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1. PROBLEM STATEMENT 

In response to the fast growing of the Hispanic population in the US in the last years, it 
has become imperative to develop a precision – targeting tool to market to Hispanics 
living in the US since they constitute the largest minority of this country. In fact, 
according to the projections done by the US Census Bureau, in 2050 one third of the 
US population will be Hispanics. Such tool should be designed to help understand the 
Hispanics characteristics and composition inasmuch as explaining Hispanic 
characteristics is a very complex task because Hispanic population is highly diverse, 
since Hispanic's cultural heritage comes from more than twenty nations and Hispanics 
have various levels of acculturation, ideals, literacy and affluence.  

In order to understand the Hispanics household composition it becomes natural to think 
about identifying which are the most representative groups in the sense that the 
households in those groups have similar characteristics according to some variables of 
interest. In other words, we are interested in finding a set of groups characterized by the 
variables of interest so that for “almost” every household in the population it can be 
easily classified in one group in the set. Observe that the usefulness of the classification 
relies strongly on the fact that the groups are desired to be different enough, avoiding 
ambiguities and ensuring that if a household sample point can be classified, then there 
is one and only one group which contains that household sample point.  

More formally, the problem described here can be presented as a clustering problem as 
follows: 

Let                 be the set containing the Hispanic household sample of size  . 

Assume that each    in   is a   dimensional vector containing the information of the   
variables of interest, then the clustering of    is the partitioning of   into   clusters: 
           so that they satisfy the following conditions: 

   
 
            (1) 

                    (2) 

                             (3) 

Note that the latter conditions constitute the theoretical formulation for a clustering 
problem, however, when dealing with real data it might become non-pragmatic to 
require every data point to be classified in a given cluster because of the presence of 
possible outliers, and therefore, for our problem we relax the condition (1) to be 

   
 
     . In addition, it should be noticed that our problem formulation is different 

from the classical theoretical formulation (that many authors present) since we do not 
assume       , if we did, one immediate consequence would be that all the attributes 
constituting each    were endowed with the notion of order existent in the set of real 
numbers, thus restricting the type of data to be used (i.e. nominal categorical data could 
not be used). 

It is interesting to note that the second condition, aims to prevent the existence of empty 
clusters since they would not be useful and finally, the third condition guarantees that if 
a household sample point can be classified then its classification is unique (no more 
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than one cluster contains that household sample point). In addition, one might want the 
set of clusters to be small enough so that they are practical and useful to understand 
the Hispanic household characteristics, but on the other hand, they should be 
adequately large to capture the diversity immersed in the Hispanic population.  

It is also important to notice that for any given   there exist many different set of 
clusters which satisfy the last conditions, meaning that the solution for the clustering 
problem is not unique. Therefore, it becomes necessary to define a selection criteria 
which lead to get only one solution. This selection criteria usually depends on the 
researcher needs and the particular desired properties about the solution. However, one 
common approach consist of defining a fitness function which aims to measure the 
quality of the obtained cluster, an example of such type of functions that has been 
widely used is the total mean square error (MSE), which is defined as follows: 

                  

     

 

   

                    

where    represents the centroid of the  -th cluster    and        is a distance function 
specifying how far is each data point from its cluster centroid. Thus under this approach 
we want to minimize   by minimizing the distance of each data point to its centroid. 
Other approaches use different kind of distance functions which instead of minimizing 
the distance of each data point to its centroid, aim to maximize the distance between 
clusters. Finally, it is also important to notice that the design of the fitness and distance 
functions depend strongly on the type of data. In our case, the household sample points 
will be formed by both numeric and categorical data thus the usual distance functions 
like the Euclidian distance, the infinity norm or the p-norm are not the most adequate 
since they cannot capture the notion of distance function for categorical data, 
nonetheless, they still can be useful for defining a new distance function which can 
measure adequately the distance between data points formed by a mix of numeric and 
categorical data.  

2.1 GENERAL OBJECTIVE 

Generate a useful classification of the Hispanic households in the U.S. to understand 
the Hispanic Household composition and its characteristics to support further marketing 
strategies. 

2.2 SPECIFIC OBJECTIVES 

1. Make a review of literature about the clustering algorithms. 
2. Prepare the Hispanic household data for the clustering analysis.   
3. Design and implement an adequate clustering algorithm for the Hispanic 

household data. 
4. Verify and validate the desired properties of the implemented algorithm (i.e. 

convergence). 
5. Classify the Hispanic household data using the implemented algorithm and 

analyze the results. 
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3. REVIEW OF LITERATURE 

There exist abundant literature exposing an array of different approaches to solve the 
clustering problem since it is an attractive and important task in data mining that is used 
in many applications. Due to this large variety of applications, different data types and 
various purposes it is difficult to find a unique algorithm that can fulfill all the 
requirements at once. According to (Tseng & Yang, 2001) clustering algorithms can be 
classified into two types: hierarchical and non-hierarchical. The hierarchical clustering 
algorithms recursively find clusters either in an agglomerative or a divisive way. The 
agglomerative ones merge together the most similar clusters at each level and the 
merged clusters will remain in the same cluster at higher levels. In the divisive methods, 
the initial stage view all the set of elements as a cluster and at each level, some clusters 
are binary divided into smaller clusters. On the other hand, the non-hierarchical 
methods find all clusters simultaneously without forming any hierarchical structures. 

Although hierarchical methods have been used in different applications (including 
marketing and customer segmentation) as it can be seen in (Saglam, 2006; Bang & 
Lee, 2011; Hong, 2012; Hung & Tsai, 2008; Qin, Ma, Herawan & Zain, 2014), non-
hierarchical methods have shown to achieve better results, especially those which are 
center-based. One common example of this kind of methods is the K-means algorithm, 
which has become a remarkable algorithm for clustering problems because of its 
simplicity, easy implementation and its solutions quality (see Cheo, 2004; Jain, 2010; 
Kaufman & Rousseeuw, 1990). This method has been designed to minimize the intra-
cluster variance (without ensuring that the result has a global minimum variance) (Kao, 
Zahara, & Kao, 2008; Selim & Ismail, 1984). Nonetheless, the K-means algorithm 
require to know in advance the number of clusters and is sensitive to the initial centroids 
(which can be given either by the user or chosen at random), making it likely to 
converge to local optima rather than global optima. Trying to overcome these issues, 
several heuristic methods have been developed; for instance, (Selim & Alsultan, 1991) 
proposed a simulated annealing algorithm for the clustering problem. In (Arabia, 1995; 
Sung & Jin, 2000), it is presented a tabu search heuristic to conduct clustering. Genetic 
algorithms as well as Ant Colony Optimization heuristics have also been developed to 
perform clustering as can be seen in (Krishna & Murty, 1999; Maulik & Bandyopadhyay, 
2000; Shelokar, Jayaraman & Kulkarni, 2004; Tseng & Yang, 2001). Neural networks 
(self-organizing feature maps) have also been used to tackle the clustering problem, 
however, it is difficult to set up the training parameters and the computational time 
needed to run the algorithm is usually very high (Kuo, Ho & Hu, 2002). 

A more recent and novel approach has integrated the K-means algorithm with a 
powerful optimization heuristic called gravitational search algorithm which is inspired by 
the Newtonian Gravity Law (Hatamlou et al., 2012). This approach is particularly 
interesting since it takes the advantages of the K-means algorithm and makes it more 
robust and less sensitive to the initial centroids through the explore capabilities of the 
gravitational search algorithm, allowing the integrated algorithm to explore deeply the 
search space, thus making it more likely to converge to global optima rather than local 
optima. In (Hatamlou et al., 2012), several experiments were conducted to compare the 
quality of the results given by this algorithm with those achieved by other heuristics. The 
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comparison showed that the integrated algorithm achieved better results in terms of the 
quality of the solutions and the convergence speed. 

 

4. JUSTIFICATION 

The project outcomes are important in the sense that they generate an impact mainly in 
two ways: first of all, the classification of the Hispanics household will provide technical 
arguments to support decision making and marketing strategies for Hispanics as well as 
will help understand the Hispanic household composition and characteristics; and 
second, the algorithms and methodology to be developed during the project will be 
useful for running future analysis to other minorities, or when new data be available and 
it becomes necessary to run the clustering analysis again. 

 

5. SCOPE 

It is important to notice that the clustering algorithms and their applications are their 
selves a whole research area. This work only focuses on implementing and applying an 
adequate clustering algorithm to classify the US Hispanic households and analyze the 
outcomes of the process. The pertinence of the work mainly relies on its usefulness not 
only for marketing purposes but also, in a more general fashion, to understand 
Hispanics’ characteristics.  

 

6. METHODOLOGY 

The review of literature was essentially important as it brought a big picture about what 
has been done in terms of clustering algorithms and its applications to customer 
segmentation, thus gave some insights on how to tackle the problem as well as key 
ideas for the design and implementation of the clustering algorithm. The next stage of 
the project consisted of all the data preprocessing and preparation, we used the U.S 
Census data1. Note that this stage was particularly relevant in the project since it was 
not only concerned with the usual data preprocessing (like cleaning the data) but also 
identifying the variables that best characterizes and differentiates the Hispanic 
population from the rest of the population (which was strongly related with the quality 
and usefulness of the final classification). In this stage was needed an additional 
reduction of the dimensionality of the problem, thus, principal components analysis and 
multiple correspondence analysis methods were applied depending on the nature of 
variables. 

The design and implementation of the algorithm was conducted based on both the 
review of literature and the nature of the variables that were taken into account for the 
clustering analysis. The implemented clustering algorithm aimed to integrate both the 
categorical and numerical variables keeping the general structure of a K-means 
algorithm. In order to test the algorithm and its properties, the quality of its solutions 

                                                           
1
 U.S Census data is available at: http://www.census.gov/acs/www/data_documentation/about_pums. 
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were evaluated as well as its convergence characteristics. This stage also included the 
design of different experiments (with simulated data), which helped to test the correct 
performance of the algorithm.   

Once it was seen that the algorithm worked properly, it was used to run the clustering 
analysis for the Hispanic household data, the outcomes of the clustering process were 
documented and analyzed.  

Finally, it should be noted that for the data preprocessing and preparation, SPSS (21) 
and Access (2010) were used; and the algorithm implementation was conducted using 
R Studio (0.98.1091). 

7. ALGORITHM DESCRIPTION 

The implemented algorithm was designed in order to generate solutions to the 
clustering problem, so that, given a data set and the desired number of clusters k, the 
algorithm partitions the data set into k clusters satisfying de conditions exposed in 
Section 2. The algorithm is based on the approach proposed by (Ahmad & Dey, 2007) 
since it can handle with data having both numeric and categorical attributes. Although 
there exist in the literature a few other approaches to handle mixed data for clustering 
purposes, the one exposed in (Ahmad & Dey, 2007) is particularly interesting since it 
tries to capture the notion of distance between categorical attributes in a novel and 
useful way. Observe that the Euclidean distance results very natural when dealing with 
numeric attributes not only because they are intrinsically endowed with a notion of 
order, but also because it defines a metric in the set of n-dimensional real numbers 
(satisfying non-negativity, the coincidence axiom, symmetry and the triangle inequality). 
On the other hand, there is no such natural or intrinsic notion of order and distance 
when working with some categorical data (e.g. nominal variables), even though they 
might have an order structure (e.g. ordinal variables) it is not enough to know how far is 
one category from another of the same attribute, thus the notion of distance does not 
become as natural as it is with numeric attributes.     

In order to introduce and understand the approach used by (Ahmad & Dey, 2007) to 
measure the distance between two categorical values of the same attribute, let’s first 
notice that in a good clustering solution we would expect the data in the clusters to be 
similar. Intuitively, we can see similarity in categorical data by finding common patterns 
among the different set of attributes so that these patterns characterizes well the data in 
each cluster, these patterns are usually seen as how likely is the value of a given 
categorical attribute to co-occur with the values of the other categorical attributes since 
this co-occurrence defines such pattern. Therefore, the distance measure between two 
different categorical values should take into account the co-occurrence of the different 
attribute’s values, in other words, should be based on the overall distribution of any two 
values of any categorical attribute.   

The latter approach not only is intuitive but also it can be easily proven that satisfies 
non-negativity, symmetry and reflexivity (respect to the class of distance 0), thus having 
very interesting theoretical properties which translates into good clustering outcomes. It 
is also important to note that the algorithm does not make any assumption about the 
distribution of the data and so the data need not to fit any particular known distribution. 
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Given the distance measures mentioned above for numeric and categorical data we can 
derive a new distance measure for mixed data straightforwardly by a linear combination 
of them.  

More formally and according to (Ahmad & Dey, 2007), lets represent each data point as 
an  -tuple containing    numeric attributes and    categorical attributes such that    
    . Now consider a pair of arbitrary categorical attributes       (               

 ) and let   be a subset of the support of the attribute    as well as    represent the 

complement of    with respect to the support of the attribute   . Denote by         the 

conditional probability that an element having value   for    has a value belonging to  , 
then the distance of any two values   and   belonging to the attribute    respect the 
attribute    is defined as: 

                                       (5) 

where                                    . Finally, the distance of any two 

values   and   belonging to the attribute    is defined as the average of the distances 
respect the other attributes as seen in Equation (6): 

       
 

    
                                     

               

 

From the definition given above, it can be easily shown that the distance function 
satisfies the following properties: 

                (7) 

                  (8) 

              (9) 

Note that from (7),        is bounded and satisfies non-negativity, from (8) satisfies 
symmetry and from (9) satisfies reflexivity under the subset of all pairs       such that 
        . With the previous definition we can now define the distance any pair of data 
points     (recall that each data point is represented as an  -tuple containing the first 
   numeric attributes and the last    categorical attributes) as follows: 

           

  

   

        
                       

 

      

 

where    is a weighting factor for the  -   numeric attribute, it is obtained through the 
discretization of the numeric attribute into   intervals. Let       the  -   interval of the 

discretization of the  -   numeric attribute, then    is computed with the following 
formula: 
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The cluster centers are represented as an  -tuple, where the first    components are 
the averages of the numeric attributes and the last    components are also tuples 
containing as many components as categories each categorical attribute has. The 
components of the categorical tuples contain a natural number representing the number 
of sample points in a specific cluster containing the specified categorical value of the 
corresponding attribute. The algorithm follows the general structure of the k-means 
algorithm, as it can be seen in Figure 1. 
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Begin

d 

Data 

Number of clusters (k) 

For every categorical attribute, compute        for all categorical values   and   

For every numeric attribute, compute      

Assign data objects to different clusters randomly 

MaxIter, tol 

Initialize i, error  

While i <= MaxIter 

and error>=tol 

Compute cluster centers  

Each data object is assigned to its closest cluster center  

Update i, error  

End 

True 

Figure 1. Flow diagram of the implemented clustering algorithm 
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8. VALIDATION AND VERIFICATION 

The algorithm was verified and validated using the same data sets that were used by 
(Ahmad & Dey, 2007) in their experiments. Those data sets have been widely used in 
the literature for evaluating the performance of clustering algorithms. Furthermore, the 
algorithm was tested with three of those data sets, each data set containing a different 
type of data, for instance: only categorical attributes, only numeric attributes and both 
numeric and categorical attributes. The evaluation method to measure the implemented 
algorithm performance is based on the proportion of data points belonging to the 
desired clusters.  

Formally, let                be the partition containing the natural (real) clusters of the 

input data and let                be the output of the clustering algorithm for   clusters. 

Denote by      the cardinality of the set in its argument, naming   the measure of 

performance of the implemented algorithm we have that   can be calculated as follows: 

            

 

   

        

 

   

 

  

                                

Tables 1, 2 and 3 show the results achieved by the implemented algorithm and the 
results reported by (Ahmad & Dey, 2007) for pure numeric data, pure categorical data 
and mixed data, respectively. The first data set is called Iris, containing 4 numerical 
attributes with 150 data points equally distributed into three different clusters. The 
second data set is named Vote formed by 16 categorical attributes and 435 elements 
split into two clusters (republicans and democrats), and finally the third data set has 690 
data points with 14 variables out of which 8 variables are categorical and the other 6 are 
numeric. 

  Table 1. Iris data set comparative results 

Algorithm No. of data points in desired clusters   

Implemented Algorithm  140 0.93 

Algorithm proposed by (Ahmad & Dey, 
2007) 

142 0.95 

 
  Table 2. Vote data set comparative results 

Algorithm No. of data points in desired clusters   

Implemented Algorithm  381 0.88 

Algorithm proposed by (Ahmad & Dey, 
2007) 

377 0.87 

  
Table 3. Australian Credit data set comparative results 

Algorithm No. of data points in desired clusters   

Implemented Algorithm  591 0.86 

Algorithm proposed by (Ahmad & Dey, 
2007) 

609 0.88 
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The tables above illustrate the average results of the implemented algorithm after 20 
runs, and the results for the algorithm proposed by (Ahmad & Dey, 2007) after 100 runs. 
The statistical analysis let us conclude that there is no statistical difference in the   
measure of both algorithms, which is clear evidence to validate the results and 
performance of the implemented algorithm. In addition, it is interesting to note that the 
performance achieved by the algorithms is above 0.85 in the examined cases for the 
three types of data showing its robustness when dealing with different kind of attributes.  

 

9. CONVERGENCE OF THE IMPLEMENTED ALGORITHM 

Convergence is critically important when developing any kind of algorithms or numerical 
methods since it guarantees that the algorithm will finish in a finite amount of time with 
the generated output satisfying the required numerical precision. Although we do not 
present a formal proof of convergence for the implemented clustering algorithm, we test 
its convergence through experimentation. Mathematically, the clustering algorithm is 
said to be convergent if there exist     in the sequence of iterations          , such 

that for every iteration                     , where         represents the solution 

associated with the   -   iteration. Notice that the previous definition is just formalizing 

the fact that convergence of the algorithm is achieved once all the data points remain in 
the same clusters thus the solutions from a certain iteration and on are exactly the 
same.  

Although it would be ideal to check convergence based on the definition given above, it 
is time consuming and adds significant computational complexity to the algorithm (both 
in time and memory), therefore we use an alternative way which is equivalent to the 
definition given above for the implemented algorithm. The alternative way consists of 
the sum of the intra-variances of each cluster, with the advantage that the process for 
computing it can be done in parallel with the clustering process hence not adding 
significant complexity. The sum of the intra-variances   for partitioning        

  into   

clusters        
  is defined as follows: 

             

     

 

   

                                                         

where   is as in (10). In this alternative approach the convergence is achieved once 

                . However, since it can take long time    to be strictly zero, we 

relax that condition for practical purposes and redefine it to be       , where     is a 
user predefined tolerance specifying the precision required by the user (it can also be 
understood as the maximum error allowed by the user). Figure 2 shows the behavior of 
the sum of intra-variances for the first 10 iterations for each data set used and described 
in the previous section. 
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From Figure 2 it can be seen the convergent behavior of the algorithm. It is also 
interesting to note that the sum of intra-variance is strictly decreasing function of the 
iterations thus converges monotonically. Notice the fast decreasing rate of the sum of 
intra-variance from one iteration to another, it is especially remarkable for the Iris and 
Vote data sets since they are formed only by one type of data. On the other hand, the 
decreasing rate for the Australian Credit data set still fast but not as fast as those in the 
other two data sets, this phenomena can be explained based on the fact that the 
Australian data has both numeric and categorical attributes, demanding more clustering 
effort which translates into a little bit slower convergence.  For example, if we were to 
set the tolerance to be 0.2, then the algorithm would achieve the convergence in the 
third iteration for the Iris as well as the Vote data sets, whereas that would achieve the 
convergence in the sixth iteration for the Australian data set. Despite this natural 
difference in the convergence speed, the algorithm still converges quickly when dealing 
with mixed data. 
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Figure 2. Convergence behavior of the implemented algorithm for each data set 
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10. RESULTS 

In this section we present the results achieved by means of the application of the 
implemented clustering algorithm. In order to determine the optimal number of clusters, 
it was first conducted an exhaustive search varying the number of clusters from one to 
fifteen for both Mexicans and Non-Mexicans.  The exhaustive search showed that the 
optimal number of clusters for Mexicans were seven and for Non-Mexicans were ten. 
Table 4 presents a general summary of the clusters density. 

       Table 4.  Hispanics’ clusters density 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 5 and 6 show the main characteristics of the Mexicans and Non-Mexicans 
respectively. It was found that the characteristics that best differentiate the clusters 
were: the family type and employment status, the household language, whether or not 
the household was multigenerational, the presence and age of related children, the 
household ownership, the household income and lastly, the number of people living in 
the household. Notice that the first five variables are categorical while the household 
income and the number of people living in the household are numeric. The tables show 
both the variables and their respective categories (for the categorical ones) as well as 
the statistics used to characterize the clusters. It was also included in the table the 
geographic division to identify the most significant locations where the Hispanics are  
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settled, however it is important to note that even though it was not included as part of 
variables for the clustering analysis, it was mapped once the clusters were obtained. 

The reason why the geographic division was not included in the clustering algorithm has 
to do with the fact that the Hispanic population is grouped around well known specific 
locations, so that adding this variable to the clustering algorithm would not enrich the 
clustering analysis, but certainly will increase the clustering effort. 

From Tables 5 and 6 it can be seen that some determinant variables for defining the 
clusters are the household language, whether or not the household is multigenerational, 
the presence of related children, the household income and the number of people living 
in the household. Notice that the information contained in the tables summarizes the 
general characteristics of the found clusters and can be useful for identifying and 
targeting specific groups of Hispanics for any kind of purposes. In case that more 
variables need to be analyzed they can be easily mapped into each cluster and after 
doing so, determine if there is need or not of running another clustering analysis that 
include those variables. The characteristics presented in this work are useful in the 
sense that provide a general picture of the main groups of Hispanics and works well as 
a first step targeting tool which can be further refined to achieve more accurate results 
depending on the particular purpose of the user. 

 

11. CONCLUDING REMARKS  

In this work, we presented a clustering approach to tackle the problem of segmenting 
the US Hispanic households in order to find valuable information and patterns which are 
useful to characterize the subgroups of Hispanics living in the US and therefore the 
outcomes of the clustering procedure can be used as a targeting tool to get to specific 
groups of Hispanics depending on the needs and purpose of the user. We found 17 
significant clusters, more specifically: 7 clusters for Mexican Households and 10 
clusters for Non-Mexican Households. Based on the clustering outcomes we 
summarized the most important characteristics of the found clusters so that it is easy to 
get a good general idea of the description of the clusters and their particularities. 

Finally, more refined and accurate clustering structures can be achieved depending on 
the particular purposes of the user; however, the results still are important and useful in 
the sense that provide practical insights to go deeper in any particular cluster as well as 
to understand better the Hispanics characteristics and how they are correlated. Future 
works can be oriented mainly on two ways: the first one consists in improving the 
computational efficiency of the implemented clustering algorithm by using parallel 
computing, the second one consists in exploring other distance measures for 
categorical that eventually lead to achieve better results. 

 

12. INTELECTUAL PROPERTY AND CONFIDENTIALITY 

This project and its outcomes are property of Juan Sebastián Marín and Francisco 
Zuluaga in equal proportions. 
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