(Perhaps Less Simple) Monadic Equational Reasoning

Elisabet Lobo-Vesga

Joint work with:
Andrés Sicard-Ramírez

Universidad EAFIT
Medellín, Colombia

January 2017
Introduction

- Pure functional programming
 - Equational reasoning
 - \text{\xmark} Computational effects

- Monads1, 2

Simple axiomatic approach3

Verification

1 Moggi, E. (1991) Notions of computation and monads.
Monad

Definition

Haskell

```haskell
class Monad m where
    return :: a -> m a
    (>>=) :: m a -> (a -> m b) -> m b
```

Properties

```
return x >>= f = f x
mx >>= return = mx
(mx >>= f) >>= g =
    mx >>= (\x -> f x >>= g)
```

Agda

```agda
record Monad (M : Set -> Set) : Set₁ where
    constructor mkMonad

    field
        return : {A : Set} -> A -> M A
        _ >>= _ : {A B : Set} -> M A -> (A -> M B) -> M B

    unity-left : {A B : Set} {f : A -> M B} {x : A} ->
        (return x) >>= f ≡ f x

    unity-right : {A : Set} (mx : M A) -> mx >>= return ≡ mx

    associativity : {A B C : Set} {f : A -> M B} {g : B -> M C} (mx : M A) ->
        (mx >>= f) >>= g ≡ mx >>= (\x -> f x >>= g)
```

(Perhaps Less Simple) Monadic Equational Reasoning

Rules

1. Only one disk can be move at a time
2. A disk can only be moved if it’s the uppermost disk on a stack
3. No disk may be placed on top of a smaller disk
Recursive solution

- Let \(n \) be the total number of discs
- Number the discs from 1 (topmost) to \(n \) (bottom-most)

1. Move \(n - 1 \) discs from the source to the spare peg
2. Move disk \(n \) from the source to the target peg
3. Move \(n - 1 \) discs from the spare to the target peg

(Source: Wikipedia. Image by Cmglee)
MonadCount

-- Supports effect of counting
record MonadCount {M : Set → Set} (monad : Monad M) : Set₁ where
 constructor mkMonadCount

 field
 tick : M ⊤

Extra functions

-- Sequential composition
 ≫ : {A B : Set} → M A → M B → M B
 mx ≫ my = mx ≫≡ λ _ → my

-- Identity computation
 skip : M ⊤
 skip = return tt
Tower of Hanoi
A counter example

Implementation

-- Ticks the counter once for each move of a disk
hanoi : N → M T
hanoi zero = skip
hanoi (suc n) = hanoi n >> tick >> hanoi n

-- Repeats a unit computation a fixed number of times
rep : N → M T → M T
rep zero mx = skip
rep (suc n) mx = mx >> rep n mx

Properties of rep

rep−1 : (mx : M T) → rep 1 mx ≡ mx

rep−mn : ∀ m n → (mx : M T) → rep (m + n) mx ≡ (rep m mx >> rep n mx)
Proof

-- Solving a Tower of Hanoi of n discs requires $2^n - 1$ moves (by induction)
moves : ∀ n → hanoi n ≡ rep (2^n ⊸ 1) tick
moves zero = refl -- Base case
moves (suc n) = -- Inductive step
begin
 (hanoi n ⊸ tick ⊸ hanoi n)
 ≡ (cong f (moves n)) -- Inductive Hypothesis
 (rep (2^n ⊸ 1) tick ⊸ tick ⊸ rep (2^n ⊸ 1) tick)
 ≡ (cong g (sym (rep−1 tick)))
 (rep (2^n ⊸ 1) tick ⊸ rep 1 tick ⊸ rep (2^n ⊸ 1) tick)
 ≡ (cong (λ x → x ⊸ r) (sym (rep−mn (2^n ⊸ 1) 1 tick)))
 (rep (2^n ⊸ 1 + 1) tick ⊸ rep (2^n ⊸ 1) tick)
 ≡ (sym (rep−mn (2^n ⊸ 1 + 1) (2^n ⊸ 1) tick))
 rep ((2^n ⊸ 1) + 1 + (2^n ⊸ 1)) tick
 ≡ (cong (λ x → rep x tick) (sym (thm n)))
 rep (2^(n + 1) ⊸ 1) tick
 ≡ (cong (λ x → rep (2^x ⊸ 1) tick) (sym (succ n)))
 rep (2^(suc n) ⊸ 1) tick
///

where f = λ x → x ⊸ tick ⊸ x
 r = rep (2^n ⊸ 1) tick
 g = λ x → r ⊸ x ⊸ r
What did just happened?

- We modeled a problem using monads in Agda
- We proved that our solution behaves as expected only using the properties of monads (not their instances)
- We were able to use ("simple") equational reasoning in our proofs
- Exceptional computations

record MonadExcept {M : Set → Set} {Mnd : Monad M}
 (monad : MonadNonDet Mnd) : Set₁ where

 constructor mkMonadExcept

 field
 catch : {A : Set} → M A → M A → M A

 catch-fail₁ : {A : Set} (h : M A) → catch fail h ≡ h

 catch-fail₂ : {A : Set} (m : M A) → catch m fail ≡ m

 catch-catch : {A : Set} (m h h' : M A) →
 catch m (catch h h') ≡ catch (catch m h) h'

 catch-return : {A : Set} (x : A) (h : M A) → catch (return x) h ≡ return x
Fast Product
Reasoning with exceptions

--- Computes the product of a list of Natural numbers

\[
\text{product} \mathbb{N} : \text{List} \mathbb{N} \rightarrow \mathbb{N}
\]

\[
\text{product} \mathbb{N} [] = 1
\]

\[
\text{product} \mathbb{N} (x :: xs) = x * \text{product} \mathbb{N} xs
\]

\[
\text{work} : \text{List} \mathbb{N} \rightarrow \mathbb{M} \mathbb{N}
\]

\[
\text{work} \, xs = \text{if} \, (\text{elem} \, 0 \, xs) \, \text{then} \, \text{fail} \, \text{else} \, (\text{return} \, (\text{product} \mathbb{N} \, xs))
\]

\[
\text{fastProd} : \text{List} \mathbb{N} \rightarrow \mathbb{M} \mathbb{N}
\]

\[
\text{fastProd} \, xs = \text{catch} \, (\text{work} \, xs) \, (\text{return} \, 0)
\]
Fast Product
Reasoning with exceptions

-- Fast product is equivalent to product
pureFastProd : (xs : List N) → fastProd xs ≡ return (productN xs)
pureFastProd xs =
begin
 catch (if (elem 0 xs) then fail else (return (productN xs))) (return 0)
 ≡ (pop-if catch (elem 0 xs))
 (if (elem 0 xs) then mx else my)
 ≡ cong (λ x → (if (elem 0 xs) then x else my))
 (catch-fail1 (return 0))
 (if (elem 0 xs) then (return 0) else my)
 ≡ cong (λ x → (if (elem 0 xs) then (return 0) else x))
 (catch-return (productN xs) (return 0))
 (if (elem 0 xs) then (return 0) else (return (productN xs)))
 ≡ sym (push-function-into-if return (elem 0 xs))
return (if (elem 0 xs) then 0 else (productN xs))
 ≡ cong return extra-if
return (productN xs)
■

where mx = catch fail (return 0)
my = catch (return (productN xs)) (return 0)
extra-if = if-cong (λ p → sym (productO2 xs p)) (λ _ → refl)
Questions?