A process calculus for spatially-explicit ecological models

Mauricio Toro
Department of Computer Science,
Universidad Eafit
(joint work with A. Philippou)

Eafit: Logic and Computation Group Seminar
09 June 2015
Background

- One trend of **theoretical ecology**: Individual-based modeling of ecosystems.
- **Individual-based modeling** is the opposite to population-based modeling
- Application area: **Metapopulations**
 - Local populations in spatially-separated habitat patches
 - Populations interact locally inside a patch
 - Individuals can disperse among patches
- Conservation ecology, species reintroduction
Background

• One trend of **theoretical ecology**: Individual-based modeling of ecosystems.

• **Individual-based modeling** is the opposite to population-based modeling

• Application area: **Metapopulations**
 - Local populations in spatially-separated habitat patches
 - Populations interact locally inside a patch
 - Individuals can disperse among patches

• Conservation ecology, species reintroduction
Background (2)

• Mathematical models to represent the average behavior
 • Differential equations
 • Recurrence equations

• **Formal methods** individual-based modeling of ecological systems
 • Process calculi, P-systems, cellular automata
Background (2)

- Mathematical models to represent the average behavior
 - Differential equations
 - Recurrence equations
- **Formal methods** individual-based modeling of ecological systems
 - Process calculi, P-systems, cellular automata
Simulations carried out by ecologists often impose an order on the events that may take place within a model. Ordering can have implications on the simulation. Examples of temporal process ordering in ecological systems include:

- Concurrent ordering
- Reproduction before mortality
- Mortality before reproduction
Simulations carried out by ecologists often impose an order on the events that may take place within a model. Ordering can have implications on the simulation. Examples of temporal process ordering in ecological systems:

- Concurrent ordering
- Reproduction before mortality
- Mortality before reproduction
Our contributions

- Process Algebra with Locations for Population Systems (PALPS)
 - spatial calculus, locations, location attributes
 - location dependent behavior of individuals
 - Process ordering as a policy
 - semantics for a policy for actions
 - formal translation to model checker PRISM
 - simulation results
PALPS

• Basic entities
 • Individuals, Species, Locations, Channels and Attributes
Examples of expressions

- There is only one individual of species s in myloc:
 $$s_{@myloc} = 1$$
- Temperature is less than 40 or Humidity is higher that 90 at location ℓ:
 $$T_{@\ell} > 40 \lor H_{@\ell} > 90$$
- Total number of individuals at location ℓ:
 $$s_{@myloc} + s'_{@myloc} < 10$$
• Examples of expressions

 • There is only one individual of species s in myloc:
 \[s@\text{myloc} = 1 \]

 • Temperature is less than 40 or Humidity is higher than 90 at location ℓ:
 \[T@\ell > 40 \lor H@\ell > 90 \]

 • Total number of individuals at location ℓ:
 \[s@\text{myloc} + s'@\text{myloc} < 10 \]
Examples of expressions

- There is only one individual of species s in myloc:
 $$s@\text{myloc} = 1$$
- Temperature is less than 40 or Humidity is higher than 90 at location ℓ:
 $$T@\ell > 40 \lor H@\ell > 90$$
- Total number of individuals at location ℓ:
 $$s@\text{myloc} + s’@\text{myloc} < 10$$
PALPS syntax (1)

• The individual level

\[P ::= \begin{align*}
0 & \quad \text{inactive individual} \\
\sum_{i \in I} \eta_i . P_i & \quad \text{non-deterministic choice} \\
\sum_{i \in I} p_i : P_i & \quad \text{probabilistic choice} \\
\text{cond} \left(e_1 \triangleright P_1, \ldots, e_n \triangleright P_n \right) & \quad \text{conditional} \\
C & \quad \text{constant}
\end{align*} \]

• Actions

\[\eta ::= a \mid \overline{a} \mid \text{go } \ell \mid \checkmark \quad \text{input,output,move,time} \]
PALPS syntax (1)

- The individual level

\[P ::= 0 \quad \text{inactive individual} \]
\[\sum_{i \in I} \eta_i \cdot P_i \quad \text{non-deterministic choice} \]
\[\sum_{i \in I} p_i : P_i \quad \text{probabilistic choice} \]
\[\text{cond} \left(e_1 \triangleright P_1, \ldots, e_n \triangleright P_n \right) \quad \text{conditional} \]
\[C \quad \text{constant} \]

- Actions

\[\eta ::= a \mid \overline{a} \mid \text{go } \ell \mid \sqrt{\text{input,output,move,time}} \]
PALPS syntax (2)

• The species level

\[R ::= !\text{rep}.P \]

• The system level

\[S ::= 0 \quad \text{inactive system} \]
\[P:⟨s, \ell⟩ \quad \text{located individuals} \]
\[R:⟨s⟩ \quad \text{named species} \]
\[S_1 | S_2 \quad \text{parallel composition} \]
\[S\backslash L \quad \text{restriction} \]
PALPS syntax (2)

• The species level

\[R ::= \!rep.P \]

• The system level

\[
S ::= 0 \quad \text{inactive system} \\
| P:⟨s, ℓ⟩ \quad \text{located individuals} \\
| R:⟨s⟩ \quad \text{named species} \\
| S_1 | S_2 \quad \text{parallel composition} \\
| S \setminus L \quad \text{restriction}
\]
PALPS semantics (1)

- **Operational semantics** defined at the level of configurations \((E, S)\)
 - \(E\): an environment
 - \(S\): a population system
- The environment in needed to evaluate the expressions
- As an example, the initial environment for

\[
S \overset{\text{def}}{=} (P_0:⟨\ell, s, 2⟩|P_0:⟨\ell', s⟩|(\text{!rep}.P_0):⟨s⟩)\setminus \{\text{rep}\}.
\]

is

\[
E \overset{\text{def}}{=} \{(\ell, s, 2), (\ell', s, 1)\}
\]
• **Operational semantics** defined at the level of configurations \((E, S)\)

 - \(E\): an environment
 - \(S\): a population system

• The environment in needed to evaluate the expressions

• As an example, the initial environment for

\[
S \overset{\text{def}}{=} (P_0:⟨\ell, s, 2⟩|P_0:⟨\ell', s⟩|(!\text{rep}.P_0):⟨s⟩)\setminus\{\text{rep}\}.
\]

is

\[
E \overset{\text{def}}{=} \{(\ell, s, 2), (\ell', s, 1)\}
\]
PALPS semantics (2)

- Two transition relations
 - Probabilistic transition relation
 \[(E, S) \xrightarrow{w}^p (E', S')\]
 - Non-deterministic transition relation
 \[(E, S) \xrightarrow{\alpha}^n (E', S')\]
• The semantics is given at two levels
 • Individual level
 • System level
• Asynchronous communication
• All processes synchronize on the time passing actions
• The semantics is given at two levels
 • Individual level
 • System level
• Asynchronous communication
• All processes synchronize on the time passing actions
Process ordering in PALPS (1)

- A policy σ is a partial order on the set of PALPS non-probabilistic actions.
- A policy is set of tuples (α, β), where α, β are actions
- A policy models process ordering in ecological systems
Process ordering in **PALPS** (2)

- A prioritized transition relation

\[
(E, S) \xrightarrow{\alpha} (E', S') \quad \text{and} \quad (E, S) \xrightarrow{\beta}, (\alpha, \beta) \in \sigma
\]

\[
(E, S) \xrightarrow{\alpha, \beta} (E', S')
\]
Process ordering in PALPS (3)

- **Examples of policies in PALPS.** Let $\ell, \ell' \in \text{Loc},$

 - Concurrent ordering $\sigma = \{\}$
 - Reproduction before dispersal $\sigma = \{(\tau_{\text{rep},\ell,s}, \tau_{\text{go},\ell',s})\}$
 - Dispersal before reproduction $\sigma = \{(\tau_{\text{go},\ell',s}, \tau_{\text{rep},\ell,s})\}$
• Varroa-mite parasites live on an $n \times n$ lattice of honey-bee cells and cycle through the following.
 • **Death:** with probability p
 • **Dispersal:** randomly
 • **Reproduction:** produces an offspring of size b
PALPS example (2)
The individual level

\[P_0 \overset{\text{def}}{=} p \cdot P_1 + (1 - p) : \sqrt{.0} \]

\[P_1 \overset{\text{def}}{=} \sum_{\ell \in \text{Nb}(\text{myloc})} \frac{1}{4} : \text{go } \ell. \]

\[\text{cond } (s@\text{myloc} = 1 \triangleright P_2; \text{true} \triangleright \sqrt{.0}) \]

\[P_2 \overset{\text{def}}{=} \overline{\text{rep}}^b \cdot \sqrt{.0} \]

where \(\overline{\text{rep}}^b \overset{\text{def}}{=} \overline{\text{rep}} \ldots \overline{\text{rep}} \)

\(b \) times
PALPS example (4)

- The species level
 \[R \overset{\text{def}}{=} !\text{rep}.P_0 \]

- The system level
 \[\text{System} \overset{\text{def}}{=} (P_0:⟨\ell, s, 2⟩|P_0:⟨\ell', s⟩|(!\text{rep}.P_0):⟨s⟩) \setminus \{\text{rep}\}. \]
We use the policy \textbf{dispersal before reproduction}
\[\{ (T_{\text{rep}, \ell, s}, T_{\text{go}, \ell', s}) | \ell, \ell' \in \text{Loc} \} \] for this example.
• Semantics of the policy **dispersal before reproduction** \(\{(\tau_{\text{rep},\ell,s}, \tau_{\text{go},\ell',s})\} \) for the example.
• Semantics of the policy **dispersal before reproduction** \(\{(\tau_{rep,\ell,s}, \tau_{go,\ell',s})\}\) for the example.
Encoding of PALPS into PRISM (1)

- PRISM is a probabilistic model checker\(^1\)
- To translate PALPS into the PRISM language
 - each process is a module
 - the execution flow is captured by a local variable
 - all processes synchronize on the $\sqrt{}$ action

\(^1\)www.prismmodelchecker.org/
Encoding of PALPS into PRISM (1)

- PRISM is a probabilistic model checker\(^1\)
- To translate PALPS into the PRISM language
 - each process is a module
 - the execution flow is captured by a local variable
 - all processes synchronize on the \(\sqrt{}\) action

\(^1\)www.prismmodelchecker.org/
Encoding of **PALPS into PRISM (2)**

- To translate **PALPS** into the **PRISM** language
 - we map binary communication into multi-way communication
 - replication is bounded
 - we define a global variable for each action to ensure the semantics of the policy
Encoding of **PALPS into PRISM (3)**

Correctness

For any configuration \((E, Sys)\) and policy \(\sigma\), where \(E\) is compatible with \(Sys\), whenever \((E, Sys) \xrightarrow{\alpha} (E', Sys')\) then

\[
\llbracket (E, Sys) \rrbracket \xrightarrow{m} \llbracket (E', Sys') \rrbracket
\]

where \(1 \leq m \leq 3\).

- A similar result holds in the opposite direction.
Model checking of PALPS using PRISM (1)

- Verification of probabilistic temporal PCTL properties
 - Probability of extinction of the population in the next 10 years is less than a certain threshold p_e
 - Within the next 20 years with some high probability, members of the population s will outnumber the members of population s'
 - Compare the average number of individuals of species s at time unit t to a constant
Model checking of **PALPS using PRISM (1)**

- **Verification of probabilistic temporal PCTL properties**
 - Probability of extinction of the population in the next 10 years is less than a certain threshold p_e
 - Within the next 20 years with some high probability, members of the population s will outnumber the members of population s'
 - Compare the average number of individuals of species s at time unit t to a constant
Model checking of PALPS using PRISM (1)

- Verification of probabilistic temporal PCTL properties
 - Probability of extinction of the population in the next 10 years is less than a certain threshold p_e
 - Within the next 20 years with some high probability, members of the population s will outnumber the members of population s'
 - Compare the average number of individuals of species s at time unit t to a constant
Model checking of **PALPS using PRISM (2)**

- **Semantics of model checking**
 - **Defined over Markov Decision Processes:** Computes minimum and maximum probabilities
 - **Approximation defined over Discrete-Time Markov Chains:** Computes reward-based properties, steady state and reachability
Model checking of **PALPS using PRISM** (2)

- **Semantics of model checking**
 - **Defined over Markov Decision Processes:** Computes minimum and maximum probabilities
 - **Approximation defined over Discrete-Time Markov Chains:** Computes reward-based properties, steady state and reachability
Simulation of **PALPS using PRISM**

- Explore random paths of execution
- Search for deadlocks using **PRISM** simulation
- Perform **model-checking by simulation**
Results for the example (1)

<table>
<thead>
<tr>
<th>Case study size</th>
<th>Number of States</th>
<th>Construction time (sec.)</th>
<th>RAM (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 PALPS individuals</td>
<td>130397</td>
<td>8</td>
<td>0.5</td>
</tr>
<tr>
<td>4 PALPS individuals</td>
<td>1830736</td>
<td>101</td>
<td>1.9</td>
</tr>
<tr>
<td>Policy σ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 PALPS individuals</td>
<td>27977</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>4 PALPS individuals</td>
<td>148397</td>
<td>10</td>
<td>0.7</td>
</tr>
<tr>
<td>Extended policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 PALPS individuals</td>
<td>20201</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>4 PALPS individuals</td>
<td>128938</td>
<td>9</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table: Performance of building probabilistic models in PRISM with and without policies.
Results for the example (2)

- Applying a policy $\sigma = \{ (\tau_{rep, \ell, s}, \tau_{go, \ell', s}) | \ell, \ell' \in \text{Loc} \}$ reduced the size of the state space by a factor of 10.
- Applying a policy for the execution of actions among individuals reduced the state space by about 20% more.
Results for the example (2)

• Applying a policy $\sigma = \{ (\tau_{rep,\ell,s}, \tau_{go,\ell',s}) | \ell, \ell' \in \text{Loc} \}$ reduced the size of the state space by a factor of 10

• Applying a policy for the execution of actions among individuals reduced the state space by about 20% more
Results for the example (3)

- Results obtained using statistical model checking
 - Using simulation to verify a PCTL property
Results for the example (4)

- Expected population size vs simulation time for different initial sizes of the population, with offspring size $b = 2$.

- The total number of individuals after a “long time” is independent of the initial number of individuals.
Results for the example (4)

- Expected population size vs simulation time for different initial sizes of the population, with offspring size $b = 2$.

- The total number of individuals after a “long time” is independent of the initial number of individuals.
Results for the example (5)

• Expected population size vs simulation time for different offspring sizes. Probability to die $p = 0.1$ and initial population $i = 1$.

• For $b > 2$, the total number of individuals is periodic until extinction.
Results for the example (5)

- Expected population size vs simulation time for different offspring sizes. Probability to die $p = 0.1$ and initial population $i = 1$.

![Graph showing average total number of individuals per time unit](image)

- For $b > 2$, the total number of individuals is periodic until extinction.
Reducing the state space (1)

- We reduced the state space of PALPS models with policies, but
 - for some applications, it is still too big

- Proposed solution
 - Synchronous communication [3]
 - Mean-field semantics
Reducing the state space (1)

• We reduced the state space of PALPS models with policies, but
 • for some applications, it is still too big
• Proposed solution
 • Synchronous communication [3]
 • Mean-field semantics
Reducing the state space (2)

- Complete state space
Reducing the state space (3)

- State-space reduced with a policy
Reducing the state space (4)

- State-space reduced with synchronous communication
Conclusions

- **PALPS**
 - Discrete space, discrete time, probabilistic behavior
 - Location attributes and location-dependent behavior
 - **Policies** that
 - Reduce the state space
 - Allow to model different process orderings
 - Semantics for **PALPS** with synchronous communication
 - Support for simulation and analysis of models through PRISM translation
Future work

- Mean-field semantics à la WSCCS
• **T H A N K Y O U**

Do you have any question?
References

