Omitir los comandos de cinta
Saltar al contenido principal
Inicio de sesión
Universidad EAFIT
Carrera 49 # 7 sur -50 Medellín Antioquia Colombia
Carrera 12 # 96-23, oficina 304 Bogotá Cundinamarca Colombia
(57)(4) 2619500 contacto@eafit.edu.co
EAFITEscuelasEscuela de Economía y FinanzasEsc. de Economía y Finanzas / Bulletin NewsThe productivity of top researchers: a semi-nonparametric approach

Publicaciones / 23/07/2016

The productivity of top researchers: a semi-nonparametric approach

​Lina M. Cortés, Andrés Mora-Valencia & Javier Perote

​Abstract

Research productivity distributions exhibit heavy tails because it is common for a few researchers to accumulate the majority of the top publications and their corresponding citations. Measurements of this productivity are very sensitive to the field being analyzed and the distribution used. In particular, distributions such as the lognormal distribution seem to systematically underestimate the productivity of the top researchers. In this article, we propose the use of a (log)semi-nonparametric distribution (log-SNP) that nests the lognormal and captures the heavy tail of the productivity distribution through the introduction of new parameters linked to high-order moments. The application uses scientific production data on 140,971 researchers who have produced 253,634 publications in 18 fields of knowledge (O’Boyle and Aguinis in Pers Psychol 65(1):79–119, 2012) and publications in the field of finance of 330 academic institutions (Borokhovich et al. in J Finance 50(5):1691–1717, 1995), and shows that the log-SNP distribution outperforms the lognormal and provides more accurate measures for the high quantiles of the productivity distribution.

read more


citation

​Cortés, L. M.,​ Perote, J., & Mora-Valencia, A. (2016). The productivity of top researchers: A semi-nonparametric approach. Scientometrics
Última modificación: 02/08/2016 9:11

Escriba su opinión sobre este artículo