
Research Practice 2
Final report

Heuristic and exact solution strategies for the Team Orienteering
Problem

Camila Mej́ıa Quintero · Miguel Tamayo Jaramillo ·
Juan Carlos Rivera Agudelo

May 27, 2016

Abstract The aim of this research practice is to compare exact solution approaches and a matheuristic
approach solving the team orienteering problem (TOP). The matheuristic is based on the hybridization
of mathematical programming formulations and a large neighborhood search heuristic (LNS). TOP is a
variant of the classic vehicle routing problem, where m teams seek to maximize the total collected profit,
visiting as many nodes as it can be possible without exceeding a time limit. This research proposes
four new mix integer linear programming (MILP) models, and presents a constraint programming
(CP) model. The matheuristic method is based on one of the MILP model proposed and it also
has a post-optimization phase which improves the solution based on a set partitioning model. The
performance of the solution methods are compared by using benchmark instances from the literature.

Keywords Team Orienteering Problem, MILP, CP, vehicle routing, matheuristics, hybrid methods

1 Introduction

The team orienteering problem (TOP) is a generalization of the orienteering problem (OP), which
can be defined on a complete indirected graph G = (V,A) where the node-set V = {1, ..., n}
includes a starting node 1, a finish node n and a subset V ′ = V \ {1, n} of profitable nodes. The
arc-set A = {(i, j) | i, j ∈ V } is composed by edges (i, j) with travel times dij . There is also a set
K = {1, ...,m} of m vehicles which are available to visit the nodes in V ′ and the goal is to determine
m routes, without exceeding a given threshold Lmax, that maximize the total collected prize, due to
each node i ∈ V ′ has a specific profit pi. No node can be visited more than once by one or several
routes and there is the possibility of not visiting all nodes.

The TOP can be modeled as a multi-level optimization problem. At the first level, it is necessary to
select a subset of points to visit for the team in order to maximize the total profit. At the second
level, the selected points are assigned to each member of the team. At the third level, it is necessary
to construct a feasible route through those points to each member [Chao et al., 1996]. In the figure 1
there is a TOP solution for a specific instance.

C. Mej́ıa
Student of Mathematical Engineering
Universidad EAFIT, Medelĺın, Colombia. E-mail: cmejia3@eafit.edu.co

M. Tamayo
Student of Mathematical Engineering
Universidad EAFIT, Medelĺın, Colombia. E-mail: mtamayo6@eafit.edu.co

J.C. Rivera
Tutor Professor
Department of Mathematical Sciences, Universidad EAFIT, Medelĺın, Colombia. E-mail: jrivera6@eafit.edu.co

2 Camila Mej́ıa Quintero et al.

Fig. 1 A TOP problem (instance p4.2.17 and a solution with total reward of 1268). Taken from [Kim et al., 2013] p.
3066

The aim of this research practice is to compare three different paradigms, divided in two groups,
to solve the optimization problem already described. The first group, considers exact strategies,
constraint programming (CP) and mixed integer linear programming (MILP) are used. The second
group, a hybrid mateheuristic method combining LNS, first proposed by [Shaw, 1997], with an exact
mathematical models in the rebuilt phase and the post-optimization phase.

The paper is followed by Section 2 with a brief summary of the literature review for the TOP,
including a review of which methods have been used to solve it. Then, on Section 3 it is described five
mathematical models that are compared, including four MILP and one CP. In Section 4 the proposed
matheuristic is described. Finally, Sections 5 and 6 show the results, conclusions and further work.

2 Literature review

The TOP was first proposed and solved by [Butt and Cavalier, 1994], but it was named the Multiple
Tour Maximum Collection Problem. They exposed a MILP and a basic constructive heuristic
algorithm, which the ratio between the profit and the distance needed to visit a node is the criteria
used to add a node to a route. A while after, [Butt and Ryan, 1999] proposed a procedure based on a
set-partitioning formulation which makes efficient the use of both column generation and constraint
branching. In fact, this algorithm works well for small number of nodes.

In addition, [Chao et al., 1996] benchmarks data sets and solves them with a heuristic model.
In its approach, it uses an initial solution created by the closest nodes to the start and finish
nodes. Then, a discrete annealing algorithm is applied to improve the routes, it also allows node
removal and reinsertion. Then, [Tang and Miller-Hooks, 2005] presents a tabu search (TS) with an
adaptive memory process changing between small and large neighborhoods based on greedy procedures.

Moreover, [Archetti et al., 2007] also presents a TS algorithm allowing both feasible and infeasible
movements and a variable neighborhood search (VNS) with feasible move. The latter, outperforms
[Chao et al., 1996] and [Tang and Miller-Hooks, 2005]. Then, [Ke et al., 2008] proposes an ant colony

Heuristic and exact solution strategies for the Team Orienteering Problem 3

optimization (ACO) based on the sequential, deterministic-concurrent, random-concurrent, and
simultaneous methods as the construction algorithms.

Also, [Vansteenwegen et al., 2009] exposes an MILP model and an algorithm that merges a
guided local search with a diversifying model named disturb. However their computational time
is shorter in comparison with the former models, its results do not outperform other methods.
Furthermore, [Dang et al., 2011] present a particle swarm optimization based on memetic algorithm
(PSOMA) which uses a tour-splitting method and genetic mixture improvement. Afterward, they
extend their research and present a PSO inspired algorithm (PSOiA) [Dang et al., 2013]. In this case,
they improve the algorithm and find the best values so far for every benchmark instance. Finally,
[Kim et al., 2013] presents different local search heuristic approaches attempting to improve solutions
via incremental adjustments to current solutions. They find the same results as the PSOiA algorithm,
but in shorter times.

3 Mathematical formulations

This problem can be modeled as a mixed integer linear program (MILP) as
[Tang and Miller-Hooks, 2005] shows. There are different ways to describe it by a mathematical
model. Some constraints and the objective function do not variate, the difference is the decision
variables’ dimensions, as well as adding or removing them.

Here, it is described the model exposed in [Tang and Miller-Hooks, 2005]. In addition, four
MILP models and one CP model are proposed.

In order to better describe the mathematical models, two new subsets of nodes are defined as
follows: The subset V 1= V \ {1} is the set of all nodes without the starting point, which is useful to
limit the possible destination nodes of traversed arcs. Similarly, the subset V 2= V \ {n} is the set of
all nodes without the finish point, which is useful to limit the possible origin nodes of traversed arcs.

3.1 Model 1

This model uses the binary decision variables yik, which represent whether the node i ∈ V ′ is visited
(yik = 1) or not (yik = 0) by the vehicle k, and xijk, which represents the number of times that the
arc (i, j) is traversed by the vehicle k. The model proposed by [Tang and Miller-Hooks, 2005] includes
service times si for each node i ∈ V ′, nevertheless the instances solved in this research always consider
si = 0. It is important to note that this formulation also considers that the starting and finish nodes
are the same and the decision variable xijk indicates the number of times an arc is traversed but
not the direction. The latter implies that variables xijk only exist if i < j, saving some memory and
computations, and when a route visits only one node variable x0jk can be equal to 2.

max
∑
i∈V ′

∑
k∈K

pi · yik (1)

s.t.
∑
j∈V ′

∑
k∈K

x1jk = 2m (2)

∑
i<j

xijk +
∑
i>j

xjik = 2yjk ∀ i, j ∈ V ′, k ∈ K (3)

∑
i∈V ′

∑
j>i

dijxijk +
∑
i∈V ′

siyik ≤ Lmax ∀ j ∈ V ′, k ∈ K (4)

4 Camila Mej́ıa Quintero et al.∑
k∈K

yik ≤ 1 ∀ i ∈ V ′ (5)∑
i∈U

∑
j∈U

xijk ≤ |U | − 1 ∀ U ⊂ V 1, 2 ≤ |U | ≤ n− 2, k ∈ K (6)

x1jk ∈ {0, 1, 2} ∀ j ∈ V, k ∈ K (7)

xijk ∈ {0, 1} ∀ k ∈ K, i, j ∈ V ′, i ≤ j (8)

yik ∈ {0, 1} ∀ i ∈ V ′, k ∈ K (9)

Objective function is given by (1) which is to maximize the total collected profit. In fact, (2) ensures
that there are m routes starting and finishing at node 1. The connectivity of each node is checked
on (3) and the time limit of each route is verified on (4). Then, (5) ensures that each node is visited
at the most ones. The sub-tours are forbidden by (6), where the subsets U contain the nodes which
perform a loop in a given solution. Note that this set of constraints requires that the model must be
solve iteratively, adding new constraints on each iteration when a loop is found. Finally, (7) to (9)
defines the domain of the decision variables.

3.2 Model 2 - MILP1

The first MILP formulation proposed is flow based models for vehicle routing problems. The decision
variables are xij , which are equal to 1 if arc (i, j) is traversed and 0 otherwise, and Li, which is the
crossed distance from node 0 to node i when the latter is visited.

max z =
∑
i∈V 1

pi · x1j (10)

∑
j∈V 1

x1j ≤ m (11)

∑
i∈V 2

xin ≤ m (12)

∑
i∈V 2

i 6=j

xij ≤ 1 ∀j ∈ V ′ (13)

∑
j∈V 1

i6=j

xij ≤ 1 ∀i ∈ V ′ (14)

∑
i∈V 2

i6=j

xij =
∑
i∈V 1

i 6=j

xji ∀j ∈ V ′ (15)

Lj ≥ Li + dij · xij − Lmax · (1− xij) ∀ i ∈ V 2, j ∈ V 1, i 6= j (16)

xii = 0 ∀i ∈ V ′ (17)

0 ≤ Li ≤ Lmax ∀i ∈ V (18)

xij ∈ {0, 1} ∀ i ∈ V 1, j ∈ V 2 (19)

The objective function, given by (10), refers to the total profit maximization. Therefore, (11) makes
sure that there are just at most m routes and they have to start from node 1. Then, (12) verifies that
at most m arcs (i, n) are traversed. Also, (13) and (14) check that each node is not visited more than
once and (15) guarantee that the number of arcs in is equal to the number of arcs out. In other words,
if a vehicle visits node j, it must leave it. If xij = 1, the distance Lj has to be greater than the distance

Heuristic and exact solution strategies for the Team Orienteering Problem 5

that has been crossed at Li plus the distance between them, dij , otherwise is useless, this constraint is
represented by (16). Then, (17) avoids the creation of loops from a node i to itself. Finally, the decision
variables’ domain are specified on (18) and (19).

3.3 Model 3 - MILP2

The second MILP model proposed is based on the previous one, so it has the same parameters and
decision variables. However, a new decision variable yi is added, which is equal to 1 if node i is visited.
Specifically, (10), (13), (14) and (15) are reformulated by using the new variables.

max z =
∑
i∈V ′

pi · yi (20)∑
j∈V 1

x0j = m (21)

∑
i∈V 2

xin−1 = m (22)

∑
i∈V 2

xij = yj ∀j ∈ V ′ (23)

∑
j∈V 1

xij = yi ∀i ∈ V ′ (24)

Lj ≥ Li + dij · xij − Lmax · (1− xij) ∀ i ∈ v2, j ∈ v1, i 6= j (25)

0 ≤ Li ≤ Lmax ∀i ∈ V (26)

xii = 0 ∀ i ∈ V (27)

xij ∈ {0, 1} ∀ i ∈ V 1, j ∈ V 2 (28)

yi ∈ {0, 1} ∀ i ∈ V (29)

The objective function is given by (20) and seek to maximize the total collected profit. Therefore, (21)
and (22) verify that there are exactly m routes. Then, (23) and (24) ensure that if a node i ∈ v′ is
visited (yi = 1) it must be a vehicle which enters and leaves the node, otherwise (yi = 0) which implies
that xij = 0. Finally, (25) to (28) are the same constraint as (16) to (19) and (29) is the domain
constraint of the yi.

3.4 Model 4 - MILP3

This model is based on the model propsed by [Rivera, 2014] for the multitrip cumulative capacitated
single-vehicle routing problem. This model has two decision variables: yki which is equals to 1 if node
i is visited by vehicle k and wij , which is equals to 1 if node j is visited after i, but it does not have
to be just after. It is important to note that yki 6= yi.

The objective function is to maximize the profit and is given by (30). Therfore, (31) and (32) ensure
that if node i is visited before j, then j cannot be visited before i and vice versa. (33) constraint ensure
that each node is visited just once. Then, (34) and (35) verify that if node i is visited before j then the
distance traversed until node j (Lj) must to be greater than the distance Li plus the distance between
them. Afterwards, (36) checks that the time threshold is not exceeded. And finally, (37) and (39) are
the decision variables’ domains.

6 Camila Mej́ıa Quintero et al.

max z =
∑
k∈K

∑
i∈V ′

pi · yki (30)

wij + wji ≥ ykj + yki − 1 ∀i ∈ V 2, j ∈ V 1, k ∈ K, i 6= j (31)

wij + wji ≤
∑
k∈K

yki ∀i ∈ V 2, j ∈ V 1, k ∈ K, i 6= j (32)∑
k∈K

yki ≤ 1 ∀i ∈ V ′ (33)

Lj ≥ Li + dij · wij − Lmax · (1− wij) ∀i ∈ V, j ∈ V, i 6= j (34)

Lj ≥ Li + dij · wij − Lmax · wji ∀i ∈ V, j ∈ V, i 6= j (35)

Li + di,n ≤ Lmax ∀i ∈ V 2, k ∈ K (36)

wij ∈ {0, 1} ∀ i, j ∈ V ′ (37)

ykj ∈ {0, 1} ∀j ∈ V ′, k ∈ K (38)

Lj ≥ 0 ∀i ∈ V (39)

3.5 Model 5 - MILP4

This model is based on the concept of replenishment arcs presented by [Mak and Boland, 2000,
Rivera et al., 2015], but it is adapted to solve the TOP. Replenishment arcs are a trick to replace
a set of routes by a large single-route: where the last visited node of a route is i and the first visited
node of other route is j, the arcs (i, 0) and (0, j) can be replaced by a replenishment arc (i, j) where the
travel time at node j becomes d0j. For instance, the solution matrix xij takes each route separately, but
x′ij unifies the m routes in a single route. It is important to mention that replenishment arcs are used
by [Mak and Boland, 2000] to handle a traveling salesman problem where vehicles can replenish fuel
while traversing an arc, and [Rivera et al., 2015] adapts the concept to model multiple trips performed
by a vehicle where replenishment arcs mean the transition between a route and its subsequent.

max z =
∑
i∈V ′

pi · yi (40)∑
i∈V 2

i6=j

xij +
∑
i∈V ′

i 6=j

x′ij = yj ∀j ∈ V ′ (41)

∑
j∈V 1

i6=j

xij +
∑

j∈V ′,i6=j

x′ij = yi ∀i ∈ V ′ (42)

∑
i∈V 2

x0i = 1 (43)

∑
i∈V 1

xin−1 = 1 (44)

∑
i∈V ′

∑
j∈V ′

i 6=j

x′ij = m− 1 (45)

Lj ≥ d0j · yj ∀j ∈ V 1 (46)

Lj ≥ Li + dij · xij − Lmax · (1− xij) ∀i ∈ V 2.j ∈ V 1, i 6= j (47)

Li + din−1 · yi ≤ Lmax ∀i ∈ V 2 (48)

Heuristic and exact solution strategies for the Team Orienteering Problem 7

xii = 0 ∀i ∈ V (49)

Lj ≥ 0 ∀j ∈ V ′ (50)

xij ∈ {0, 1} ∀i ∈ V 2, j ∈ V 1 (51)

x′ij ∈ {0, 1} ∀i ∈ V ′, j ∈ V 1 (52)

yi ∈ {0, 1} ∀i ∈ V ′ (53)

As well as the previous model, the objective function (40) is to maximize the collected profit.
Therefore, (41) and (42) forbid the presence of any node in 2 or more routes. Then, (43) and (44)
ensure that merged route starts on the initial depot and finishes on the last one. Also, (45) establishes
that there are exactly m routes. Notes that m routes implies to have exactly m−1 replenishment arcs.
Afterwards, (46) to (48) guarantee that the time in each node is feasible given the time limit threshold.
(49) ensures that there is no loop on any node. Finally, (50) to 52 define the domain for the decision
variable.

3.6 Model 6 - CP

In this last formulation, a different paradigm is used to model the TOP based on CP. In this
formulation the decision variables ai and si indicate the antecedent visited node and the subsequent
visited node of the node i ∈ V , respectively. The decision variable ti represents the team (member)
which visits the node i ∈ V . In addition the decision variable Li from previous formulations is still
valid in this model.

Some different sets and parameters are required. This model supposes that all nodes are assigned to
a vehicle, so a dummy vehicle is used to create an extra route for the unvisited nodes with no time
limit and no profit. Here H is the set of nodes, including required nodes and start and finish nodes.
In order to model some constraints, we replicate m times, once for each vehicle, the start nodes which
become the set HS , and finish nodes which become the set HF . These sets HS and HF belong to H.
Similar to previous nodes, H ′ is the set of required nodes (H ′ = H \ (HS ∪HF)). H1 is defined alike
V 1 from previous models (H1 = H \HS). The set of vehicles K ′ is composed by the set of available
vehicles K and the additional dummy vehicle.

With these definitions, the model can be formulated, based on [Kilby and Shaw, 2006], as follows:

maxZ =
∑
j∈H′

pj · (1− (tj = m+ 1)) (54)

ti−1 = i ∀ i ∈ K ′ (55)

tn+m+i−2 = i ∀ i ∈ K ′ (56)

ti = tai ∀ i ∈ H (57)

ti = tsi ∀ i ∈ H (58)

ai−1 = n+m+ i− 2 ∀ i ∈ K ′ (59)

sn+m+i−2 = i− 1 ∀ i ∈ K ′ (60)

ai 6= i ∀ i ∈ H (61)

asi = i ∀ i ∈ H (62)

ai 6= aj ∀ i, j ∈ H, i 6= j (63)

Li−1 = 0 ∀ i ∈ K ′ (64)

Li = (Lai + daii) · (1− (ti = m+ 1)) ∀ i ∈ H1 (65)

Li ∗ (1− (ti = m+ 1)) ≤ Lmax ∀ i ∈ H1 (66)

8 Camila Mej́ıa Quintero et al.

ai ∈ Z+ ∀ i ∈ H (67)

si ∈ Z+ ∀ i ∈ H (68)

ti ∈ Z+ ∀ i ∈ H (69)

Li ≥ 0 ∀ i ∈ H (70)

The objective function (54) collects the profit of visited vehicles. Note that only vehicles belonging to
the set K are considering since the nodes visited by the dummy vehicle are not part of the solution.
(55) and (56) fix the initial and final node for each vehicle. Therefore, (57) and (58) indicate that each
node must be visited by a vehicle and ensure that a vehicle visits the complete route. Remind that
unvisited nodes are visited by a dummy vehicle with no collecting profit. Then, (59) and (60) represent
a trick to convert an open route starting in a node from HS and finishing in a node from HF into a
close one where the predecessor of the initial node is the last one and the successor of the final node
is the initial one. In fact, (59) fixes the predecessor of each node in HS while (60) fixes the successors
of nodes in HF . Then, (61) establish that a node cannot be preceded by itself. (62) guarantee that a
route is a sequence of nodes where if node i precedes j then j succeeds i. In (63) ensure that each node
precedes exactly one node. In (64) to (66) refer to autonomy of vehicles. In (64) initialize the travel
time to zero for all initial nodes. Also, (65) indicate that the travel time until a node j is equal to the
travel time at its predecessor plus the distance between them. The total travel distance is limited by
Lmax in (66). Finally, (67) to (70) define the domain of the decision variables.

4 Matheuristic approach

The matheuristic approach is based on a LNS (Large Neighborhood Search) structure in which every
iteration consists on two basic procedures: destroy and rebuilt. In addition, a post-optimization phase
based on a set partitioning model selects the best routes founded by different LNS iterations.

In this project several strategies have been implemented in order to destroy and rebuilt solutions. In
the sequel those strategies, as well as the main matheuristic components, are described.

4.1 Initial solution

In order to get an initial solution, a heuristic algorithm is implemented. It is used a randomized
constructive method similar to the constructive phase of GRASP (Greedy Randomized Adaptive
Search Procedure) [Feo and Resende, 1989].

The randomized constructive methods are based on constructive methods, but instead of using
the node which fits the best for a specific criteria, it creates a list, called Candidate Restricted List
(RCL), with a set of nodes that can produce a feasible solution. The nodes belonging to the RCL are
chosen based on a constructive criteria, for instance the ratio profit over distance required to visit it.
Thus the RCL contains the α% nodes with greater ratio. RCl can be defined as follows:

RCL = {e ∈ E | c(e) ≥ α(cmax − cmin) + cmin} (71)

where cmax y cmin represent the maximum ratio and the minimum ratio of the eligible nodes,
and α is a parameter between 0 and 1 that allows to balance between greedy selection and a
complete randomly one. In order to create a solution, on every step a randomly chosen node from
RCL is selected to be added to the solution. The procedure finishes where any node can be added
without violating the threshold constraint or when all nodes have been added. Note that if α = 1
the construction performs as a greedy constructive method and if α = 0 it performs as a random search.

After initial solution the matheuristic performs an iterative process in which every iteration
consists of a destroy and a rebuilt phase. These phases are described in the following subsections.

Heuristic and exact solution strategies for the Team Orienteering Problem 9

4.2 Destroy phase

This phase starts by removing a subset R of randomly chosen nodes from a route k of a solution S. In
the sequel, the route k of a solution S is abbreviated as Sk in order to simplify the description. The
resulting route M is then composed by a set of nodes which are visited in the same order than they
are in the route Sk. Four destroy procedures are designed which differentiate by the way to select the
set R. From a given route k, each procedure removes 30% of the visited nodes.

The different ways to remove nodes from a route are as follows:

– Destroy 1 : In this procedure the removed nodes are chosen randomly.
– Destroy 2 : This procedure removes the set of nodes with the least profit and, in case of ties, it

removes those which save more time.
– Destroy 3 : This procedure removes sequences of 3 consecutive nodes from the route Sk.
– Destroy 4 : This procedure starts by inserting one node randomly chosen in the route, and then

removes as less nodes as possible to have a feasible route.

4.3 Rebuilt phase

The rebuilt phase considers a subset N of unvisited nodes that can be added to the resulting route
M from previous phase. The subset of new nodes N is fulfilled with every node available that, being
introduced in at least one part of the route, creates a feasible solution. If the subset N is empty, the
probability of being removed grows by 10% and the process is repeated until it gets to 100% or at
least one node can be placed in N .

From both sets R and N only seven nodes can be consider, otherwise the extra nodes are
eliminated. From R, the seven nodes are chosen randomly and from N are chosen the ones which are
closer to any node in Sk.

Moreover, the rebuilt route is the solution of a mathematical model that seeks for the optimal
way to integrate the nodes in R ∪ N into the route M . Two mathematical models are formulated
which are based on Model 4 (MILP3) described on Section 3.4. Remind that the binary decision
variable wij indicates whether node i is visited before node j in a route (not just before) (wij = 1),
or not (wij = 0). Nevertheless, here some constraints are modified because of the features of the new
subproblem, for instance, now there are only one route, just a subset of nodes are considered to be
included, and the nodes in M must be visited in the same order. The first resulting mathematical
model is the following:

max z =
∑

i∈R∪N
pi · yi (72)

wij = 1 ∀ i, j ∈M (73)∑
i∈M∪R∪N

wij ≥ yj ∀ j ∈ R ∪N (74)∑
j∈M∪R∪N

wij ≥ yi ∀ i ∈ R ∪N (75)

wij + wji ≤ yj ∀ i ∈M, j ∈R∪N (76)

wij + wji ≥ yi + yj − 1 ∀ i ∈ R∪N, j ∈M∪R∪N (77)

Lj ≥ Li + dij − Lmax · (1− wij) ∀ i, j ∈M∪R∪N (78)

Lj ≥ Li + dij − Lmax · wji ∀ i, j ∈M∪R∪N (79)

Li + di,n−1 ≤ Lmax ∀ i ∈M∪R∪N (80)

10 Camila Mej́ıa Quintero et al.

wij ∈ {0, 1} ∀ i, j ∈M∪R∪N (81)

yj ∈ {0, 1} ∀ j ∈ R ∪N (82)

Lj ≥ 0 ∀ j ∈M∪R∪N (83)

The objective function (72) is maximize the total collected profit. Therefore, (73) force to maintain
the nodes of sequence M in the same relative order in the final route from (74) to (77) ensure that if
a node j is selected to be added to the route at least for one i ∈ M∪R∪N wij has to be equal to 1
as well as wji to connect all nodes in the route. The others constraints are the same as (34) to (39)
described previously in the specific case with k = 1.

The second mathematical formulation is in fact the same program, but it does not consider the set R
in its equations. For instance the set R becomes empty. The purpose of this change is to expand the
feasible area in order to force the algorithm to get new solutions.

4.4 Post-optimization process

Regarding the post-optimization process, at each iteration the algorithm collects the m routes with
their profit and visited nodes. Thus, a set Ω of routes is stored. Each route k ∈ Ω has associated a
total collected profit Pk and a parameter γki which indicates if the node i ∈ V ′ is visited (γki = 1) or
not (γki = 0) by that route k.

The post-optimization process selects a set of m routes from Ω which reach the maximum
total collected profit and visit every node at most once. That selection is given by solving the following
mathematical model, where the decision variable χk is equal to 1 if the route k ∈ Ω is selected and 0
otherwise.

max z =
∑
k∈Ω

Pk · χk (84)∑
k∈Ω

γki · χk ≤ 1 ∀ i ∈ V ′ (85)∑
k∈Ω

χk = m (86)

χk ∈ {0, 1} ∀ k ∈ Ω (87)

The objective function (84) is to maximize the profit selecting the best routes. Firstly, (85) checks that
a node belongs to only one of the selected routes and (86) specifies the number of routes to select.
Finally, (87) defines the domain of the binary decision variable χk.

5 Computational experiments

In this section the performance of the solution methods described before are evaluated. The data
used on this section are the first six sets used in [Chao et al., 1996]. Each set has several instances in
which the time limit for a vehicle to do a route (Lmax) varies and they are solved with two, three and
four vehicles. On Tables 1 to 6, the data type is denoted with numbers, where the former represents
the set and the latter the amount of vehicles used. The results shown are the mean of the objective
function values of the solutions of every instance for each set and vehicle combination. Furthermore,
in all tables the best results are highlighted on bold text.

Heuristic and exact solution strategies for the Team Orienteering Problem 11

Regarding MILP models, all of them where evaluated and compared in order to decide which
one is better, in other words, which model converges faster to the optimal solution. Tables 1 and 2
show the results and the CPU time respectively for four different instances randomly chosen for the
MILP models designed and the results given by [Boussier et al., 2007]. In order to have solutions in
an appropriated time, a time limit of 600 seconds is set for each instance. In these tables, the third
number on first column represents the specific instance used, where it indicates the threshold time of
each vehicle, Lmax.

Table 1 Comparison of MILP models results for some instances

Instance Nodes MILP1 MILP2 MILP3 MILP4 Best1

1.4.8 32 45 45 45 45 45
2.3.5 21 120 120 120 120 120
4.2.1 100 81 43 206 206 206
6.2.4 64 132 114 192 192 192

Table 2 Comparison of MILP models computational time in seconds for some instances

Instance Nodes MILP1 MILP2 MILP3 MILP4 Best1

1.4.8 32 79.4 233.7 0.7 0.5 0.0
2.3.5 21 7.6 4.6 0.5 1.1 0.0
4.2.1 100 600.0 600.0 28.6 299.2 0.0
6.2.4 64 600.0 600.0 309.0 15.9 0.0

1 Taken from [Boussier et al., 2007].

Given the results in Table 1, it is hard to tell which of MILP3 and MILP4 works better. In order
to have clearer results, these models were tested with the complete set 1 with 3 different number of
vehicles. The time limit is also set to 600 seconds for every instance and the results are presented in
Table 3 and 4. Particularly for Table 4, as the third number increases on the instance reference, Lmax
increases as well.

Table 3 Comparison of best MILP for an specific data set

Data MILP3 MILP4

1.2 129.4 106.9
1.3 109.2 99.2
1.4 84.2 81.1

Time (s) 11583 13982

As Tables 3 and 4 show, MILP3 clearly outperforms MILP4. In addition, Table 5 exposes the results
for the matheuristic method. These results are found varying some parameters such as the number of
iterations of the LNS, the number of initial solution before LNS algorithm and the post-optimization
procedure. Particularly, the methodology to generate the initial solution uses α = 0.1 on the randomized
constructive algorithm. For the columns Mh1 and Mh2, in Table 5 the number of iterations of LNS
and post-optimization procedure are settled in 10 and 30 respectively, while the number of iterations
for the initial solution is fixed in 1 for Mh1 and in 100 for Mh2. The idea behind this selection is
to evaluate the impact of the number of initial solutions in the final results. Regarding the last two
columns, Mh3 and Mh4, the same number of iterations are set for the three parameters, 20 for Mh3

and 10 for Mh4. In addition, in the four cases a 1800 seconds time limit is used for each instance,
i.e., if solving one instance the model takes more than 1800 seconds, it continues to the next instance
regardless the number of iteration selected as well as if in 1 iteration the solution is not improved.

12 Camila Mej́ıa Quintero et al.

However, for Mh3, it continues to the next instance when after five straights iterations there is not
improvement in the solution.

Table 4 Comparison of best MILP for each instance of an specific data set

Instance MILP4 MILP3 Instance MILP4 MILP3 Instance MILP4 MILP3

1.2.1 0 0 1.3.1 0 0 1.4.1 0 0
1.2.2 15 15 1.3.2 0 0 1.4.2 0 0
1.2.3 20 20 1.3.3 0 15 1.4.3 0 0
1.2.4 30 30 1.3.4 0 15 1.4.4 0 15
1.2.5 45 45 1.3.5 30 30 1.4.5 0 15
1.2.6 80 80 1.3.6 40 40 1.4.6 25 25
1.2.7 85 90 1.3.7 50 50 1.4.7 35 35
1.2.8 100 110 1.3.8 70 70 1.4.8 45 45
1.2.9 110 135 1.3.9 105 105 1.4.9 60 60
1.2.10 110 140 1.3.10 115 115 1.4.10 75 75
1.2.11 140 155 1.3.11 130 135 1.4.11 100 100
1.2.12 155 180 1.3.12 150 155 1.4.12 120 120
1.2.13 140 210 1.3.13 165 175 1.4.13 130 130
1.2.14 180 190 1.3.14 175 180 1.4.14 155 155
1.2.15 170 235 1.3.15 155 200 1.4.15 165 165
1.2.16 175 215 1.3.16 180 220 1.4.16 175 175
1.2.17 195 240 1.3.17 205 220 1.4.17 180 190
1.2.18 175 240 1.3.18 215 240 1.4.18 195 210

Table 5 Parameters comparison for the matheuristic

Data Nodes Problems
Matheuristic (Mh)

Mh1 Mh2 Mh3 Mh4

1.2 32 18 135.3 138.1 139.2 133.9
2.2 21 11 187.3 184.5 187.7 182.7
3.2 33 20 473.0 480.0 478.5 462.5
4.2 100 20 766.9 776.0 791.4 728.8
5.2 66 26 755.8 776.5 797.5 734.8
6.2 64 14 593.6 599.6 604.7 560.6
1.3 32 18 107.8 107.8 109.4 104.4
2.3 21 11 134.5 133.6 135.0 133.6
3.3 33 20 395.5 397.5 401.0 388.5
4.3 100 20 675.8 698.9 700.7 665.4
5.3 66 26 676.7 698.8 702.1 668.5
6.3 64 14 417.9 435.0 419.6 406.7
1.4 32 18 80.6 80.6 83.3 77.8
2.4 21 11 92.7 92.7 92.7 92.7
3.4 33 20 325.5 326.5 329.5 322.5
4.4 100 20 565.2 583.4 582.9 545.5
5.4 66 26 602.7 619.6 611.9 588.7
6.4 64 14 231.9 247.3 243.9 231.0

Time (s) 12631.0 17978.0 23420.0 4608.0

Finally, in Table 6 are exposed the results of the MILP3, the CP, the best results of the matheuristic
model shown in Table 5 and the results on [Kim et al., 2013], which are the best results found in the
literature. For the MILP3 and the CP model, the CPU time limit is set at 120 seconds for a single
instance.

Heuristic and exact solution strategies for the Team Orienteering Problem 13

Table 6 Comparing final results

Data Nodes Problems MILP3 CP Mh Best2

1.2 32 18 116.7 75.8 139.2 149.1
2.2 21 11 190.5 166.4 187.7 190.5
3.2 33 20 430.5 276.5 480.0 496.0
4.2 100 20 98.8 31.2 791.4 917.1
5.2 66 26 272.5 249.2 797.5 897.8
6.2 64 14 307.7 169.3 604.7 819.3
1.3 32 18 100.3 68.1 109.4 125.0
2.3 21 11 136.4 131.4 135.0 136.4
3.3 33 20 364.0 266.5 401.0 411.5
4.3 100 20 172.4 1.9 700.7 856.2
5.3 66 26 272.9 216.9 702.1 783.6
6.3 64 14 306.0 86.6 435.0 454.4
1.4 32 18 81.1 57.5 83.3 101.0
2.4 21 11 94.5 92.7 92.7 94.5
3.4 33 20 323.5 251.0 329.5 336.5
4.4 100 20 191.5 0.0 583.4 804.1
5.4 66 26 278.7 171.3 619.6 708.8
6.4 64 14 199.7 15.3 247.3 255.0

Time (s) 24022.7 17755.6 23420.0 5204.2

2 Taken from [Kim et al., 2013].

6 Concluding remarks

This research has shown that the MILP models based on the wij decision variables and the concept
of replenishment arcs, described on Section 3.4 and 3.5 respectively are much faster than the models
based on flow models, as it can be seen in Table 2. Therefore, the first two models do not reach
the optimal solution for the two last instances, as Table 1 shows, due to its time limit settled at
600 seconds. Although the MILP3 and MILP4 accomplish the best results of the literature, theirs
computational time is much higher than the one in [Boussier et al., 2007]. As it is mentioned in Table
2, it is not possible to choose which model is the best, because solving problem 4.2.1 the MILP3 is
much faster than MILP4, but solving 6.2.4 is the opposite almost in the same proportions. As a result,
it is necessary to do another experiment, so that both models were executed with the complete data
set 1 and its results are reflected in Table 3 and 4, where is easily to assure that the MILP3 works
better in both computational time and the objective function’s value. In fact, there is no instance
where MILP4 defeat MILP3 results. Hence, this model is used on the matheuristic approach to solve
the resulting subproblems.

Regarding the matheuristic algorithm, its results are illustrated in Table 5. On the first hand,
respecting Mh1 and Mh2, it is clear that the impact of the initial solution is huge, because in 13 of
the 18 cases Mh2 outperforms Mh1 on the total profit. Nonetheless, the Mh2 computational time
surpasses by about 5000 seconds the Mh1 results. On the other hand, concerning Mh3 and Mh4, it
is evident that the results are improved when the iterations are increased, but it takes much longer
to solve it. Furthermore, having a better initial solution impacts the most on the final results, when
the number of vehicles is four, since the destroy and rebuilt procedures are designed to improve one
randomly route at a time.

Moreover, in Table 6 are presented the best results for each programming paradigm and ones
found on the literature [Kim et al., 2013]. It is important to stick out that the algorithms designed
are based on mathematical models, so it is pointless to compare the computational time with the
heuristic approach propose in [Kim et al., 2013]. In regard of the CP model, it is evident that
the model on Section 3.6 do not work as it was expected. However, it cannot be assure that CP
paradigm is useless on solving TOP, as it could be different schemes to model and program it.
Additionally, the MILP3 performs the best when the number of nodes is small. In fact, this model

14 Camila Mej́ıa Quintero et al.

accomplish the best results for each number of vehicles solving set 2. Regarding the matheuristic
results, they are evidently, in most of the cases, quite better than MILP and CP results specially
when the number of total nodes are greater than 21, as it was expected, since the TOP is a
NP-hard problem [Tang and Miller-Hooks, 2005]. As the algorithm is based on mathematical models,
the results for the largest instances, 66 and 100 nodes, have a vast difference comparing to the best ones.

As future research directions the results found in this research can be improved by defining
new subproblems and methods to solve them. For instance, the method split for vehicle routing
problems [Prins, 2004] can be used to solve the TOP as shown by [Bouly et al., 2010]. New subproblems
can be defined in order to allow the interchange of nodes between routes, and the subproblems can by
solved by dynamic programming approaches.

Regarding the MILP strategies, a different model can be formulated based on set partitioning
models as the post-optimization procedure. That kind of models can be solved by Branch & Price
algorithm or the approach proposed by [Azi et al., 2007] and [Rivera et al., 2016] in which all feasible
routes are first generated before the problem solution.

Finally, the proposed matheuristic can be improved by adding the use of some memory structures
and precomputations in order to speed up the solution procedure. When mathematical model solves
the subproblems, most of the nodes considered remain the same, so partial solutions from an iteration
would be able to be used in the subsequent ones.

Abbreviations

– ACO: Ant Colony Optimization.
– CP: Constraint Programming.
– GRASP: Greedy Randomized Adaptive Search Procedures.
– LNS: Large Neighborhood Search.
– Mh: Matheuristic algorithm.
– MILP: Mixed Integer Linear Programming.
– OP: Orienteering Problem.
– PSOiA: Particle Swarm Optimization inspired Algorithm.
– PSOMA: Particle Swarm Optimization on Memetic Algorithm.
– RCL: Restricted Candidate List.
– TOP: Team Orienteering Problem.
– TS: Tabu Search.
– VNS: Variable Neighborhood Search.

References

[Archetti et al., 2007] Archetti, C., Hertz, A., and Speranza, M. G. (2007). Metaheuristics for the team orienteering
problem. Journal of Heuristics, 13(1):49–76.

[Azi et al., 2007] Azi, N., Gendreau, M., and Potvin, J.-Y. (2007). An exact algorithm for a single-vehicle routing
problem with time windows and multiple routes. European Journal of Operational Research, 178(3):755–766.

[Bouly et al., 2010] Bouly, H., Dang, D.-C., and Moukrim, A. (2010). A memetic algorithm for the team orienteering
problem. 4OR, 8(1):49–70.

[Boussier et al., 2007] Boussier, S., Feillet, D., and Gendreau, M. (2007). An exact algorithm for team orienteering
problems. 4OR, 5(3):211–230.

[Butt and Cavalier, 1994] Butt, S. E. and Cavalier, T. M. (1994). A heuristic for the multiple tour maximum collection
problem. Computers & Operations Research, 21(1):101–111.

[Butt and Ryan, 1999] Butt, S. E. and Ryan, D. M. (1999). An optimal solution procedure for the multiple tour
maximum collection problem using column generation. Computers & Operations Research, 26(4):427–441.

[Chao et al., 1996] Chao, I.-M., Golden, B. L., and Wasil, E. A. (1996). The team orienteering problem. European
Journal of Operational Research, 88(3):464–474.

[Dang et al., 2011] Dang, D.-C., Guibadj, R. N., and Moukrim, A. (2011). A PSO-based memetic algorithm for the
team orienteering problem. In Applications of Evolutionary Computation, pages 471–480. Springer.

[Dang et al., 2013] Dang, D.-C., Guibadj, R. N., and Moukrim, A. (2013). An effective PSO-inspired algorithm for the
team orienteering problem. European Journal of Operational Research, 229(2):332–344.

Heuristic and exact solution strategies for the Team Orienteering Problem 15

[Feo and Resende, 1989] Feo, T. A. and Resende, M. G. (1989). A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters, 8(2):67–71.

[Ke et al., 2008] Ke, L., Archetti, C., and Feng, Z. (2008). Ants can solve the team orienteering problem. Computers &
Industrial Engineering, 54(3):648–665.

[Kilby and Shaw, 2006] Kilby, P. and Shaw, P. (2006). Handbook of Constraint Programming: Vehicle Routing, chapter
Vehicle routing, pages 799–827. Elsevier, New York, NY, USA.

[Kim et al., 2013] Kim, B.-I., Li, H., and Johnson, A. L. (2013). An augmented large neighborhood search method for
solving the team orienteering problem. Expert Systems with Applications, 40(8):3065–3072.

[Mak and Boland, 2000] Mak, V. and Boland, N. (2000). Heuristic approaches to the asymmetric travelling salesman
problem with replenishment arcs. International Transactions in Operational Research, 7(4-5):431 – 447.

[Prins, 2004] Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem. Computers
& Operations Research, 31(12):1985–2002.

[Rivera, 2014] Rivera, J. C. (2014). Logistic Optimization in Disaster Response Operations. PhD thesis, Université de
Technologie de Troyes.

[Rivera et al., 2015] Rivera, J. C., Afsar, H. M., and Prins, C. (2015). A multistart iterated local search for the multitrip
cumulative capacitated vehicle routing problem. Computational Optimization and Applications, 61(1):159–187.

[Rivera et al., 2016] Rivera, J. C., Afsar, H. M., and Prins, C. (2016). Mathematical formulations and exact algorithm
for the multitrip cumulative capacitated single-vehicle routing problem. European Journal of Operational Research,
249(1):93–104.

[Shaw, 1997] Shaw, P. (1997). A new local search algorithm providing high quality solutions to vehicle routing problems.
Technical report, University of Strathclyde.

[Tang and Miller-Hooks, 2005] Tang, H. and Miller-Hooks, E. (2005). A tabu search heuristic for the team orienteering
problem. Computers & Operations Research, 32(6):1379–1407.

[Vansteenwegen et al., 2009] Vansteenwegen, P., Souffriau, W., Berghe, G. V., and Van Oudheusden, D. (2009).
Iterated local search for the team orienteering problem with time windows. Computers & Operations Research,
36(12):3281–3290.

