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Abstract. Prior to a collective binary choice, members of a group receive binary signals
correlated with the better option. Expanding membership may provide no benefit, but
expertise is everywhere beneficial. If the group ignores any statistical dependence among
the signals, as through majority vote, an expert may perform better than the group. If the
group accounts for dependence, a relatively expert member puts an upper bound on the
probability of a false belief. The bound holds for any group size and signal distribution.
Furthermore, a population investing in expertise is better off cultivating a small mass of
elites than adopting an egalitarian policy.
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I. Introduction

Expert advice pervades modern society. Patients visit doctors for diagnoses. Journalists
cite academics in their stories. Firms hire consultants to evaluate mergers. At its core,
expertise is information, and we hope experts make more informed decisions.1 Furthermore,
we hope more informed decisions improve welfare. Economic studies offer encouragement.
For example, Bloom et al. (2013) find expert management practices raise firm profits, and
Bronnenberg et al. (2015) find informed shoppers are more likely to buy less expensive store
brand versions of largely equivalent products.

If expertise is good, and more is better, then groups of the most distinguished experts
presumably make the best decisions. However, the Marquis de Condorcet famously dis-
counted the necessity of expertise in a remarkable insight over two centuries ago. If enough
marginally informed people decide an outcome by majority vote, the group will collectively
arrive at the right decision (Condorcet 1785). Condorcet’s proposal has broad implications
for society. It can motivate a diverse range of institutions, from democracy itself, to an ex-
pressive function of law (Dharmapala and McAdams 2003), to hierarchical decision making in
firms (Katzner 1995). Because of its wide applicability, the Condorcet Jury Theorem (CJT)
continues to command interdisciplinary research attention. Economists, politicial scientists,
and mathematicians in particular have devoted several decades to its delineation.

In its classical version, the CJT presents a group facing a binary decision. Each member
has a signal correlated with the better of the two options. As the group size grows, a
majority vote identifies the better option with probability nearing one. The result hinges on
the assumption of statistical independence. No signal provides information on any other. In
practice, however, individuals can share common information, culture, ideology, etc. Such
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1Skill refinement is another form of expertise, but decisional ability is the focus here.

1



2 ALEXANDER LUNDBERG

commonalities weaken the case for independence, but the CJT is robust to a variety of
extensions. For example, as long as the average correlation between signals goes to zero as
group size grows, the result holds (Ladha 1992). Furthermore, the result holds for a broad
class of dependent signals (Peleg and Zamir 2012), and negative correlation can even be
helpful (Berg 1993).

Under a variety of conditions, then, a large enough group will continue to make the
right decision with almost perfect accuracy. Is expertise therefore overrated? This article
provides a “not so fast” answer. Under arbitrary dependence, an infinitely sized group
may fail to perform any better than a single member. Importantly, the failure can occur
whether the group effectively ignores the dependence via majority vote, as in most of the
literature, or members pool their information to update as a collectively rational agent.
A majority vote tends to be the more dangerous approach though. If the group ignores
dependence, expanding membership can even be harmful. A sufficiently large number of
relatively uninformed members with highly correlated votes can always outweigh a more
informed contingent. Since one way to eliminate such a risk is to restrict group membership,
a good rule of thumb for a risk-averse (or ambiguity-averse, more accurately) authority is to
delegate key decisions to experts.

If a group does account for dependence, expertise has a clearly defined benefit. A single
expert places an upper bound on the probability of a mistaken belief. The bound is attractive
because it applies under any group size and any signal distribution.

The results are motivated through a graphical interpretation of statistical dependence. To
get a sense for the classical setting, consider what the assumption of independence means for
a sequence of signals. Let A and B denote the two states of the world. Each group member
i receives a signal, ai or bi. The signals are informative, symmetric across members, and
symmetric around the state of the world, meaning P (ai|A) = P (bi|B) = p > 1/2 ∀i ∈ N+≡
{1, 2, 3, ...}. Figure 1 provides a graphical depiction of independence conditional on state A.
Without loss of generality, the events a1 and b1 are grouped into contiguous blocks.

a1

b1

p

(1− p)

a1 ∩ a2

a1 ∩ b2

b1 ∩ a2

b1 ∩ b2

p2

(1− p)p

p(1− p)

(1− p)2

. . .

Figure 1. Independence Conditional on A.

The picture reveals the precision required by the assumption. Informally speaking, the only
permissible sequence requires the signal for each group member to subdivide the previous
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signals into an event of area p for the correct inference and area (1−p) for the incorrect one.
Any other of the infinite possible sequences would violate independence.

Extensions of the CJT allowing for dependence generally require a type of symmetry be-
tween group members (Peleg and Zamir 2012). The graphical approach is useful because
it yields conclusions under any type of dependence, and that flexibility is useful because a
number of social processes can produce different correlations between signals. For one, net-
work structure can shape learning and information diffusion (Jackson et al. 2017). Group
members might also converse with each other before voting, as in DeGroot (1974). Allowing
for arbitrary dependence is a way to capture such learning prior to a decision. Of course,
proper inference does require a knowledge of the underlying dependence structure. A major-
ity vote effectively ignores any dependence, which can distort beliefs. Again, one advantage
of choosing an expert over a group is the reduction of belief distortion caused by correlation
neglect.2

If group size provides no guarantee of a good decision, but expertise does, then demo-
cratic participation might be counterproductive. Meetings and elections can impose hefty
transaction costs, and elitism is thereby a less expensive policy than democratic engagement.
Furthermore, consider the problem of social investment in human capital. Even in the orig-
inal, highly democratic setting envisioned by Condorcet, a strategy of elitism is optimal.
Though feasible in technicality, a policy of universal education is only superior when param-
eter values are grossly implausible; the benefit of a correct decision must be many orders of
magnitude higher than investment and participation costs for even small population sizes.
Rather than invest in universal expertise, society does better by cultivating a few elites and
relying on their wisdom.

While the results mostly dampen enthusiasm for organizational democracies, certain types
of statistical dependence offer a point of optimism. For example, three individuals, each of
whom is more likely to be wrong than right, can perfectly determine the state of the world
if they share just the right dependence among their signals (but they must understand
the nature of the correlation to draw the right inference). If society could identify such
dependencies, or create them by investment, good decisions might be comparatively cheap
and frequent. Additionally, expertise is never cheap, often requiring years of continuous work
to develop, nor is it a panacea—even famous experts can and do fail spectacularly in their
predictions. Still, the analysis provides a sobering overall picture of democratic participation.

The next section briefly describes the related literature. Section III presents the basic
model, and Section IV presents the main results on the value of expertise. Section V discusses
the voter participation and investment decisions. Finally, Section VI presents an optimistic
result, which demands no expertise, while Section VII concludes. All proofs are left to the
Appendix.

2A number of psychological pitfalls can also beset group decision making (e.g., Bénabou [2013], Sunstein
[2005]). This article emphasizes the importance of expertise in a rational setting, but groupthink can devalue
its function in practice. On the other hand, Charness and Sutter (2012) cite a body of experimental evidence
in which groups are less susceptible to cognitive biases than individuals in games of strategy.
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II. Related Literature

The literature on the CJT is vast, and this section is not a complete review. Rather, it
explains how this article fits into the current literature.

In its most basic form, the CJT assumes each of n individuals has a signal with probability
p > 1/2 of indicating the better of two outcomes.3 The signals are independent, and the
outcome is decided by majority vote. Most formulations of the CJT assume n is odd. If
tie votes are decided by a coin flip, an even group size makes no material difference to any
conclusion, but combining even and odd results introduces unwieldy non-monotonicity. For
convenience, this article largely follows the convention of an odd group size. Define

F (p, n) ≡
n∑

k=
(n+1)

2

(
n

k

)
pk(1− p)n−k

as the probability of a correct majority vote for accuracy p and group size n. Then,

Proposition 1. If p > 1/2 and signals are mutually independent, limn→∞ F (p, n) = 1.
Further, if n is odd, the sequence {F (p, n)}∞n=1 is monotonic.

For a proof of Proposition 1, see Boland (1989).
Many studies aim to relax the assumptions of the classical CJT in three principal ways.

II.1. Homogeneity. Not every group member needs an identical p. Ben-Yashar and
Paroush (2000) provide a finite CJT in which a majority vote performs better than a vote
from a randomly selected group member, assuming each signal accuracy is greater than one
half. The signals do need to be bounded above one half for the CJT to hold (Paroush 1998),
but adding one informed member (with pi > 1/2) and one uninformed member (pi = 1/2)
always improves the the performance of the group (Ben-Yashar and Zahavi 2011). Surpris-
ingly, the CJT can fail when members are more likely to be incorrect than correct in one of
two states of nature, even if they are correct on average over both states (Ben-Yashar 2014).
Most work focuses on sufficient conditions, but Berend and Paroush (1998) provide a nec-
essary and sufficient condition for the asymptotic CJT under heterogenous signals. Lindner
(2008) further addresses the case of unequal voting weights.

II.2. Independence. Nitzan and Paroush (1984) were the first to address the importance of
independence, showing simple majority is not always the best voting rule without it. Boland
(1989) and Berg (1993, 1994) prove the asymptotic CJT for cases of dependent voters with a
leader who influences the others. Ladha (1995) puts forward several correlated distributions
for which the theorem still holds. In the examples, positive correlation reduces competency
but negative correlation improves it. For deriving probability distributions in applied work,
Kaniovski (2010) offers conditions for correlation to be helpful in different solution methods.

3While Condorcet first proposed his vision for collective wisdom in 1785, Laplace offered the first math-
ematical proof of the hypothesis in 1812 (Ben-Yashar and Paroush 2000).
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If the average correlation between signals goes to zero as group size grows, the CJT still
holds (Ladha 1992). The non-asymptotic CJT also holds for all exchangeable signals—
that is, when jurors can be treated symmetrically or “anonymously” (Ladha 1993).
Berend and Sapir (2007) provide several equivalent conditions for the non-asymptotic veri-
son of the CJT, while Peleg and Zamir (2012) characterize the asymptotic counterpart under
exchangeability.

Levy and Razin (2015) present a different model of beneficial correlation. Voters exist
along a continuum with varying strength of policy preference. However, all voters prefer the
policy corresponding to the underlying state of the world, which is unknown. Voters receive
two, possibly correlated, binary signals indicating the state of the world. Depending on the
distribution of preferences, correlation neglect can yield better decisions. Glaeser and Sun-
stein (2009) also model correlation neglect but over a normally distributed outcome. Group
members share their information prior to the decision. When they all ignore correlation, a
single member can make a better decision than the group.

II.3. Strategy. Sincere voting is an implicit but important assumption of the CJT. Sin-
cerity means each member votes according to her own signal, without regard for strategic
interaction. Austen-Smith and Banks (1996) show sincere voting is not always a strategic
equilbrium. Wit (1998) shows information aggregation might in fact be more efficient in focal
equilibria (see also Myerson 1998). Apparently, unanimity is a uniquely bad voting rule in
the strategic context (Feddersen and Pesendorfer 1998), but Coughlan (2000) defends una-
nimity via two extensions of the model. Meirowitz (2002) shows unanimity can even generate
a CJT when voters receive signals from a continuum.

A number of other studies explore voting rules and game theory, but this article will
assume voting is sincere. McLennan (1998) provides a justification for the omission of
strategic interaction. The properties of any common interest game imply that whenever
sincere voting establishes the CJT, there exist symmetric Nash equilibria doing so as well.4

Additionally, when the optimal voting rule is adopted, sincere voting is always a Nash
equilibrium (Ben-Yashar 2006). Laslier and Weibull (2011) also introduce a randomized
voting rule which preserves the incentive to vote sincerely.

In addressing the value of expertise, this article straddles the line between relaxing the
homogeneity and independence assumptions. Its main contribution is in providing results
applicable under arbitrary dependency. It also introduces the questions of participation and
investment in the classical setting. The results complement the work of McMurray (2013),
who develops a model of costless voting in which participation is incomplete. In the model,
an expert voter with superior information has a higher incentive to vote, but her information
discourages others from voting, as they prefer to leave the decision to experts.

Other studies are more difficult to categorize but examine various extensions of the CJT.
The definition of a correct decision carries another implicit assumption, this time concerning

4On a related question, Ahn and Oliveros (2014) show the asymptotic lack of an informational advantage
for either joint or separate trials when multiple outcomes are decided. If a sequence of equilibria exists for
which the optimal outcome is chosen in the limit for one trial format, such a sequence exists for the other
format too.
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preferences. Conditional on the state of the world, all individuals prefer the same outcome.
Miller (1986) shows the CJT still applies if the correct decision is defined as the outcome
preferred by the majority of voters. Several studies endogenize the quality of signals through
effort (e.g., Koriyama and Szentes 2009, McCannon and Walker 2016, Mukhopadhaya 2003,
Persico 2004). Committee members underprovide information as a public good, which mutes
the benefit of information aggregation. For a different approach, Sah and Stiglitz (1998)
explore whether a committee vote or a hierarchical system is a better way to make decisions.

A number of theoretical studies examine how to maximize the informational content of
expert advice under private biases. For example, Hilger (2016) analyzes the incentives of
expert firms to conceal their costs of production. Krishna and Morgan (2001) extend the
Crawford and Sobel (1982) model to a setting of two biased experts. Sequentially consulting
each one for advice can be informative when they have opposing biases, but the approach is
always a bad idea when they have the same bias. Gerardi and Yariv (2008) largely support
the result in a different model of costly expertise acquisition. As a final example, Li and
Suen (2004) model the inherent tradeoff in delegating a decision to a privately interested
expert with a partisan viewpoint. If the prinicipal and expert share the same (opposite)
partisanship, they align on more (fewer) decisions, but the principal receives less (more)
informative advice. The current article looks at group decisions under a common objective,
so the incentive to withhold or distort information is absent.

Finally, Congleton (2007) runs Monte Carlo simulations of a slightly informed electorate
and compares their median estimate of a continuous quality measure to an estimate of an
expert with a more sophisticated regression technique. In many cases, the electorate performs
better than the expert (cf. Surowiecki 2005). This article differs in its theoretical focus on
a binary decision.

III. The Model

A group is comprised of n members who receive binary signals correlated with an unknown
state of the world, S ∈ {A,B}.

III.1. The Signals. Each signal, si ∈ {ai, bi}, is informative but noisy, satisfying

1 > P (ai|A) = 1− P (bi|A) > 1/2,

1 > P (bi|B) = 1− P (ai|B) > 1/2, and

ai ∩ aj 6= ai for i 6= j.

(A1)

The last condition requires the signals to be different from each other.
Let n ≡ {1, 2, ..., n} index the group members, and let k = {k1, k2, ..., k|k|} ⊆ n denote an

ordered subset with cardinality |k|, which may be infinite if n→∞. Define K as the set of
all possible indices for which k 6= ∅. Let Sk denote the set of all possible realizations of the
signals indexed by k, and define sk = (sk1 , sk2 , ...) as the vector of realized signals, with s̄k
denoting its complement. That is, if sk = (ak1 , bk2 , ...), then s̄k = (bk1 , ak2 , ...). Also, let S̄
denote the complement of S ∈ {A,B}.

Some results will refer to vectors of unrealized signals. Let vi stand for the unrealized
signal i, with vk denoting the vector of unrealized signals for a given set Sk.
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The traditional Condorcet model assumes symmetry around the true state, implying
P (ai|A) = P (bi|B) ∀i ∈ N+. Accounting for statistical dependence, symmetry is equiva-
lent to

P (sk|A) = P (̄sk|B) ∀k ∈ K, sk ∈ Sk. (A2)

Assumption (A2) implies the standard equality of P (ai|A) = P (bi|B) ∀i ∈ N+.

III.2. The Updates. The group updates beliefs in one of two ways. In the first scenario,
members recognize the correlation between the signals and update as a rational Bayesian:

π1 =
P (A| ∩n

i=1 si)

P (B| ∩ni=1 si)
=
P (∩ni=1si|A)

P (∩ni=1si|B)

P (A)

P (B)
, (S1)

In the second scenario, the members treat the signals as if they were conditionally indepen-
dent:

π2 =
P (A| ∩n

i=1 si)

P (B| ∩ni=1 si)
=
[ n∏

i=1

P (si|A)

P (si|B)

]P (A)

P (B)
, (S2)

The “conditional” modifier is dropped in the remaining discussion.

For simplicity, assume the members start with uninformative priors. The priors play no
important role in any result, but their equality does abstract from heterogenous initial beliefs.

Lastly, let Gn denote the set of all possible distributions over the n signals, and let c, e, and
f denote the events of placing odds strictly greater than, equal to, or strictly less than one
on the true state of the world after. As a mnemonic device, c, e, and f stand for “correct,”
“equal odds,” and “false.” Note that correct and false beliefs are not complements if e has
non-zero measure.

IV. The Value of Expertise

According to the CJT, group size can compensate for a lack of expertise, but does the
claim still hold under statistical dependence? The answer is unfortunately no. In fact, in
the limiting case, expertise is essential to an informed decision.

a1 b1

A B

a2 b2
a3 b3...

d1
d2

Figure 2. Depiction of Sea of Noise

IV.1. Sea of Noise. Although a complete description of every g ∈ Gn is not feasible for
large n, consider the class depicted by Figure 2, in which each event ai|A is obtained by
shifting upward the previous ai−1|A by some non-zero di−1. Though not pictured, recall
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P (bi|A) = 1− P (ai|A). Without loss of generality, the events can be ordered to satisfy the
following assumption for any index k ∈ K and m ∈ N+:

P (ak|k|+m ∩ ( ∪
i∈k
ai)|A) = p−

k|k|+m−1∑
j=k|k|

dj,

P (bk|k|+m ∩ ( ∩
i∈k
ai)|A) =

k|k|+m−1∑
j=k|k|

dj,

∞∑
i=1

di ≡ γ ≤ 1− p.

(A3)

Note how any infinite subset of the sequence retains the same basic structure as the
complete set. This convenient feature simplifies various proofs and welfare results.

Lemma 1. ∀k ∈ K, i ∈ k, ∃ δi, σi ∈ {αi, βi}—analogs to di, si ∈ {ai, bi}—satisfying (A3)
∀k′ ⊂ k.

The following lemma is also useful.

Lemma 2. P (sk|S) = P (sk|S̄) ∀ sk ∈ Sk s.t. ∃ i, j ∈ k for which si 6= sj.

Surprisingly, the only informative case occurs when every group member has an identical
signal. In every other case, posterior beliefs are equal to priors. More signals therefore only
introduce uncertainty.

Suppose, first, the group knows the dependence structure and updates accordingly.
Increasing group membership is not entirely bad since the additional signals provide
insurance against a false belief. Proposition 2 summarizes the main conclusions.

Proposition 2. ∀k ∈ K, (S1) and (A1)-(A3) ⇒
(1) P (c|vk) ≤ P (c|vk\y) and P (f |vk) ≤ P (f |vk\y) ∀y ⊆ k, and

(2) lim|k|→∞ P (c|vk) = p− γ and lim|k|→∞ P (f |vk) = (1− p)− γ.

Extra signals do nothing but introduce noise. They reduce the chance of a correct belief,
but they also reduce the chance of a mistaken belief. In the extreme case, they wash out
and provide negligible information.

Corollary 1. For small ε > 0, let p = .5 + ε and γ = 1− p. Then lim|k|→∞ P (e|vk) = 1− 2ε.

Even though each signal is different and informative, their dependence creates a sea of noise.
In contrast to the CJT, an increasingly large group is no closer to learning the truth.

Now suppose the group ignores any dependence, as most of the literature assumes.
Instead, members treat signals as if they were independent by taking a majority vote. As it
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turns out, a group vote is then no different than a single vote. That is,

Proposition 3. ∀k ∈ K s.t. |k| ∈ {2x− 1|x ∈ N+}, (S2) and (A1)-(A3) ⇒
(1) P (c|vk) = p and P (f |vk) = (1− p), and

(2) lim|k|→∞ P (c|vk) = p, and lim|k|→∞ P (f |vk) = (1− p).

The marginal group member provides zero marginal benefit. For any size group, the proba-
bilities of a false and correct decision are simply those of a single member.5

For the class of dependent signals given by (A3), expanding membership adds noise at
worst and nothing at best. Interestingly, the result holds whether or not the group accounts
for statistical dependence.

IV.2. Experts. If experts have more information, they should make better decisions on
average. In the model, a better average decision comes through a higher chance of a correct
signal, pi. Although pi is greater than one half for every individual by assumption, it can be
helpful to refer to those with a relatively high pi as “experts” and those with a relatively low
pi as “inexperts.” Intuitively, a group of experts should make better decisions on average
than a group of inexperts. Showing the result in terms of Proposition 1 is an easy exercise.
For any group size, both the probability of a correct decision and the rate of its convergence
increase in p.

Table 1

s P (s|A) P (s|B)

a1 ∩ a2 x 1− p1 − y
a1 ∩ b2 p1 − x y

b1 ∩ a2 y p1 − x
b1 ∩ b2 1− p1 − y x

Less obvious is what benefit a single expert can bring to a group of inexperts. Does
the expert raise up the group? Does the group bring down the expert? Or is it some
combination of the two? Proposition 4 gives an optimistic answer. Suppose the group
accounts for statistical dependence in its beliefs. In terms of believing in the wrong option,
the group can never do worse than its best member.6

Proposition 4. (S1), (A1), and (A2) ⇒ P (f |vn) ≤ 1−max{p1, p2, ..., pn} ∀n ∈ N+, g ∈ Gn.

5Note that Proposition 3 does require n to be odd. As discussed in Section II, allowing an even n with a
coin flip tie-breaking rule only introduces extra cases without altering the main conclusion. Asymptotically,
the parity of n is unimportant because the chance of a tie vote converges to zero.

6Henry David Thoreau once quipped, “The mass never comes up to the standard of its best member, but
on the contrary degrades itself to a level with the lowest” (Thoreau and Shepard 1961, at 4). Proposition 4
shows just the opposite—the best member elevates the lowest.
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The power in the result is its generality. Proposition 4 holds under arbitrary dependence.
A similar result applies to the probability of an uninformative outcome. The factor of two
here appears because for symmetric signals, any uninformative event must come with a pair.

Proposition 5. (S1), (A1), and (A2)⇒ P (e|vn) ≤ 2(1−max{p1, p2, ..., pn}) ∀n ∈ N+, g ∈ Gn.

An expert is therefore an insurance policy against bad or uninformed choices. For example,
if an expert has pi = 9/10, the chance of the group choosing the wrong outcome is no greater
than 1/10, and the chance of deriving no information from communication is no greater than
2/10. Less fortunately, the bounds on bad outcomes are tight. The case of Proposition 4
is trivial for n = 1. For the bound on Proposition 5, consider the general case for n = 2
presented by Table 1. Let x + y = p1 and x = 2p1 − 1. Then P (e|v2) = p1 − x + y =
2(1− p1) = 2(1−max{p1, p2}).
IV.3. When More is Worse. For an expert to bound mistaken beliefs, the group
must update rationally. Unfortunately, an expert may be powerless if the group ignores
dependence. Take the intuitive case of a single expert amid a less informed group. The
expert has accuracy p̄, and the other n members have a lower

¯
p. Denoting the expert’s

unrealized signal by v0,

Claim 1. ∀ 1 > p̄ >
¯
p > 1/2, ∃n ∈ N+, g ∈ Gn, s.t. P (c|v0,vn) < p̄, and P (f |v0,vn) > (1−p̄).

Since positively correlated signals contain less information than independent ones, they
are overweighted when votes are counted equally. Thus, if the lesser informed contingent
has enough positively correlated votes, their voice will drown out the expert, who would
otherwise make better decisions than the group.7

In summary, expertise is everywhere beneficial, and group size cannot always compensate
for its absence. Whether or not a group accounts for statistical dependence, the signals may
combine to create a sea of noise, providing no information. If the group does account for
dependence, an expert always raises up the other members, but if not, the other members
can bring an expert down.

V. Social Welfare

Since the CJT does not hold under arbitrary statistical dependence, increasing partici-
pation in a group vote is no guarantee of a sound decision. On the other hand, recruiting
an expert does provide some guarantee (see Propositions 4 and 5 ). The tradeoff between
expertise and participation therefore raises the question of social welfare. Returning to the
classical independence setting, consider the optimal group size when participation is costly.
Simple intuition is unclear as to whether participation should rise with expertise (as mea-
sured by p = pi ∀i ∈ n). Experts add more to the group than inexperts, but a group might
try to compensate for a lack of expertise by increasing membership.

7This result complements Glaeser and Sunstein (2009), who present a similar conclusion with learning
over a continuous, normal distribution.
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Suppose a population of size N is choosing whether to adopt a new policy. Let d = 1
denote a correct decision, i.e., instituting the policy when and only when it improves welfare,
and d = 0 an incorrect decision. The vote yields a collective benefit u(d,N) = duN . If the
policy is a public good, then u is the benefit per individual of the better outcome, with
the utility of the worse outcome normalized to zero. Expertise is homogenous across the
population, so the opportunity cost of participation, w, is constant. If the group recruits n
members of expertise p, the net expected utility of a vote is

EU(p, n) = F (p, n)uN − nw, (1)

where F (p, n) is the probability of a correct decision given p and n, as defined in Section II.

V.1. Optimal Participation. For a given level of expertise, a group optimizes its
membership by choosing n to maximize equation (1).8 Let n∗(p) ∈ {1, 2, ..., N} denote the
solution. Since the choice set is finite and expected utility is bounded, n∗(p) is well defined.
Assume F (p, 1)uN > γ0 + γ1(p) to avoid the trivial solution of zero membership. Then
optimal participation rises and falls in p. (But since n is discrete, n∗(p) might be everywhere
decreasing for certain utility parameters.) Expertise and participation are complements for
low p and substitutes for high p.

Proposition 6. The function n∗(p) has a single peak.

Intuitively, a good decision requires a modicum of expertise. If a group is uninformed,
participation is simply not worth the cost. On the other hand, if a group is sufficiently
informed, then participation and expertise become substitutes. The marginal benefit of an
expert to the decision will eventually exceed her marginal cost of participation. Table 2
provides a demonstration for a policy of relatively small importance, with u− w = 1.

Table 2. Optimal Participation

p .51 .53 .55 .6 .7 .8 .9

n∗(p) 27 149 153 85 33 17 9

F (p, n∗(p)) 0.541 0.769 0.893 0.969 0.992 0.997 0.999

Note: N = 999, u = 4, γ0 = 3, γ1(p) = 0.

According to the CJT, group size compensates for low expertise, but opportunity costs
present a normative obstacle. Both very uninformed and very informed groups do best by
assigning a choice to a small committee. Of course, for a policy of great importance, even
an uninformed population should devote its every resource to a resolution.

8This formulation of the problem abstracts from the incentive to free ride on the participation of others.
Some real world settings eliminate the incentive, as in jury duty and other organizations with committee
service requirements.
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V.2. Optimal Investment. The next logicial step is to ask how much a group should
invest in creating expertise. Assume expertise p ∈ [1/2, 1] can be created at expense φ(p)
per member, with φ′(p) > 0, φ′′(p) >, φ(1/2) = 0, and limp→1 φ(p) = ∞. For simplicity,
suppose the group invests equally in each member. For a given group size, the optimal
investment maximizes

EU(p, n) = F (p, n)uN − n(w + φ(p)). (2)

As before, w is the opportunity cost of participation. Since the cost of investment is convex,
the following lemma implies the optimal investment is well defined.

Lemma 4. F (p, n) is strictly concave in p ∈ [1/2, 1].

The optimal group size then maximizes (2) given the investment rule. Again, with a
finite objective function over a finite choice set, the problem is well defined. Writing the
optimal investment as a function of group size,

Lemma 5.
∂p∗(n)

∆n < 0.

Society reduces the investment per individual when it invests in a larger proportion of the
population. Thus, Lemma 5 implies an ambiguous relationship between welfare and partici-
pation. As participation rises, social cost rises directly through the opportunity cost but falls
indirectly through the lower investment per individual. The probability of a correct decision
also rises directly through participation but falls indirectly through the lower investment per
individual. The net impact on expected utility is therefore indeterminate.

Table 3. Optimal Participation with Investment

c(p) 1
(1− p) − 2

p4

(1− p) − (1/2)3
tan((π − 1)(p/2) + 1/2)−
tan((π − 1)(1/4) + 1/2)

w 3 1 3 1 3 1

u 4 10,000 4 10,000 4 10,000

n∗ 5 29 7 37 5 27

p∗(n∗) 0.916 0.861 .889 .834 .918 .869

Note: N=999 for all cases.

Depending on the parameters, an inclusive education policy may or may not be desirable,
but consider the examples in Table 3. The optimality of universal education implies a grossly
implausible value function. Results are quite robust to various specifications. For example,
if N = 999 and φ = p4/(1− p)− (1/2)3, a u/w ratio of one billion to one implies an optimal
participation rate of only 8%. If the investment can apply broadly to numerous decisions,
participation rates climb slightly higher, but elitism remains the better policy. Thus, even
in the “best-case” scenario of an independent, homogenous population, society should invest
in a group of elite members and rely on their expertise. The reality of variable training
costs among individuals only amplifies the result, as does the possibility of harmful signal
correlations.



EXPERTISE IN GROUP DECISIONS 13

Although the functions in Table 3 share an asymptote at p = 1, many applications might
well have an earlier one. Van Such et al. (2017) compile a sample of patients seeking visiting
doctors for second opinions, finding only 12% received a complete and correct diagnosis
the first time, while 21% received a completely wrong diagnosis. Training standards for
doctors are among the highest of any profession, so achieving diagnostic reliability of p
near 1 seems unattainable with current technology and patient loads.9 However, imposing
a smaller asymptote generally fails to reverse the superiority of elitism. For example, if
N = 999, φ = 1/(4/5 − p) − (10/3)3, and u/w = 10, 000, the asymptote at p = .8 raises
optimal participation to n∗ = 127.

VI. An Optimistic Finite Result

To this point, every conclusion favors elitism over democracy. Since relative inexperts
can also negate the value of an expert if they ignore statistical dependence, delegation of a
decision to an expert seems all the more attractive (see Claim 1 ). This section provides a
simple yet powerful counterpoint. If properly acknowledged, statistical dependence can be
an asset.

Table 4. Uncovering the True State with Certainty

A B
a1 ∩ a2 ∩ a3 p− x 1−p−2x

a1 ∩ a2 ∩ b3 0 x

a1 ∩ b2 ∩ a3 0 x

a1 ∩ b2 ∩ b3 x 0

b1 ∩ b2 ∩ b3 1−p−2x p− x
b1 ∩ b2 ∩ a3 x 0

b1 ∩ a2 ∩ b3 x 0

b1 ∩ a2 ∩ a3 0 x

Note: If x = (1/2)(1−p), the agent learns
the true state for p ≥ 1/3.

Consider the signals in Table 4 for a group of size three. The group uncovers the state
of the world with certainty if x = (1/2)(1 − p). The case of p = 1/2 is illustrative. Taken
on their own, the signals amount to uninformative coin flips, but taken altogether, they
perfectly reveal the true state of the world. For 1/3 ≤ p < 1/2, even a group of dunces can
learn the true state if they are clever enough to exploit the dependence in their signals.10

9A diagnosis is not a binary decision, but for the sake of argument, consider the question of whether or
not a patient has a particular ailment. Some diseases are notoriously hard to diagnose.

10Three is the minimal number of signals required to uncover the true state. To see why, consider
the general case for n = 2 in Table 1. Assume learning is complete. If x = y = 0, then P (a2|A) = 0, a
contradiction. If y > 0, then x = 0, which implies y = 1−p, but then P (a2|A) = P (a2∩a1|A)+P (a2∩b1|A) =
0 + 1 − p < 1/2, again a contradiction. Lastly, if x > 0, then y = 0, which implies x = p, but then both
signals are identical.
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Claim 2. For the signals in Table 1, learning is complete if x = (1/2)(1− p) and p ≥ 1/3.

If the group wrongly believes in the independence assumption of the Condorcet world,
they will conclude their information has zero value, when in fact their information is perfect.
While independence is often treated as the ideal scenario, Claim 2 upends the intuition.
The CJT requires an asymptotically large group of informed members to achieve certainty.
The right form of dependence requires only three members, and their signals need not be
informative.

VII. Conclusion

A population can obviate expertise if it can only identify or create the right statistical
dependencies among its members. With no obvious mechanism available for meeting the goal,
however, countries and organizations face difficult choices. Should they foster democratic
participation? Should they invest in universal education? In theory, such egalitarian policies
are inferior to elitism. Unacknowledged statistical dependencies can yield poor democratic
decisions, and less informed members of the population can drown out experts. Furthermore,
even in a homogenous population of statistically independent members, elitism is the better
investment strategy for all but the most extreme utility parameters.

The results above assume symmetry in the signals, but perhaps asymmetry could offer
another point of optimism. That point is left for future research, as the topic remains largely
unexplored in the literature. In a recent exception, Stone (2015) presents a model in which
some members have a more accurate signal in one state of the world, while the remaining
members have a more accurate signal in the opposite state. Depending on the parameters,
the asymmetry can be good or bad for the committee.

The results may also have use beyond the question of democracy. Economists frequently
model Bayesian learning through binary signals. For example, Bikhchandani et al. (1992)
examine how individuals react to learning the votes of others before them in sequence, which
partly inspired a literature on herding and information cascades (cf. Banerjee 1992). Rabin
and Schrag (1999) model a process of confirmation bias through a repeated binary signal.
Introducing differential expertise into similar applications might yield further insight on its
importance to good decisions.
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Appendix

Proof of Proposition 1. See Boland (1989).

Proof of Lemma 1. Assume (A1)-(A3). Take any k ∈ K with |k| = ∞. For i ∈ k, define

σi = ski , αi = aki , and βi = bki . Let δ1 =
∑k1−1

j=1 dj and δi+1 =
∑ki+1−1

j=1 dj − δi. By
construction,

m−1∑
j=1
(j∈k)

δj =
m−1∑
j=1

dj ⇒
m−1∑
j=l

(j∈k)

δj =
m−1∑
j=1

dj ∀l,m ∈ N+, l < m, with (m− 1) ∈ k.

Define f(·) as the ordered bijection between N+ and k. That is, f(1) = k1, f(2) = k2, and
so on. (Since both N+ and k are countably infinite, such a bijection exists.) Let k′ ⊂ k with
|k′| /∈ {∅,∞}. For m ∈ N+, define m′ = f(m). Then

P (αk′|k′|+m′ ∩ ( ∪
i∈k′

αi)|A) = P (ak′|k′|+m′ ∩ ( ∪
i∈k′

ai)|A) = p−
k′|k′|+m′−1∑

j=k′|k′|

dj = p−
k′|k′|+m′−1∑

j=k′|k′|
j∈k

δj.

Similarly,

P (βk′|k′|+m′ ∩ ( ∩
i∈k′

αi)|A) = P (bk′|k′|+m′ ∩ ( ∩
i∈k′

ai)|A) =

k′|k′|+m′−1∑
j=k′|k′|

dj =

k′|k′|+m′−1∑
j=k′|k′|
j∈k

δj.

Lastly,
∞∑
j=1
(j∈k)

δj =
∞∑
j=1

dj ≤ 1− p

by construction. Thus, (A2) is recreated for the analogous sequence δi, σi ∈ {αi, βi} under
the bijection f(·). �

Proof of Lemma 2. Assume (A1)-(A3). We seek to show

P (sk|A) = P (̄sk|A) ∀ sk ∈ Sk s.t. ∃ i, j ∈ k for which si 6= sj. (L2′)

By the symmetry assumption, (L2′) implies P (sk|A) = P (sk|B).
The proof uses the following two results. First, any sequence of events containing a “b”

signal between two “a” signals or vice versa must have probability zero. Suppressing the
conditional probability notation,

P (sk) = 0 if ∃ i < j < k for which si 6= sj 6= sk. (L2.A)

Second, defining k+
j = {i ∈ k|i ≥ j} and k−j = {i ∈ k|i < j} for j ∈ k/{k1},

P (sk) = δj−1 if ∃j ∈ k s.t. (si = ai ∀i ∈ k−j ) ∩ (si = bi ∀i ∈ k+
j )

or (si = bi ∀i ∈ k−j ) ∩ (si = ai ∀i ∈ k+
j ),

(L2.B)
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where δj−1 is constructed per Lemma 1. Since (L2′) implies at least two of
the signals are different, (L2.A) and (L2.B) cover all the relevant cases. Sup-
pose ∃ i < j < k for which si 6= sj 6= sk. Then P (sk) = 0 by (L2.A). But
si 6= sj 6= sk ⇒ s̄i 6= s̄j 6= s̄k. Then P (̄sk) = 0 by (L2.A) again, so P (sk) = P (̄sk).
For the remaining sequences in the class of (L2.B), the result is immediate. �

Proof of L2.A. Suppose si = ai, sj = bj, and sk = ak (the proof for the opposite case is
similar). Per Lemma 1, define α1 = ai, α2 = aj, α3 = ak, and β1 = bi, β2 = bj, β3 = bk.

Also, define δ1 =
∑i−1

m=1 dm, δ2 =
∑j−1

m=1 dm− δ1, and δ3 =
∑k−1

m=1 dm− δ2. By the application
of (A2) to the redefined system,

P (α1 ∩ α2) = p([(α1 ∩ α2) ∩ α3] ∪ [(α1 ∩ α2) ∩ β3]) = P (α1 ∩ α2 ∩ α3) + P (α1 ∩ α2 ∩ β3)
⇒ p− δ1 = P (α1 ∩ α2 ∩ α3) + δ2

⇒ P (α1 ∩ α2 ∩ α3) = p− δ1 − δ2,

where the first step makes use of the complementarity of a3 and b3. Then

P (α1 ∩ α3) = P (α1 ∩ α2 ∩ α3) + P (α1 ∩ β2 ∩ α3)

⇒ p− δ1 − δ2 = p− δ1 − δ2 + P (α1 ∩ β2 ∩ α3)

⇒ P (α1 ∩ β2 ∩ α3) = 0. �

Proof of L2.B. The proof is by induction. Apply Lemma 1 to the index k + 1 nesting k
(with |k + 1| = |k| + 1). That is, map {k1, k2, ..., k|k|, k|k+1|} to {1, 2, ..., |k|, |k + 1|}. First,
by the application of (A2) to the redefined system, P (α1 ∩ β2) = δ1. Then

P (β1 ∩ α2) = 1− P (β1 ∩ α2) = 1− P (α1 ∪ β2) = 1− [P (α1) + P (β2)− P (α1 ∩ β2)]
= 1− [p+ 1− p− δ1]
= δ1,

where the second equality follows from De Morgan’s Law, so the induction hypothesis holds
for |k| = 2. For |k|+1, define k+

j = {i|j ≤ i ≤ |k|} and k−j = {i|1 ≤ i < j} for j ∈ k. Assume

σi = αi ∀i ∈ k−j and σi = βi ∀i ∈ k+
j (the proof for the opposite case is similar). That is,

consider a sequence of the form (α1, α2, ..., αj−1, βj, βj+1, ..., β|k|) for some j ∈ {2, 3, ..., |k|}.
Then

P (α1, α2, ..., αj−1, βj, βj+1, ..., β|k|) = P (α1, α2, ..., αj−1, βj, βj+1, ..., β|k|, β|k|+1)

+ P (α1, α2, ..., αj−1, βj, βj+1, ..., β|k|, α|k|+1)

= P (α1, α2, ..., αj−1, βj, βj+1, ..., β|k|, β|k|+1)

+ 0

by (L2.A), so

P (α1, α2, ..., αj−1, βj, βj+1, ..., β|k|, β|k|+1) = P (α1, α2, ..., αj−1, βj, βj+1, ..., β|k|) = δj−1. �
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Proof of Proposition 2. Let y ⊆ k ∈ K. Assume (S1), (A1)-(A3), and S = A (the proof for
S = B is similar). Suppressing the conditional notation for the state of the world,

P (c|vk) = P ( ∩
i∈k
vi = ai) ≤ P ( ∩

i∈k\y
vi = ai) = P (c|vk\y),

since k\y ⊆ k. The equalities follow from Lemma 2. Similarly,

P (f |vk) = P ( ∩
i∈k
vi = bi) ≤ P ( ∩

i∈k\y
vi = bi) = P (c|vk\y),

which establishes (1). For (2), note that (A3) implies P (c|vk) = p −∑|k|−1j=1 δj by way of

Lemma 1. Likewise, P (f |vk) = (1− p)−∑|k|−1j=1 δj. Then

lim
|k|→∞

P (c|vk) = lim
n→∞

p−
n∑

j=1

δj = p− γ, and

lim
|k|→∞

P (f |vk) = lim
n→∞

(1− p)−
n∑

j=1

δj = (1− p)− γ. �

Proof of Proposition 3. Take k ∈ K s.t. |k| ∈ {2x − 1|x ∈ N+}. Assume (S2), (A1)-(A3),
and S = A (the proof for S = B is similar). The agent believes in the correct state of the
world if and only if she receives more “a” than “b” signals. Suppressing the conditional

notation for the state of the world, (A3) implies P (∩i∈kvi = ai) = p − ∑k|k|−1
j=1 dj and

P (∩i∈kvi = bi) = (1− p)−∑k|k|−1
j=1 dj. Define k+

j = {i ∈ k|i ≥ j} and k−j = {i ∈ k|i < j} for
j ∈ k/{k1}. By Lemma 2, P (sk) = 0 if ∃i < j < k for which si 6= sj 6= sk. Also,

P (sk) = δj−1 if ∃j ∈ k s.t. (si = ai ∀i ∈ k−j ) ∩ (si = bi ∀i ∈ k+
j )

or (si = bi ∀i ∈ k−j ) ∩ (si = ai ∀i ∈ k+
j ).

Therefore, excluding the cases where every signal is identical, the agent is equally likely to
receive more “a” or “b” signals. Furthermore, since |k| is odd, the probability of getting
an equal number of each type of signal is zero, implying P (c|vk) = p and P (f |vk) = 1− p.
Since the equalities hold for all finite |k|, they also hold in the limit. �

Proof of Claim 1. Assume the lesser informed members share a perfectly correlated signal.
Then with m lesser informed members, a1 = a1 ∩ a2 ∩ ... ∩ am. Although perfect correlation
violates (A1), introducing miniscule differences in the signals yields the same conclusion,
only messier. Let S = A (the proof for S = B is similar). Under (S2), Bayes’ rule gives

P (A|a0 ∩ b1) =
(1− p̄)(

¯
p)m

(1− p̄)(
¯
p)m + (1− p̄)

¯
pm
,

where the expert signal is denoted by s0. Since the RHS is decreasing to zero in m, ∃n ∈ N+

s.t. P (A|a0∩a1) < 1/2. Then P (c|v0,vn) < P (a1∩a2|A)+P (b1∩a2|A) = P (a2|A) =
¯
p < p̄.
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The result for P (f |v0,vn) is similar. �

Proof of Proposition 4. The proof is by induction. Assume (S1), (A1), (A2), and S = A
(the proof for S = B is similar). The induction hypothesis clearly holds for n = 1. For
illustration, consider the general case of n = 2 presented in Table 1 of Section IV.

By definition, x + y = p2, and x > 1− p1 − y since p1, p2 > 1/2. If p2 > p1 (equivalently,
p1 − x < y), then P (f |vn) = p1 − x + 1 − p1 − y = 1 − p2 = 1 − max{p1, p2}. If p2 < p1
(equivalently, p1 − x > y), then P (f |vn) = y + 1 − p1 − y = 1 − p1 = 1 − max{p1, p2}.
Lastly, if p2 = p1, then P (f |vn) = 1 − p1 − y < 1 − p1 = 1 − max{p1, p2}. Therefore,
P (f |vn) ≤ 1−max{p1, p2}, and the induction hypothesis holds for n = 2.

Next consider the general case for n > 2. Index the n2 possible signal vectors by sj for
j = 1, 2, ..., n2. Without loss of generality, order the signal vectors according to whether they
create a false or correct inference, with the uninformative cases at the end:

P (sj|A) =


fj for j = 1, 2, ..., k

ej for j = k + 1, ..., n2/2

cj for j = n2/2 + 1, ..., n2/2 + k + 1

ej for j = n2/2 + k + 2, ..., n2

for some k ∈ {1, 2, ..., n2/2} (Proposition 3 shows k ≥ 1), where it is understood that
if k = n2/2, no event is uninformative. Furthermore, let sj = s̄j+n2/2 for j = 1, 2, ..., n2/2.
Define faj, eaj, and caj for the respective probabilities of the intersections with an+1. Likewise,
define fbj for the conditional intersection of bn+1 and so on. Then

P (f |vn+1) =
k∑

j=1

1(faj < cbj+n2/2)faj + 1(fbj < caj+n2/2)fbj

+ 1(caj+n2/2 < fbj)caj+n2/2 + 1(cbj+n2/2 < faj)cbj+n2/2

+

n2/2∑
j=k+1

1(eaj < ebj+n2/2)eaj + 1(ebj < eej+n2/2)ebj

+ 1(eaj+n2/2 < ebj)eaj+n2/2 + 1(ebj+n2/2 < eaj)ebj+n2/2.

Because

1(faj < cbj+n2/2)faj + 1(fbj < caj+n2/2)fbj + 1(caj+n2/2 < fbj)caj+n2/2 + 1(cbj+n2/2 < faj)cbj+n2/2

≤ fbj + cbj+n2/2,

1(eaj < ebj+n2/2)eaj + 1(ebj < eaj+n2/2)ebj + 1(eaj+n2/2 < ebj)eaj+n2/2 + 1(ebj+n2/2 < eaj)ebj+n2/2

≤ ebj + ebj+n2/2,

and

1− pn+1 =
k∑

j=1

(fbj + cbj+n2/2) +

n2/2∑
j=k+1

(ebj + ebj+n2/2)
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by construction, then P (f |vn+1) ≤ 1− pn+1.
Next, because

1(faj < cbj+n2/2)faj + 1(fbj < caj+n2/2)fbj + 1(caj+n2/2 < fbj)caj+n2/2 + 1(cbj+n2/2 < faj)cbj+n2/2

≤ fj, and

1(eaj < ebj+n2/2)eaj + 1(ebj < eaj+n2/2)ebj + 1(eaj+n2/2 < ebj)eaj+n2/2 + 1(ebj+n2/2 < eaj)ebj+n2/2

≤ ej,

the induction hypothesis implies (via Lemma 3 ):

P (f |vn+1) ≤
k∑

j=1

fj +

n2/2∑
j=k+1

ej ≤ 1− p∗.

Thus, P (f |vn+1) ≤ 1−max{p∗, pn+1}. �

Lemma 3. Assume (S1), (A1), and (A2). Adopting the terminology and ordering of Propo-
sition 4,

k∑
j=1

fj +

n2/2∑
j=k+1

ej ≤ 1− p∗ ∀n ∈ N+.

Proof of Lemma 3. Assume (S1), (A1), and (A2). The proof is by induction. The induction
hypothesis clearly holds for n = 1. Suppose n > 1. Adopting the terminology and ordering
of Proposition 4, we seek to show

Γ ≡
k∑

j=1

1(faj < cbj+n2/2)faj + 1(fbj < caj+n2/2)fbj

+ 1(caj+n2/2 < fbj)caj+n2/2 + 1(cbj+n2/2 < faj)cbj+n2/2

+ 1(faj = cbj+n2/2)faj + 1(fbj = caj+n2/2)fbj

+

n2/2∑
j=k+1

1(eaj < ebj+n2/2)eaj + 1(ebj < eej+n2/2)ebj

+ 1(eaj+n2/2 < ebj)eaj+n2/2 + 1(ebj+n2/2 < eaj)ebj+n2/2

+ 1(eaj = ebj+n2/2)eaj + 1(ebj = eej+n2/2)ebj

≤ 1−max{p∗, pn+1}.
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Because

1(faj < cbj+n2/2)faj + 1(fbj < caj+n2/2)fbj + 1(caj+n2/2 < fbj)caj+n2/2 + 1(cbj+n2/2 < faj)cbj+n2/2

+ 1(faj = cbj+n2/2)faj + 1(fbj = caj+n2/2)fbj ≤ fbj + cbj+n2/2,

1(eaj < ebj+n2/2)eaj + 1(ebj < caj+n2/2)ebj + 1(eaj+n2/2 < fbj)eaj+n2/2 + 1(ebj+n2/2 < eaj)ebj+n2/2

+ 1(eaj = ebj+n2/2)eaj + 1(ebj = eaj+n2/2)ebj ≤ ebj + ebj+n2/2,

and

1− pn+1 =
k∑

j=1

(fbj + cbj+n2/2) +

n2/2∑
j=k+1

(ebj + ebj+n2/2)

by construction, then Γ ≤ 1− pn+1.
Next, because

1(faj < cbj+n2/2)faj + 1(fbj < caj+n2/2)fbj + 1(caj+n2/2 < fbj)caj+n2/2 + 1(cbj+n2/2 < faj)cbj+n2/2

+ 1(faj = cbj+n2/2)faj + 1(fbj = caj+n2/2)fbj ≤ fj,

and

1(eaj < ebj+n2/2)eaj + 1(ebj < caj+n2/2)ebj + 1(eaj+n2/2 < fbj)eaj+n2/2 + 1(ebj+n2/2 < eaj)ebj+n2/2

+ 1(eaj = ebj+n2/2)eaj + 1(ebj = eaj+n2/2)ebj ≤ ej,

the induction hypothesis implies

Γ ≤
k∑

j=1

fj +

n2/2∑
j=k+1

ej ≤ 1− p∗.

Thus, Γ ≤ 1−max{p∗, pn+1}. �

Proof of Proposition 5. Assume (S1), (A1), and (A2). Following the same approach and
terminology of Proposition 4, the induction hypothesis clearly holds for n = 1. For n + 1,
we have

P (e|vn+1) =
k∑

j=1

1(faj = cbj+n2/2)faj + 1(fbj = caj+n2/2)fbj

+ 1(caj+n2/2 = fbj)caj+n2/2 + 1(cbj+n2/2 = faj)cbj+n2/2

+

n2/2∑
j=k+1

1(eaj = ebj+n2/2)eaj + 1(ebj = eej+n2/2)ebj

+ 1(eaj+n2/2 = ebj)eaj+n2/2 + 1(ebj+n2/2 = eaj)ebj+n2/2.

Because

1(faj = cbj+n2/2)faj + 1(fbj = caj+n2/2)fbj + 1(caj+n2/2 = fbj)caj+n2/2 + 1(cbj+n2/2 = faj)cbj+n2/2

≤ 2fbj + 2cbj+n2/2,
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1(eaj = ebj+n2/2)eaj + 1(ebj = eaj+n2/2)ebj + 1(eaj+n2/2 = ebj)eaj+n2/2 + 1(ebj+n2/2 = eaj)ebj+n2/2

≤ 2ebj + 2ebj+n2/2,

and

1− pn+1 =
k∑

j=1

(fbj + cbj+n2/2) +

n2/2∑
j=k+1

(ebj + ebj+n2/2)

by construction, then P (e|vn+1) ≤ 2(1 − pn+1). An exact analogy to Lemma 3 then
establishes P (e|vn+1) ≤ 2(1− p∗) (proof omitted). Thus, P (e|vn+1) ≤ 2(1−max{p∗, pn+1})
�

Proof of Lemma 4. Since F (p, n) is differentiable, proving concavity is equivalent to showing
its second derivative,

∂2F (p, n)

∂p2
=

n∑
k=

(n+1)
2

(
n

k

)[
k(k − 1)pk−2(1− p)n−k − 2k(n− k)pk−1(1− p)n−k−1

+ (n− k)(n− k − 1)pk(1− p)n−k−2
]
,

is strictly negative over p ∈ (1/2, 1). First, reversing the order of the summation,

F (p, n) =

(
n

n

)
pn +

(
n

n− 1

)
pn−1(1− p) +

(
n

n− 2

)
pn−2(1− p)2 + ...

+

(
n

n+1
2

)
pn−(n+1)/2(1− p)(n−1)/2.

Then

∂F (p, n)

∂p
= npn−1 +

n!

(n− 1)!

[
(n− 1)pn−2(1− p)− pn−1

]
+

n!

2!(n− 2)!

[
(n− 2)pn−3(1− p)2 − 2pn−2(1− p)

]
+ ...

+
n!(

n+1
2

)
!
(
n−1
2

)
!

[
((n+ 1)/2)p(n+1)/2−1(1− p)(n−1)/2

− ((n− 1)/2)pn−1(1− p)(n−1)/2−1
]

is a telescoping series, leaving

∂F (p, n)

∂p
=

n!(
n+1
2

)
!
(
n−1
2

)
!

[
((n+ 1)/2)p(n+1)/2−1(1− p)(n−1)/2

]
=

n!((
n−1
2

)
!
)2 [p(1− p)](n−1)/2.

Therefore,

∂2F (p, n)

∂p2
=

n!((
n−1
2

)
!
)2[((n− 1)/2)(p(1− p))(n−1)/2−1(1− 2p)

]
,
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and
∂2F (p, n)

∂p2
< 0 ⇐⇒ (1− 2p) < 0 ⇐⇒ 1/2 < p. �

Proof of Proposition 6. By the proof of Lemma 3,

∂F (p, n)

∂p
=

n!((
n−1
2

)
!
)2 [p(1− p)](n−1)/2.

Then

∂2F (p, n+ 2)

∆n∂p
=

(n+ 2)!((
n+1
2

)
!
)2 [p(1− p)](n+1)/2 − n!((

n−1
2

)
!
)2 [p(1− p)](n−1)/2,

which, after some algebra, is greater than zero if and only if 4p(1 − p) > (n + 1)/(n + 2).
Since 4p(1− p) = 1 at its maximizer p = 1/2, solving the corresponding quadratic equation
yields

∂2F (p, n+ 2)

∆n∂p

{
≥ 0 if p ∈ [1/2, 1/2 +

√
1− (n+ 1)/(n+ 2)]

≤ 0 if p ∈ [1/2 +
√

1− (n+ 1)/(n+ 2), 1].

Since EU(p, n) is an affine function of F (p, n), the optimal group size is single-peaked. �

Proof of Lemma 5. Writing the optimal investment as a function of the group size, the
first-order condition implies

∂F (p∗(n), n)

∂p
uN − nφ′(p∗(n)) = 0

for any n. Dividing the equality for an incremental group member yields

∂F (p∗(n+ 2), n+ 2)
∂p

∂F (p∗(n), n)
∂p

=
(n+ 2)φ′(p∗(n+ 2))

nφ′(p∗(n))
. (L5)

Now suppose p∗(n + 2) ≥ p∗(n). Then the RHS of (L5) is strictly greater than one. By
Proposition 1, F (p, n) is increasing and approaching one as n grows. Furthermore, the
difference F (p, n + 2) − F (p, n) is decreasing in n. By the proof of Lemma 3, F (p, n) is
concave and approaches one as p grows. Thus, the LHS of (L5) must be strictly less than
one if p∗(n+ 2) ≥ p∗(n), a contradiction. �


