arguments in terms of aggregate social welfare functions.

We assume that ε ∈ [ε,∞), for a lower bound on effort ε. Now, in order to have interior

solutions, we impose the following condition. For each state s, let (ĉis)Ii=0 solve the following

maximization problem:

max
(ci)Ii=0

{
I∑
i=0

uis(c
i) :

I∑
i=0

cis =

I∑
i=0

eis

}
. (2)

The following assumptions will be technically useful later on:

Assumption 1 (Interiority). At the consumption plan ĉ0, agent 0 prefers state 1 to

state 2, in the sense that u0
1(ĉ

0
1) > u

0
2(ĉ

0
2), and there exists a level of effort ε̂ ∈ (ε,∞)

such that

π ′(ε̂) =
1

u0
1(ĉ

0
1) − u

0
2(ĉ

0
2)
,

Assumption 2 (Concavity). Around the consumption plan ĉ0 and the level of effort ε̂,

agent 0 has locally concave preferences: matrix
π(ε̂) · ∂2u0

1(ĉ
0
1) 0 π ′(ε̂) · ∂u0

1(ĉ
0
1)

0 [1− π(ε̂)] · ∂2u0
2(ĉ

0
2) −π ′(ε̂) · ∂u0

2(ĉ
0
2)

π ′(ε̂) · ∂u0
1(ĉ

0
1) −π ′(ε̂) · ∂u0

2(ĉ
0
2) π ′′(ε̂) · [u0

1(ĉ
0
1) − u

0
2(ĉ

0
2)]

 (3)

is negative definite.

Assumption 3 (Heterogeneity). At consumption allocation ĉ, agents other than 0 have

heterogeneous preferences: for all i, j > 1,

∂2uis(ĉ
i
s) 6= ∂2ujs(ĉ

j
s),

if i 6= j, for both s = 1, 2.

3. Competitive Equilibrium

Financial markets are assumed to be complete: there is an elementary (Arrow) security for

each state, with asset s paying one unit of the consumption good in state s. Holdings of

these securities are denoted by ϑis.

3.1. The problem of agents i > 1

All agents other than 0 have only one decision to make in period 0: they have to choose their

holdings of securities, and therefore their consumption in that period and in both states in
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period 1. We assume that they take the prices of the securities and the probabilities of the

states as given.

Letting q1 and q2 denote the prices of the securities, the problem of individual i is,

simply,

max
ϑi1,ϑi2

{
−q1 · ϑi1 − q2 · ϑi2 + π(ε) · ui1(ei1 + ϑi1) + [1− π(ε)] · ui2(ei2 + ϑi2)

}
. (4)

The first-order conditions of this problem are standard:7

q1 = π(ε) · ∂ui1(ei1 + ϑi1) and q2 = [1− π(ε)] · ∂ui2(ei2 + ϑi2). (5)

These conditions are necessary and sufficient to characterize the solutions of Program (4).

3.2. The problem of agent i = 0

Agent 0 has an extra decision to make in period 0: apart from choosing his holdings of

securities, he must choose his level of effort. His problem is, then:

max
ε,ϑ0

1,ϑ0
2

{
−ε− q1 · ϑ0

1 − q2 · ϑ0
2 + π(ε) · u0

1(e
0
1 + ϑ

0
1) + [1− π(ε)] · u0

2(e
0
2 + ϑ

0
2)
}
. (6)

Assuming that this agent, too, takes asset prices as given, the following are the first-order

conditions for any solution with an interior level of effort:

1 = π ′(ε) · [u0
1(e

0
1 + ϑ

0
1) − u

0
2(e

0
2 + ϑ

0
2)], (7)

while

q1 = π(ε) · ∂u0
1(e

0
1 + ϑ

0
1) and q2 = [1− π(ε)] · ∂u0

2(e
0
2 + ϑ

0
2). (8)

Unfortunately, these conditions are only necessary, as we cannot guarantee the overall

concavity of the individual’s objective function. We will come back to this issue later, but,

for the moment, note that the first-order condition with respect to effort, Eq. (7), implies

that when agent 0 prefers state 1 to state 2 sufficiently, he is willing to exert effort to raise

the likelihood of state 1. In his choice of effort, however, he does not internalize the effect

of a more likely state 1 on the well-being of the society as a whole. Since we have made

no assumptions on aggregate endowments and social welfare in each state, all agents other

than agent 0 could be worse-off or better-off in state 1. It is this feature that reflects the

non-alignment of interest across agents.
7 We use ∂uis to denote the first derivative of function uis; this is in lieu of the awkward notation ui′s .
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3.3. Nash-Walras Equilibrium

Competitive equilibrium is defined by individual rationality and market clearing require-

ments. We write competitive equilibria as a tuple {ϑ̄, ε̄, q̄}, where ϑ̄ = [(ϑ̄is)s=1,2]
I
i=0 is the

allocation of the two assets and q̄ = (q̄1, q̄2) is the vector of asset prices, such that:

1. effort level ε̄ and portfolio (ϑ̄0
s)s=1,2 solve Program (6) when the prices are q = q̄;

2. for each i > 1, portfolio (ϑ̄is)s=1,2 solves Program (4) when the prices are q = q̄ and

the probability of state 1 is π(ε̄); and

3. both of the securities markets clear:
∑I
i=0 ϑ̄

i
s = 0, for s = 1, 2.

For agents i > 1, individual rationality is characterized by the first-order conditions,

Eq. (5). Importantly, we follow the spirit of Nash-Walras equilibrium in assuming that these

agents take as given not only prices, but also the probabilities of the two states.

In the case of agent 0, in principle, the first-order conditions, Eqs. (7) and (8), are

only necessary. Now, the combination of Eqs. (8) and (5) suffices to imply that, for each

state of the world, the equilibrium allocation of consumption, given by cis = eis + ϑ̄is, solves

Program (2). Since the latter has a unique solution, by strict concavity of preferences, it

follows that ϑ̄is = ĉis−eis. By Assumptions 1 and 2, it follows that Program (6) is concave in

effort too, and hence that the first-order conditions are both necessary and sufficient. Note,

then, that for agent 0, who causes an externality via his choice of effort, our assumption is

that he takes prices as given, and considers the effects of effort on his own well-being only.

For later usage, let us define the function

F(q, ϑ, ε) =



π(ε) · ∂u0
1(e

0
1 + ϑ

0
1) − q1

[1− π(ε)] · ∂u0
1(e

0
2 + ϑ

0
2) − q2

[u0
1(e

0
1 + ϑ

0
1) − u

0
2(e

0
2 + ϑ

0
2)] · π ′(ε) − 1

π(ε) · ∂u1
1(e

1
1 + ϑ

1
1) − q1

[1− π(ε)] · ∂u1
2(e

1
2 + ϑ

1
2) − q2

...

π(ε) · ∂uI1(eI1 + ϑI1) − q1

[1− π(ε)] · ∂uI2(eI2 + ϑI2) − q2∑I
i=0 ϑ

i
1∑I

i=0 ϑ
i
2



.

Note that the roots of this function characterize the competitive equilibrium of the economy.

The following assumption is generically true, under Assumption 2.
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Assumption 4 (Determinacy and trade). At equilibrium, agent 0 participates in the

market for elementary security 1 and the Jacobean of function F is invertible: ϑ̄0
1 6= 0

and matrix DF(q̄, ϑ̄, ε̄) is non-singular.

4. Pareto Efficiency

4.1. Definition

The definition of Pareto efficient allocation is as usual: a feasible allocation of agent 0’s

effort and the consumption of the unique commodity both at date 0 and in the two future

states across all agents is efficient, if it is impossible to find an alternative, feasible allocation

of these same variables that makes at least one agent better-off without making any other

agent worse-off. Given that all individuals have quasilinear preferences, Pareto efficiency

amounts to the choice of an allocation of consumption and a level of effort so as to solve

the program

max
ε,(ci1,ci2)

I
i=0

{
−ε+

I∑
i=0

{π(ε) · ui1(ci1) + [1− π(ε)] · ui2(ci2)} |
I∑
i=0

cis =

I∑
i=0

eis, s = 1, 2

}
. (9)

Here, the date-0 consumption levels are left undetermined, but any allocation that exhausts

the remaining aggregate endowment, net of ε, will be Pareto efficient.

The first-order conditions that characterize Pareto efficiency are, therefore, that

π ′(ε) ·
I∑
i=0

[ui1(c
i
1) − u

i
2(c

i
2)] = 1; (10)

and that, for each pair of agents i, j = 0, . . . , I,

∂uis(c
i
s) = ∂u

j
s(c

j
s) (11)

for each state s = 1, 2; as well as the feasibility condition.

4.2. Inefficiency of competitive equilibrium

Comparison of the first-order conditions of the individual, competitive choices of consump-

tion, Eqs. (5) and (8), with the first-order condition defining efficiency of consumption plans,

Eq. (11), shows that the allocations of consumption prescribed by the competitive equilib-

rium are efficient in the sense that the marginal rates of substitutions would be equalized

across agents in each state.
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On the other hand, from the first-order conditions for the choice of effort, Eqs. (7)

and (10), it is immediate that the level of effort implied by the competitive equilibrium

solution is generically not Pareto optimal: while agent 0 takes into account only the effects

on his own welfare, the social planner considers the effects on social welfare when choosing

the optimal level of effort.

5. Constrained inefficiency of competitive equilibrium

5.1. Two definitions

We have shown that competitive equilibria need not yield the Pareto efficient level of effort.

This result says that if a planner could choose the effort exerted by agent 0, he would choose

a different level, and then would reallocate date-0 consumption to make sure that all agents,

including 0 himself, are made better-off.

As is usual in the General Equilibrium literature, the latter observation does not mean

that a social planner who faces constraints in terms of the policies he can apply would

indeed be able to effect a welfare improving policy. Here, we consider the case in which the

planner is constrained in the sense that he can only distort the asset holdings of agent 0, but

cannot directly choose the effort level that the agent exerts. We also allow the planner to

effect lump-sum transfers of revenue across all agents, perhaps including 0 himself. If such a

policy exists that leaves everybody better-off, we shall say that the competitive equilibrium

is constrained inefficient. Whether a lump sum transfer to agent 0 is required determines

the how strong the definition is.

Formally, we say that an allocation (ε, c), where c = [(cis)s=0,1,2]
I
i=0,

8 is weakly con-

strained inefficient if there exist an alternative level of effort, ε̃; asset prices, q̃; a profile

of asset holdings, ϑ̃; and a profile of date-0 lump-sum transfers, (τi)Ii=0, such that:

1. ε̃, the level of effort of agent 0, solves

max
ε

{
−ε+ π(ε) · u0

1(e
0
1 + ϑ̃

0
1) + [1− π(ε)] · u0

2(e
0
2 + ϑ̃

0
2)
}
; (12)

2. for each i > 1, portfolio (ϑ̃is)s=1,2 solves Program (4) when the prices are q = q̃ and

the probability of state 1 is π(ε̃);

3. both of the securities markets clear:
∑I
i=0 ϑ̃

i
s = 0, for s = 1, 2;

8 The feasibility condition that
∑I
i=0 c

i
s =
∑I
i=0 e

i
s, for both s = 1, 2, will hold throughout our analysis.

Also, note that in the following analysis c00 is taken to be gross of effort.

12



4. the profile of lump-sum transfers is balanced:
∑I
i=0 τ

i = 0;

5. agent 0 is better-off, in that

−ε̃− q̃1 · ϑ̃0
1 − q̃2 · ϑ̃0

2 + τ
0 + π(ε̃) · u0

1(e
0
1 + ϑ̃

0
1) + [1− π(ε̃)] · u0

2(e
0
2 + ϑ̃

0
2)

is higher than

−ε+ c0
0 + π(ε) · u0

1(c
0
1) + [1− π(ε)] · u0

2(c
0
2);

6. every agent i > 1 is better-off, in that

−q̃1 · ϑ̃i1 − q̃2 · ϑ̃i2 + τi + π(ε̃) · ui1(ei1 + ϑ̃i1) + [1− π(ε̃)] · ui2(ei2 + ϑ̃i2)

is higher than

ci0 + π(ε) · ui1(ci1) + [1− π(ε)] · ui2(ci2).

Intuitively, the allocation is constrained inefficient if a planner can effect a Pareto im-

provement by forcing agent 0 out of the financial markets: instead of letting him choose

optimal holdings of the two assets, a portfolio ϑ̃0 is allocated to him. Then competitive

assets markets open for every other agent in the economy, and assets prices are determined

endogenously. Agent 0’s choices are limited to his effort level. Yet, at the allocation induced

(endogenously) by the policy, every agent is strictly better-off.

What makes this definition weak is that we are allowing for agent 0 to receive a lump-sum

transfer beyond the resulting price value of the portfolio imposed on him. It is important

to note that this transfer does not affect the agent’s incentives in choosing how much effort

to exert.9 Yet, for institutional reasons it may be impossible for the planner to effect such

transfer. We shall say that the allocation is constrained inefficient in the strong sense, if

such Pareto improvement is possible even when τ0 is required to be null.

5.2. Genericity of weak constrained inefficiency

Fix competitive equilibrium, {ϑ̄, ε̄, q̄}. Our first goal is to show that, generically on the

date-1 endowments of individuals, the allocation (ε̄, c̄), where c̄is = eis + ϑ̄
i
s for s = 1, 2, is

constrained inefficient in the weak sense.

Since the weak definition of constrained inefficiency allows for transfers across all agents,

we can again use the fact that preferences are quasilinear to write an expression for social

welfare,

W = −ε+ π(ε) ·
I∑
i=0

ui1(c
i
1) + [1− π(ε)] ·

I∑
i=0

ui2(c
i
2). (13)

9 So, the planner is not bribing him to exert more effort.
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Recall that the problem arises from the inefficient level of effort chosen by agent 0 when

maximizing his utility in the competitive setting. We consider an exogenous perturbation

in the holdings of securities of agent 0. The idea is to restrict his insurance opportunities

to make him more vulnerable to the risks associated with each state. Such perturbation,

(dϑ0
1, dϑ0

2), around the competitive equilibrium values induces changes in all other endoge-

nous variables: from Eq. (7), it follows that the effort exerted by agent 0 will change; this

will induce different consumption and investment decisions by all agents i > 1; and, in order

to guarantee market clearing, the prices of assets will need to accommodate too. If, start-

ing from the equilibrium allocation we can find that there exists a perturbation such that

dW > 0, we can conclude that the allocation is constrained inefficient in the weak sense:

the higher value of the social welfare functionW implies the existence of the required profile

of lump-sum transfers after which every agent in the economy is made strictly better-off.

The total change on the social welfare function, dW, is given by the aggregate of three

effects:

1. the direct effect through the change in the level of effort exerted by agent 0, −dε;

2. an indirect effect through the different likelihood of the two states that is induced by

that change,
I∑
i=0

[ui1(c̄
i
1) − u

i
2(c̄

i
2)] · π ′(ε̄) · dε;

3. and an indirect effect through the changes in the consumption plans of all individuals,

in response to the different likelihoods, the change in prices, and, for agent 0, his

exogenously perturbed portfolio:

π(ε̄) ·
I∑
i=0

∂ui1(c̄
i
1) · dci1 + [1− π(ε̄)] ·

I∑
i=0

∂ui2(c̄
i
2) · dci2.

Since the only source of inefficiency in our model is the level of effort, the third effect

vanishes. Indeed, using Eqs. (5) and (8), the total effect can be written simply as

dW =

I∑
i=1

[ui1(c̄
i
1) − u

i
2(c̄

i
2)] · π ′(ε̄) · dε+ q̄1 ·

I∑
i=0

dci1 + q̄2 ·
I∑
i=0

dci2.

By the feasibility constraint,
∑I
i=0 dc

i
s = 0, so that, finally,

dW =

I∑
i=1

[ui1(c̄
i
1) − u

i
2(c̄

i
2)] · π ′(ε̄) · dε. (14)

14



Now, we can solve for dε by differentiating the first-order condition of agent 0 with

respect to effort, Eq. (7), to obtain10

dε =
π ′(ε̄) ·

[
∂u0

2(e
0
2 + ϑ̄

0
2) · dϑ0

2 − ∂u
0
1(e

0
1 + ϑ̄

0
1) · dϑ0

1

]
π ′′(ε̄) · [u0

1(e
0
1 + ϑ̄

0
1) − u

0
2(e

0
2 + ϑ̄

0
2)]

. (15)

The direction of the Pareto improving policy depends on the sign of expression

I∑
i=1

[ui1(c̄
i
1) − u

i
2(c̄

i
2)].

Positive values imply that the society, excluding agent 0, is better-off in state 1 than in

state 2. As a result, dε must be positive: the competitive level of effort is too low and the

Pareto improving policy involves inducing agent 0 to increase the level of effort chosen at

equilibrium. Looking at Eq. (15), this can be achieved with dϑ0
2 < 0 and dϑ0

1 > 0. That

is, in order to induce agent 0 to exert more effort in equilibrium, a planner would like to

restrict his insurance opportunities in a way that he is better-off in the state associated with

higher effort, namely state 1, and worse-off in the other state. The agent who causes the

externality is, therefore, “forced” to internalize the externality through considerations of his

own welfare.11

It is important to note that, generically in the space of endowments,

I∑
i=1

[ui1(c̄
i
1) − u

i
2(c̄

i
2)] 6= 0, (16)

so that there almost always is a Pareto improving policy. The proof of this result is shown

in the appendix. This analysis implies, then, our first main result.

Theorem 1. If the economy satisfies Assumptions 1 and 2, then, except on a neg-

ligible set of individual endowments, the competitive equilibrium allocation is weakly

constrained inefficient.
10 Note that the interiority condition imposed above, namely Assumption 1, implies that

u0
1(e

0
1 + ϑ̄

0
1) − u

0
2(e

0
2 + ϑ̄

0
2) > 0,

since e0s + ϑ̄0
s = ĉ

0
s.

11 Of course, in the case where
∑I
i=1[u

i
1(c̄

i
1) − u

i
2(c̄

i
2)] < 0, the society excluding agent 0 is better-off in

state 2, so that the competitive level of effort is inefficiently high: in this case, Pareto optimality prescribes

dε < 0 which can be achieved with dϑ0
2 > 0 and dϑ0

1 < 0. The intuition is, again, that one would like to make

agent 0 better-off in the state associated with lower effort and worse-off in the other state so that it is optimal

for him to choose a lower level of effort than before.
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6. Catastrophe, relief aid and genericity of strong

constrained inefficiency

If the policy that aims at effecting a Pareto improvement is restricted to not include agent

0 in the profile of date-0 transfers, we can no longer use the social welfare function W. For

agent 0, the policy needs to increase

U = −ε− q1 · ϑ̃0
1 − q2 · ϑ̃0

2 + π(ε) · u0
1(e

0
1 + ϑ̃

0
1) + [1− π(ε)] · u0

2(e
0
2 + ϑ̃

0
2), (17)

while, simultaneously, increasing

−q1 ·
I∑
i=1

ϑi1 − q2 ·
I∑
i=1

ϑi2 + π(ε) ·
I∑
i=1

ui1(e
i
1 + ϑ

i
1) + [1− π(ε)] ·

I∑
i=1

ui2(e
i
2 + ϑ

i
2).

This would suffice, as the higher value of the latter sub-aggregate implies the existence of

the required sub-profile of lump-sum transfers, (τi)Ii=1, after which all the agents i > 1 are

made strictly better-off.

The following two assumptions will allow us to prove that, in a generic sense, the

competitive equilibrium allocation is strongly constrained inefficient.

Assumption 5 (Catastrophe). At the consumption allocation (ĉi)Ii=0, the whole society

prefers state 1 to state 2, in the sense that

µ0 = u0
1(ĉ

0
1) − u

0
2(ĉ

0
2) > 0 (18)

and

µ¬0 =

I∑
i=1

[ui1(ĉ
i
1) − u

i
2(ĉ

i
2)] > 0. (19)

Assumption 6 (Relief aid). There exists an external source of funding that aids agents

i = 1, . . . , I in their purchases of the elementary security for state 2. This fund covers

a total of ρ > 0 units of the asset.

We assume that this aid takes the form of lump-sum transfers (of the correct value at

equilibrium), so that they have no impact on the characterization of equilibrium we have

used. Under the latter assumption, we can write the aggregate utility of agents i = 1, . . . , I

as

V = −q1 ·
I∑
i=1

ϑi1−q2 ·

(
I∑
i=1

ϑi2 − ρ

)
+π(ε) ·

I∑
i=1

ui1(e
i
1+ϑ

i
1)+[1−π(ε)] ·

I∑
i=1

ui2(e
i
2+ϑ

i
2). (20)
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6.1. Local subspaces of functions

Under the quasi-linearity assumption, the equilibrium allocation is ĉ and the equilibrium

level of effort is ε̂. In order to perform genericity analysis on the spaces of utilities and the

probability function, we parameterize a local subspace of functions as follows. Given some

β > 0, let b : R→ [0, 1] be a C1 function such that

b(x) =

{
0, if |x| > β;

1, if |x| < β/2.

We refer to this function as a bump. Also for δ̄ > 0, consider the «perturbed» mappings

(ε, δ0) 7→ π(ε) + b(ε− ε̄) · δ0 · (ε− ε̄)2,

and, for each i > 1 and s = 1, 2,

(cis, δ
i
s) 7→ uis(c

i
s) + b(c

i
s − c̄

i
s) · δis · (cis − c̄is)2.

For simplicity of notation, we will write these perturbed functions as π(·; δ0) and uis(·; δis).

Note that if β and δ̄ are small enough, these mappings are increasing and concave, so

long as |δ0| < δ̄ and |δis| < δ̄ for all i = 1, . . . , I and s = 1, 2. This implies that we can use

each of these parameters to perturb the corresponding function on an one-dimensional open

neighborhood of the original function. For technical reasons, we restrict attention to the

open subset

∆ = {δ ∈ (−δ̄, δ̄)5 | ∂2u1
1(ĉ

1
1) + δ

1
1 6= ∂2u2

1(ĉ
2
1) + δ

2
1 and ∂2u1

2(ĉ
1
2) + δ

1
2 6= ∂2u2

2(ĉ
2
2) + δ

2
2}. (21)

Under Assumption 3, it is immediate that 0 ∈ ∆.

The following lemma is immediate.

Lemma 1 (Invariance of equilibrium to perturbations). Perturbations to the probability

function and preferences of agents i = 1, . . . , I do not affect the equilibrium: since

F(q̄, ϑ̄, ε̄) = 0, tuple (q̄, ϑ̄, ε̄) continues to be an equilibrium when the probability function

is π(·; δ0) and preferences are uis(·; δis), as long as |δ0| < δ̄ and |δis| < δ̄ for all i = 1, . . . , I

and s = 1, 2.

The lemma exploits one key property of our construction: that the perturbations do

not affect the first derivatives of the perturbed functions at the equilibrium values. What

they do, however, is to affect their second derivatives, which is the second key property —

one that we will use below.
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6.2. A characterization of strong constrained inefficiency

In order to make the concept of strong constrained inefficient easier to analyse, define the

following function, where, for simplicity, we assume that I = 2,

(q, ϑ, ε, δ) 7→



U

V

[u0
1(e

0
1 + ϑ

0
1) − u

0
2(e

0
2 + ϑ

0
2)] · π ′(ε; δ0) − 1

π(ε; δ0) · ∂u1
1(e

1
1 + ϑ

1
1; δ1

1) − q1

[1− π(ε; δ0)] · ∂u1
2(e

1
2 + ϑ

1
2; δ1

2) − q2

π(ε; δ0) · ∂u2
1(e

2
1 + ϑ

2
1; δ2

1) − q1

[1− π(ε; δ0)] · ∂u2
2(e

2
2 + ϑ

2
2; δ2

2) − q2∑I
i=0 ϑ

i
1∑I

i=0 ϑ
i
2



, (22)

where U and V are as in Eqs. (17) and (20), respectively, with π(·; δ0) and uis(·; δis) instead
of π(·) and uis(·).12

Denoting this mapping by H(q, ϑ, ε; δ), the following lemma follows as an implication

of the definition of strong constrained inefficiency, and of the construction of functions U

and V.

Lemma 2. If {ϑ̄, ε̄, q̄} is a competitive equilibrium and the partial Jacobean of H with

respect to (q, ϑ, ε) has full row rank, then the equilibrium allocation (ε̄, c̄), where c̄is =

eis + ϑ̄
i
s for s = 1, 2, is constrained inefficient in the strong sense.

Proof. If the Jacobean

Dq,ϑ,εH(q̄, ϑ̄, ε̄; δ)

has full row rank, by the inverse function theorem it follows that H(·; δ) maps a neighbour-

hood of (q̄, ϑ̄, ε̄) onto a neighbourhood of H(q̄, ϑ̄, ε̄; δ). It then follows that, for a small

enough d > 0, we can find (q̃, ϑ̃, ε̃) such that

H(q̃, ϑ̃, ε̃; δ) = H(q̄, ϑ̄, ε̄; δ) + (d,d, 0, . . . , 0)T.

At equilibrium, by definition, the third to last entries of H(q̄, ϑ̄, ε̄; δ) equal 0. Substi-

12 When writing a function, the notation f(x;α) is used to emphasize that x is the function’s argument

and α is just a parameter. Hopefully, this makes it clear that ∂f(x;α) refers to the derivative of the function

with respect to argument x, when the parameter takes the value α.

18



tuting, this means that

U(q̃, ε̃, ϑ̃; δ)

V(q̃, ε̃, ϑ̃; δ)[
u0

1(e
0
1 + ϑ̃

0
1) − u

0
2(e

0
2 + ϑ̃

0
2)
]
· π ′(ε̃; δ0) − 1

π(ε; δ0) · ∂u1
1(e

1
1 + ϑ̃

1
1; δ1

1) − q̃1

[1− π(ε; δ0)] · ∂u1
2(e

1
2 + ϑ̃

1
2; δ1

2) − q̃2

π(ε; δ0) · ∂u2
1(e

2
1 + ϑ̃

2
1; δ2

1) − q̃1

[1− π(ε; δ0)] · ∂u2
2(e

2
2 + ϑ̃

2
2; δ2

2) − q̃2∑I
i=0 ϑ̃

i
1∑I

i=0 ϑ̃
i
2



=



U(q̄, ε̄, ϑ̄; δ) + d

V(q̄, ε̄, ϑ̄; δ) + d

0

0

0

0

0

0

0



.

The first entry of this equality and the fact that d > 0 imply that agent 0 is made better-

off, which is the fifth requirement of the definition of weak constrained inefficiency. The

second entry implies that the aggregate V of utilities is higher too, which in turn implies that

every other agent can be made better-off by an appropriate choice of lump-sum transfers,

hence guaranteeing the sixth requirement in the definition (without violating the fourth

requirement). Noting that the third entry implies the first-order condition of Program (12),

the first requirement is also satisfied. The second requirement follows from the fourth to the

ante-penultimate entries, as each successive pair of them implies the first-order conditions of

Program (4), for agents i = 1, . . . , I. Finally, the last two entries imply the third requirement

of the definition.

6.3. Genericity of strong constrained inefficiency

The characterization of constrained inefficiency by Lemma 2 seemingly allows us to prove

a second generic result.

Claim 1. If the economy satisfies Assumptions 1 to 6, then, on an open and dense

set of individual endowments, probability functions and individual preferences, the

competitive equilibrium allocation is strongly constrained inefficient.

Fixing all preferences and endowments such that the assumptions hold true, the chal-

lenge is to show that mapping

(q, ϑ, ε, δ,γ) 7→


F(q, ϑ, ε; δ)

Dq,ϑ,εH(q, ϑ, ε; δ)Tγ
1
2(γ · γ− 1)

 ,

where γ ∈ R2+2(I+1)+1, is transverse to 0. Let M denote the previous mapping.
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Note that the entries of vector γ can be named according to the rows of the Jacobean

matrix Dq,ϑ,εH. Recalling the definition of mapping H, these rows are:

1. the utility level of agent 0, U;

2. the aggregate utility of all other agents, V;

3. the first-order condition with respect to effort, in the maximization of agent 0;

4. for each i other than 0 and each s, the first-order condition with respect to ϑis, in the

maximization of agent i; and

5. for each s, the market clearing condition of the corresponding elementary security.

It is then convenient to use a mnemonic to denote the entries of the vector, as follows:

γ = (γU,γV ,γ0,γ1
1,γ

1
2,γ

2
1,γ

2
2,γ1,γ2).

Lemma 3 (Simplifying the system). Suppose that M(q, ϑ, ε, δ,γ) = 0. Then,

1. (q, ϑ, ε) = (q̄, ϑ̄, ε̄);

2. the second component of M, namely Dq,ϑ,εH(q̄, ϑ̄, ε̄; δ)Tγ, simplifies to

π ′ ·
∑2
i=1[(u

i
1 − u

i
2) · γV + (∂ui1 · γi1 − ∂ui2 · γi2)] + (π ′′ + δ0) · (u0

1 − u
0
2) · γ0

π ′ · ∂u0
1 · γ0 + γ1

−π ′ · ∂u0
2 · γ0 + γ2

(∂2u1
1 + δ

1
1) · γ1

1 + γ1

(∂2u1
2 + δ

1
2) · γ1

2 + γ2

(∂2u2
1 + δ

2
1) · γ2

1 + γ1

(∂2u2
2 + δ

2
2) · γ2

2 + γ2

−ϑ0
1 · (γU − γV) − γ

1
1 − γ

2
1

−ϑ0
2 · (γU − γV) + ρ · γV − γ1

2 − γ
2
1



(∗)

3. γ1 6= 0 and γ2 6= 0;

4. γ0 6= 0, and for both i = 1, 2 and both s = 1, 2, γis 6= 0; and

5. either γ1
1 6= γ2

1 or γ1
2 6= γ2

2.

Proof. The first statement follows immediately from Lemma 1, asM = 0 implies that F = 0.

For the second statement, it follows by direct computation that Dq,ϑ,εH(q̄, ϑ̄, ε̄; δ)Tγ equals
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the sum of expression (∗) and

[−1+ π ′ · (u0
1 − u

0
2)] · γU

(−q1 + π · ∂u0
1) · γU

[−q2 + (1− π) · ∂u0
2] · γU

(−q1 + π · ∂u1
1) · γV

[−q2 + (1− π) · ∂u1
2] · γV

(−q1 + π · ∂u2
1) · γV

[−q2 + (1− π) · ∂u2
2] · γV

0

0



.

At (q̄, ϑ̄, ε̄), this latter vector vanishes.

For the third statement, suppose, by way of contradiction, that γ1 = 0. It follows from

the second equation of the system Dq,ϑ,εH(q̄, ϑ̄, ε̄; δ)Tγ = 0 that γ0 = 0. In the third

equation, this implies that γ2 = 0 too. The fourth to seventh equations then imply that

γ1
1 = γ

1
2 = γ

2
1 = γ

2
2 = 0.

By Assumption 4, the previous-to-last equation implies that γU = γV . Then, Assumption 6

implies, via the last equation, that γV = 0. Summing up, γ = 0, which is impossible since

γ · γ = 1, as M = 0.

For the fourth statement, note that if γ0 = 0, the second equation implies that γ1 = 0,

which we just showed to be impossible. The same occurs if γis = 0: then, from the fourth

to seventh equations it would follow that γs = 0, contradicting the third statement.

For the last statement, suppose to the contrary that γ1
1 = γ2

1 and γ1
2 = γ2

2. The fourth

and fifth equations imply, given Assumption 6, that γU = γV = 0. From the last four

equations we then have that

∂2u1
1 + δ

1
1 = ∂

2u2
1 + δ

2
1 and ∂2u1

2 + δ
1
2 = ∂

2u2
2 + δ

2
2,

which is impossible by the definition of the space ∆ of perturbations, Eq. (21).

Lemma 4 (Transversality). Mapping M is transverse to 0.

Proof. Suppose that M = 0. It follows from Lemma 1 that its Jacobean can be written as(
Dq,ϑ,εF 0

M Ω

)
,

where Ω is the partial Jacobean of mapping

(q, ϑ, ε, δ,γ) 7→

(
Dq,ϑ,εH(q, ϑ, ε; δ)Tγ

1
2(γ · γ− 1)

)
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with respect to (δ,γ).13

Then, given Assumption 4, all we need to show is that matrix Ω has full row rank. To

make it easier to see that this is indeed the case, it is convenient to re-organize this matrix.

Note that the first rows of this matrix correspond to the entries of the product Dq,ϑ,εH
Tγ.14

By construction, these rows correspond to the arguments with respect to which mapping

H has been differentiated, which we have been writing in the order

(ε, ϑ0
1, ϑ

0
2, ϑ

1
1, ϑ

1
2, ϑ

2
1, ϑ

2
2,q1,q2).

It is now convenient, in fact, to write the last two rows of the matrix in the fourth and fifth

positions, which amounts to taking the derivatives of H in the order

(ε, ϑ0
1, ϑ

0
2,q1,q2, ϑ1

1, ϑ
1
2, ϑ

2
1, ϑ

2
2).

Of course, the rank of Ω is not affected by this operation. As for its columns, it will also

be convenient to write them in an unusual order:

(δ0,γ1,γ2,γU,γV , δ1
1, δ

1
2, δ

2
1, δ

2
2,γ

1
1,γ

1
2,γ

2
1,γ

2
2).

One remaining argument, γ0, will not be necessary for our differentiations.
Permuted in this way, when M = 0 matrix Ω reads as



µ0γ0 0 0 0 π ′µ¬0 0 0 0 0 π ′∂u1
1 −π ′∂u1

2 π ′∂u2
1 −π ′∂u2

2

0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 −θ0

1 θ0
1 0 0 0 0 −1 0 −1 0

0 0 0 −θ0
2 θ0

2 + ρ 0 0 0 0 0 −1 0 −1
0 1 0 0 0 πγ1

1 0 0 0 πh1
1 0 0 0

0 0 1 0 0 0 (1 −π)γ1
2 0 0 0 (1 −π)h1

2 0 0
0 1 0 0 0 0 0 πγ2

1 0 0 0 πh2
1 0

0 0 1 0 0 0 0 0 (1 −π)γ1
2 0 0 0 (1 −π)h2

2

0 γ1 γ2 γU γV 0 0 0 0 γ1
1 γ1

2 γ2
1 γ2

2



,

where µ0 and µ¬0 come from Eqs. (18) and (19), respectively, and his is used to denote

∂2uis + δ
i
s, for brevity.

Consider first the leading principal minor of order 5, namely the matrix

µ0 · γ0 0 0 0 π ′ · µ¬0

0 1 0 0 0

0 0 1 0 0

0 0 0 −θ0
1 θ0

1

0 0 0 −θ0
2 θ0

2 + ρ


.

13 Matrix M is the partial Jacobean of this same mapping with respect to (q, ϑ, ε). We need not concern

ourselves with its computation.
14 These rows are followed by only one other: the derivatives of the last row of M.
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Under Assumptions 5 and 6, this matrix is non-singular, thanks to the fact that γ0 6= 0, as

per Lemma 3. Now, add the next four columns and rows. This adds, the columns

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

π · γ1
1 0 0 0

0 (1− π) · γ1
2 0 0

0 0 π · γ2
1 0

0 0 0 (1− π) · γ1
2



.

Given that for both i = 1, 2 and both s = 1, 2, γis 6= 0, again as per Lemma 3, it follows

that this whole 9× 9 leading principal minor is non-singular.

It only remains to show that when we add the last row of the matrix and the four

remaining columns, the whole matrix maintains its full row rank. Given the last statement

in Lemma 3, we can assume, with no loss of generality, that γ1
1 6= γ2

1. Now, perform the

following operations:

1. add the columns corresponding to γ1
1;

2. subtract the column corresponding to γ2
1;

3. subtract h1
1/γ

1
1 times the column corresponding to δ1

1;

4. add h2
1/γ

2
1 times the column corresponding to δ2

1; and

5. subtract
π ′ · (∂u1

1 − ∂u
2
1)

(u0
1 − u

0
2) · γ0

times the column corresponding to δ0, which can be done thanks to Assumption 5 and

the fourth statement in Lemma 3.
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Note that the result of these operations is vector

0

0

0

0

0

0

0

0

0

γ1
1 − γ

2
1


Since γ1

1 6= γ2
1, the last entry of this resulting vector is non-zero. This implies that the

matrix, as a whole, can also span the last dimension of its co-domain, and, given the

previous results, that it has full row rank.

We are now ready to prove that, generically on endowments, preferences and the proba-

bility function, the competitive equilibrium allocation is costrained inefficient in the strong

sense too, under the extra assumptions.

Proof of Claim 1. SinceM t 0, by the transversality theorem we will have thatM(·, δ) t 0,

generically on δ ∈ ∆. Now, M(·, δ) has

3+ 2I+ 2+ 2+ 2(I+ 1) + 1+ 1

entries, and only

2+ 2(I+ 1) + 1+ 2+ 2(I+ 1) + 1

arguments. It follows that Dq,ϑ,ε,γM cannot have full row rank, and hence it must be that,

generically on δ ∈ ∆, M(q, ϑ, ε,γ, δ) 6= 0.

Now, if that is the case, it is immediate that whenever

F(q, ϑ, ε, e, ) = 0 and Dq,ϑ,εH(q̄, ϑ̄, ε̄, e)Tγ = 0,

we also have that γ = 0. This implies, by construction, that when F(q, ϑ, ε, e,u,π) = 0,

matrix Dq,ϑ,εH(q̄, ϑ̄, ε̄, e) has full row rank. By Lemma 2, it follows that the equilibrium

allocation is constrained inefficient, in the strong sense, generically on δ ∈ ∆

This result implies the claim, as long as we endow the space of preference and probability

functions with a metrizable topology: for any given initial functions, any open neighborhood

of these functions will intersect the lower-dimensional subspace ∆, since 0 ∈ ∆. Since the
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equilibrium allocation is strongly constrained inefficient generically on ∆, we can find an

array of functions in the intersection of the open neighborhood and ∆ where this is the case.

This implies denseness, as needed.

7. More sophisticated behaviour by agent 0

Our analysis so far has assumed that all agents, including 0, take assets prices as given.

This is the application to our context of the standard definition of Nash-Walras equilibrium

from Public Economics. In Financial Economics, on the other hand, when an agent has the

ability to affect the probability distribution of shocks in the economy, it is usually considered

that he recognizes the effect that her decisions with respect to those probabilities affect

the willingness to pay of other agents for the existing financial assets and, therefore, the

equilibrium level of assets prices. In a sense, the point is that the kind of externality that

agent 0 induces in our economy is too salient for him to take everybody else’s actions as

given.

7.1. Stackelberg-Walras Equilibrium

We now recognize this possibility and study whether our previous results are robust to

this more sophisticated behaviour by agent 0. In order to do this, we need to decompose

asset prices into the part of them that depends on the probability distribution and the part

that is determined by trade, given the probabilities. Effectively, it is as if decisions were

made sequentially in the first period of: individual 0 first chooses the level of effort he is

to commit, and then, taken that level of effort as given, he and all the other agents trade

financial assets in a competitive manner.

Luckily, our formulation allows us to nest these two decisions in just one problem for

agent 0. In order to do this, we first introduce two functions that are of common use

in financial economics. For each state s, and each level of trading of the corresponding

elementary security for that state by agent 0, ϑ0
s, let (c̃is)

I
i=1 denote the solution to the

following maximization problem:

max
(ci)Ii=1

{
I∑
i=1

uis(c
i) :

I∑
i=1

cis =

I∑
i=0

eis − ϑ
0
s

}
. (23)

Obviously, the solution to this problem depends on ϑ0
s, and so we can define

κs(ϑ
0
s) = ∂u

1
s(c̃

1
s),

a function to which we will refer as the (ex-post) pricing kernel for state s.
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The utility of this function is that If {ϑ̄, ε̄, q̄} is a competitive equilibrium (in the sense

defined before), it follows from Eq. (5), that the equilibrium prices decompose into the

product of the pricing kernel for each state and its corresponding probability:(
q̄1

q̄2

)
=

(
π(ε̄) · κ1(ϑ̄

0
1)

[1− π(ε̄)] · κ2(ϑ̄
0
2)

)

Since we want to maintain the assumption that all agents are competitive in the financial

markets, we will now consider the situation in which agent 0 recognizes the direct effect

that his choice of effort has on the vector of asset prices, via the probabilities, but acts

as if his choice of portfolio did not affect the pricing kernels. The behaviour of all other

agents in the economy remains unchanged, as well as the market clearing condition. For the

sake of definiteness, we refer to this situation as Stackelberg-Walras equilibrium, defined

as follows: it is a tuple {ϑ̄, ε̄, q̄}, where ϑ̄ = [(ϑ̄is)s=1,2]
I
i=0 is the allocation of the two assets

and q̄ = (q̄1, q̄2) is the vector of asset prices, such that:

1. effort level ε̄ and portfolio (ϑ̄0
s)s=1,2 solve the following Program:

max
ε,ϑ0

1,ϑ0
2

{
−ε− q1(ε; ϑ̄0

1)ϑ
0
1 − q2(ε; ϑ̄0

2)ϑ
0
2 + π(ε)u

0
1(e

0
1 + ϑ

0
1) + [1− π(ε)]u0

2(e
0
2 + ϑ

0
2)
}

(24)

where q1(ε; ϑ0
1) = π(ε) · κ1(ϑ

0
1) and −q2(ε; ϑ0

2) = [1− π(ε)] · κ2(ϑ
0
2);

2. for each i > 1, portfolio (ϑ̄is)s=1,2 solves Program (4) when the prices are q = q̄ and

the probability of state 1 is π(ε̄); and

3. both of the securities markets clear:
∑I
i=0 ϑ̄

i
s = 0, for s = 1, 2.

Importantly, as agent 0 recognizes the effect of his effort decision on prices, Eq. (7) is no

longer a valid first-order condition of his problem; instead, now his behaviour is characterized

by the requirement that

1 = π ′(ε̄) · {−[κ1(ϑ̄
0
1) − κ2(ϑ̄

0
2)] + [u0

1(e
0
1 + ϑ̄

0
1) − u

0
2(e

0
2 + ϑ̄

0
2)]} (25)

along with Eqs. (8) evaluated at (ε̄, ϑ̄0
1, ϑ̄0

2).

7.2. Weak constrained inefficiency

As before, if we fix a Stackelberg-Walras equilibrium, {ϑ̄, ε̄, q̄}, our goal is again to show

that the allocation (ε̄, c̄), where c̄is = eis + ϑ̄
i
s, is constrained inefficient in the weak sense,

generically on date-1 endowments.

26



With the different first-order condition with respect to effort, Eq. (25), the results of

§5.2 imply that, instead of Eq. (14), we obtain

dW =
{
[κ1(ϑ̄

0
1) · ϑ̄0

1 − κ2(ϑ̄
0
2) · ϑ̄0

2] +
∑I
i=1[u

i
1(c̄

i
1) − u

i
2(c̄

i
2)]
}
· π ′(ε̄) · dε (26)

while

dε =
π ′(ε̄) ·

[
ϑ̄0

2 · ∂2u1
2(e

1
2 + ϑ̄

1
2) · dϑ0

2 − ϑ̄
0
1 · ∂2u1

1(e
1
1 + ϑ̄

1
1) · dϑ0

1

]
π ′′(ε̄) ·

{
[κ1(ϑ̄0

1) · ϑ̄0
1 − κ2(ϑ̄0

2) · ϑ̄0
2] + [u0

1(e
0
1 + ϑ̄

0
1) − u

0
2(e

0
2 + ϑ̄

0
2)]
} . (27)

Generically on date-1 endowments, a policy can induce dε such that dW > 0.

8. Uninsurable idiosyncratic risk

As an alternative framework, and in order to show that these results extend to economies

with idiosyncratic risk, we now study a model where the agents are subject to uninsurable

idiosyncratic shocks. For the sake of brevity, we restrict attention to the weaker definition

of constrained inefficiency.

Individuals are of different types, i = 0, . . . , I, and within each type there is a continuum

of individuals of mass mi. For simplicity, we assume that m0 = 1.

Individuals of different types differ in their period-1 preferences and in their endow-

ments, but they face the same idiosyncratic shocks. For simplicity, let us assume that there

are only three personal states, denoted by s = 1, 2, 3. In s = 1 there is no shock in the en-

dowment of the consumption good, while in s = 2, 3 there is a positive and negative shock,

respectively, of size z. In period 1, a fraction π(ε) of the individuals find themselves in

state 1, while equal fractions of size 1
2 [1− π(ε)] find themselves in states 2 and 3. However,

there is no aggregate uncertainty: the aggregate endowment of the economy in period 1 is∑I
i=0m

i · ēi, where ēi is the endowment of individuals of type i in state 1, where there is

no shock.

Once again, the probabilities of each personal state depend on the aggregate effort that

agents of type 0 will choose to exert. In particular, while the expected value of the en-

dowment remains unchanged with effort, higher effort increases the probability of observing

no shock and decreases the probability of positive and negative shocks. A lower effort, in

other words, induces a mean-preserving spread in the distributions of the agents’ wealth.

Therefore, a risk averse agent would prefer a distribution that second-order stochastically

dominates, and this is why he would decide to exert effort.
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8.1. Competitive equilibrium

Suppose there is only a risk-less asset that can be traded: it pays one unit of the consumption

good at date 1. Holdings of the asset are bi and its price is q.

8.1.1. The problem of agents of type i > 1

Once again, all agents of types other than 0 have to choose their holdings of the riskless

bond, and therefore the consumption in period 0 and in every personal state in period 1.

The problem that an agent of type i > 1 faces is to choose bi so as to maximize

−q · bi + π(ε) · ui(ei + bi) + 1
2
· [1− π(ε)] · [ui(ei + z+ bi) + ui(ei − z+ bi)].

These agents take the price of the riskless bond and the probabilities of the personal states

as given. The first-order condition of this problem is, then, that

q = π(ε) · ∂ui(ei + bi) + 1
2
· [1− π(ε)]

[
∂ui(ei + z+ bi) + ∂ui(ei − z+ bi)

]
. (28)

8.1.2. The problem of agents of type 0

On the other hand, each agent of type 0 has to maximize

−ε− q · b0 + π(ε) · u0(e0 + b0) +
1
2
· [1− π(ε)] · [u0(e0 + z+ b0) + u0(e0 − z+ b0)]

by his choice of savings, b0, and effort, ε.

It is imporant to note that, although we have assumed that the probability of each state

depends on the aggregate effort exerted by all agents of type 0, when an agent j of type 0

solves his maximization problem, he sees the probability of each state as depending only on

his own level of effort.15 In equilibrium, this does not matter as all agents of type 0 choose

the same level of effort.

Here, the first-order conditions are that16

1 = π ′(ε) ·
[
(u0(e0 + b0) −

1
2
· u0(e0 + z+ b0) −

1
2
· u0(e0 − z+ b0)

]
(29)

and

q = π(ε) · ∂u0(e0 + b0
j) +

1
2
· [1− π(ε)] ·

[
∂u0(e0 + z+ b0) + ∂u0(e0 − z+ b0)

]
. (30)

15 That is, strictly speaking: each agent j of type 0 chooses a level of effort εj, considering the probability

π(εj); agents of types i > 1, on the other hand, take as given the probability π(
∫
εj dj).

16 As with the case of complete markets, we can make interiority assumptions so that we do not have to

look for boundary solutions.
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8.1.3. Nash-Walras equilibrium

As before, the first-order conditions of individual rationality and the market clearing require-

ment characterize competitive equilibrium. We denote competitive equilibria by {b̄, ε̄, q̄},

where b̄ = (b̄i)Ii=0 is a profile of savings. These values solve the first-order conditions,

Eqs. (28), (29) and (30), as well as the equality
∑I
i=0m

i · bi = 0.

8.2. Constrained inefficiency of competitive equilibrium

Now, consider a policy intervention that perturbs by db0 the holdings of the riskless bond

of all agents of type 0.The welfare effects of such policy around the competitive equilibrium

point, dW are, as before, the sum of:

1. the direct loss due to a different level of effort, −dε;

2. the indirect effect due to the change in probabilities,

I∑
i=0

mi ·
{
ui(c̄i1) −

1
2
·
[
ui(c̄i2) + u

i(c̄i3)
]}
· π ′(ε̄) · dε,

where c̄is represents the equilibrium consumption of agents of type i in state s; and

3. the indirect effect due to the reallocation of savings,

π(ε̄) ·
I∑
i=0

mi · ∂ui(c̄i1) · dci1 +
1
2
· [1− π(ε̄)] ·

I∑
i=0

mi ·
[
∂ui(c̄i2) · dci2 + ∂ui(c̄i3)dci3

]
.

As before, taking into account the first-order conditions of the agents at the equilibrium

point and the market clearing conditions, this expression simplifies to

dW =

I∑
i=1

mi ·
{
ui(c̄i1) −

1
2
·
[
ui(c̄i2) + u

i(c̄i3)
]}
· π ′(ε̄) · dε, (31)

where we can substitute

dε = −
π ′(ε̄)

π ′′(ε̄)
·
∂u0(c̄0

1) · dc0
1 −

1
2 · [∂u

0(c̄0
2) · dc0

2 + ∂u
0(c̄0

3) · dc0
3]

u0(c̄0
1) −

1
2 · [u0(c̄0

2) + u
0(c̄0

3)]
. (32)

By strong concavity,

I∑
i=1

mi · ui(ei + b̄i) − 1
2
·
I∑
i=1

mi · ui(ei + z+ b̄i) − 1
2
·
I∑
i=1

mi · ui(ei − z+ b̄i) > 0,

which implies that the competitive level of effort is inefficiently low: an increase in the level

of effort would be welfare improving for the whole society. Then, Eq. (15) implies that the
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direction of the perturbation of the bond holdings of agent 0 that implements a higher level

of effort depends on the sign of expression

∂u0(e0 + b̄0) · dc0
1 −

1
2
·
[
∂u0(e0 + z+ b̄0) · dc0

2 + ∂u
0(e0 − z+ b̄0) · dc0

3

]
.

If we now assume that agents of type 0 are prudent, we conclude that a perturbation

db0 < 0 induces an improvement in social welfare: if these agents save below the equilibrium

level, with convex marginal utility they will exert a higher level of effort since by doing so,

they make the future look less “volatile”. This reduction in volatility makes the aggregate

welfare higher, in spite of the fact that a higher effort subtracts from the aggregate welfare

functions and even though it implies an imperfect operation of the financial market.

Appendix A

Lemma 5. Eq. (16) is true at competitive equilibrium, generically in the space of en-

dowments.

Proof. At competitive equilibrium, the allocation of commodities satisfies the first-order

conditions of Pareto efficiency with respect to the allocation of commodities — compare

Eqs. (5) and (8) with Eq. (11). Thus, we start by defining the following function

K(c1, c2, λ1, λ2, e1, e2) =



∂u0
1(c

0
1) − λ1

∂u1
1(c

1
1) − λ1
...

∂uI1(c
I
1) − λ1∑I

i=0(e
i
1 − c

i
1)∑I

i=1[u
i
1(c

i
1) − u

i
2(c

i
2)]

∂u0
2(c

0
2) − λ2

∂u1
2(c

1
2) − λ2
...

∂uI2(c
I
2) − λ2∑I

i=0(e
i
2 − c

i
2)



(33)

which includes those conditions, the resource constraints for each state in period 1 and

the utility sub-aggregate
∑I
i=1[u

i
1(c

i
1) − u

i
2(c

i
2)].17 Then, at any competitive equilibrium

17 We denote by λ1 and λ2 the Lagrange multipliers associated with the resource constraints in states 1

and 2 respectively. These can be constructed by taking the ratio of the price of each elementary security and

the probability of the corresponding state, at equilibrium.
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of the economy, the 4-tuple (c1, c2, λ1, λ2) is such that all entries of K other than the one

corresponding to
∑I
i=1[u

i
1(c

i
1) − u

i
2(c

i
2)], are equal to 0. With arguments in the order

(c0
1, . . . , c

I
1, e

0
1, λ1, c0

2, . . . , c
I
2, λ2, e1

1, . . . , e
I
1, e

0
2, . . . , e

I
2),

the Jacobian at the Pareto efficient allocation at each state is

∂2u0
1 0 · · · 0 0 −1 0 0 · · · 0 0 0 · · · 0 0 · · · 0

0 ∂2u1
1 · · · 0 0 −1 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

. . .
...

...
...

...
...

. . .
...

...
...

. . .
...

...
. . .

...

0 0 · · · ∂2uI1 0 −1 0 0 · · · 0 0 0 · · · 0 0 · · · 0

−1 −1 · · · −1 1 0 0 0 · · · 0 0 1 · · · 1 0 · · · 0

0 ∂u1
1 · · · ∂uI1 0 0 0 ∂u1

2 · · · ∂uI2 0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 0 ∂2u0
2 0 · · · 0 −1 0 · · · 0 0 · · · 0

0 0 · · · 0 0 0 0 ∂2u1
2 · · · 0 −1 0 · · · 0 0 · · · 0

...
...

. . .
...

...
...

...
... · · ·

...
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 0 0 0 · · · ∂2uI2 −1 0 · · · 0 0 · · · 0

0 0 · · · 0 0 0 −1 −1 · · · −1 0 0 · · · 0 1 · · · 1



. (34)

We now argue that this [2(I+1)+3]× [4(I+1)+2] matrix has full rank, in the following

four steps:

1. Consider the submatrix without the last 2I+1 columns, which we denote with V, and

partition this submatrix as

∂2u0
1 0 · · · 0 0 −1 0 0 · · · 0 0

0 ∂2u1
1 · · · 0 0 −1 0 0 · · · 0 0

...
... . . . ...

...
...

...
... . . . ...

...

0 0 · · · ∂2uI1 0 −1 0 0 · · · 0 0

−1 −1 · · · −1 1 0 0 0 · · · 0 0

0 ∂u1
1 · · · ∂uI1 0 0 0 ∂u1

2 · · · ∂uI2 0

0 0 · · · 0 0 0 ∂2u0
2 0 · · · 0 −1

0 0 · · · 0 0 0 0 ∂2u1
2 · · · 0 −1

...
... . . . ...

...
...

...
... · · · ...

...

0 0 · · · 0 0 0 0 0 · · · ∂2uI2 −1

0 0 · · · 0 0 0 −1 −1 · · · −1 0



. (35)

2. We now show that the top-left (I + 3)× (I + 3) submatrix, which we denote V11, has

full row rank. First notice that, by strong concavity, the submatrix without the last

row has full row rank. Then, for V11 to have full row rank, it suffices to show that
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there exists a column vector α ∈ RI+3 such that V11α = (0,β)T for some scalar β 6= 0.

Let

α =



∂2u0
1(ĉ

0
1)

−1

∂2u1
1(ĉ

1
1)

−1

...

∂2uI1(ĉ
I
1)

−1∑I
i=0 ∂

2ui1(ĉ
i
1)

−1

1


.

Then, V11α is 0 everywhere, except from the last row where it is

β =

I∑
i=1

∂ui1(ĉ
i
1)

∂2ui1(ĉ
i
1)
6= 0.

3. Noting that V11 is invertible, V21 is a zero matrix and V22 has full row rank (by strong

concavity), and since

|V| = |V11||V22 − V21V
−1
11 V12|,

we conclude that V has full row rank.

4. Finally, adding the last 2I+ 1 columns the row rank of the matrix will not change, so

DK has full row rank.

Now, since DK has full row rank, we conclude that K t 0. Then, the set of endowments

at which K(·, e1, e2) t 0 has full measure. Since DK(·, e1, e2) has one fewer column than it

has rows, K(·, e1, e2) t 0 implies that, whenever all conditions for competitive equilibrium

are true, Eq. (16) is also true.
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