Idris
A language with dependent types

Alejandro Gómez-Londoño

EAFIT University

31th March, 2014
What is Idris

“What if Haskell had full dependent types?” ¹

Idris features

- Full dependent types
- Type classes
- where clauses, do notation, let bindings
- Monad comprehensions
- Totality checking
- Cumulative universes
- Tactic based theorem proving
- Simple foreign function interface (to C)
Idris
Basic Types

Z : Nat
50 : Integer
1.23 : Float
True : Bool
'a' : Char
"foo" : String

[1,2,3] : List Integer
[1,2,3] : Vect 3 Integer
data Nat = Z | S Nat

data Bool = True | False

infixr 10 ::
data List a = Nil | (::) a (List a)

record Person : Type where
 MkPerson : (name : String) ->
 (age : Int) -> Person

1Programming in Idris: a tutorial, Edwin Brady January 2012
plus : Nat -> Nat -> Nat
plus Z y = y
plus (S k) y = S (plus k y)

mult : Nat -> Nat -> Nat
mult Z y = Z
mult (S k) y = plus y (mult k y)

fact : Nat -> Nat
fact Z = 1
fact (S k) = (S k)* (fact k)
mirror : List a -> List a
mirror xs = let xs' = reverse xs in
 xs ++ xs'

even : Nat -> Bool
even Z = True
even (S k) = odd k where
 odd Z = False
 odd (S k) = even k

greet : IO ()
greet = do
 putStrLn "What is your name? "
 name <- getLine
 putStrLn ("Hello " ++ name)
Dependent Types

Definition

In conventional programming languages, there is a clear distinction between types and values...

In a language with dependent types, however, the distinction is less clear. Dependent types allow types to “depend” on values - in other words, types are a first class language construct and can be manipulated like any other value.¹

¹Programming in Idris: a tutorial, Edwin Brady January 2012
data Vect : Nat -> Type -> Type where
 Nil : Vect Z a
 (::) : a -> Vect k a -> Vect (S k) a

data VectSum : Nat -> Nat -> Type where
 Nil : VectSum Z Z
 (::) : (b : Nat) -> VectSum k a -> VectSum (S k) (a + b)
Dependent Types
Example on functions

\[(+++) : \text{Vect } n \ a \rightarrow \text{Vect } m \ a \rightarrow \text{Vect } (n + m) \ a\]
\[(+++) \ \text{Nil} \ \ y = y\]
\[(+++) \ (x :: \ xs) \ y = x :: \ xs ++ y\]

\[\text{vecHead} : \text{Vect } n \ a \rightarrow \text{so } \ (n > 0) \rightarrow \ a\]
\[\text{vecHead} \ (x :: xs) \ _ = x\]

\[\text{vecHead'} : \text{Vect } (S \ n) \ a \rightarrow \ a\]
\[\text{vecHead'} \ (x :: xs) = x\]
Dependent Types
Examples on Implicit Arguments

vectMap : (A : Type) -> (B : Type) -> (A -> B) -> Vect n A -> Vect n B
vectMap _ _ f Nil = Nil
vectMap t1 t2 f (x::xs) =
 f x :: vectMap t1 t2 f xs

vectMap' : {A : Type} -> {B : Type} -> (A -> B) -> Vect n A -> Vect n B
vectMap' f Nil = Nil
vectMap' f (x::xs) = f x :: vectMap' f xs

vectMap'' : (a -> b) -> Vect n a -> Vect n b
vectMap'' f Nil = Nil
vectMap'' f (x::xs) = f x :: vectMap'' f xs
data (=) : a -> b -> Type where
refl : x = x

Now some examples...
Theorem Proving
commands and tactics

compute Normalizes all terms in the goal (note: does not normalize assumptions)

exact Provide a term of the goal type directly

trivial Satisfies the goal using an assumption that matches its type

intro If your goal is an arrow, turns the left term into an assumption

intros Exactly like intro, but it operates on all left terms at once

let Introduces a new assumption; you may use current assumptions to define the new one

Theorem Proving
commands and tactics

- **rewrite** Takes an expression with an equality type \((x = y)\), and replaces all instances of \(x\) in the goal with \(y\). Is often useful in combination with 'sym'

- **state** Displays the current state of the proof

- **term** Displays the current proof term complete with its yet-to-be-filled holes

- **undo** Undoes the last tactic

- **qed** Once the interactive theorem prover tells you “No more goals,” you get to type this in celebration!
