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1 Introduction

Rostering and scheduling problems have been approached formally by researchers
for more than 50 years. The rostering and scheduling of hospital personnel,which
is a subset of this problem, results particularly complex due to the different needs
hospitals have for their different kinds of personnel on the different parts of each
day. Since hospitals work 24 hours a day, the benefits of a good schedule can
be seen in the performance and well being of the workers and thus in the well
being of the patients (Burke et al. , 2004).

Up until very little time ago, this kind of problems was solved manually and
took a lot of time to be solved and even now, in spite of having computational
tools, the hospitals that have them available to them don’t use them to their
full potential.

Since the decade of the 60’s, articles of various authors that use a compu-
tational approach to try to solve the problem in general as well as specific to
hospital personnel began to be published. The first approaches were mainly
mathematical and used lineal models focused on an optimal solution in terms
of money and employees’ preferences. However, finding the optimal solution to
most of the real problems may not be viable and even being so, it may take
a considerable amount of time which is not practical since the administration
seeks to generate quickly a good schedule that fits all the hard constraints of
the problem and as many soft ones as possible.

Later, heuristic and metaheuristic approaches to the problem that focused
on solving more complex and real versions of the problem began to appear.
These approaches cover a broad range going from purely heuristic approaches
using well known techniques such as annealing and taboo search, going through
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metaheuristic approaches that combine classic optimization with a heuristic
component to refine a solution, and coming all the way to techniques that use
artificial intelligence and expert systems. Some of these methods have shown
promising results and are still being studied.

In the first International Nurse Rostering Competition, the first four places
used very different approaches to solve the problem. Valois et al. (2010) used
a strictly mathematical approach but also partitioned the problem into two
subproblems; one for the day and one for the shift of the nurses. Nonobe (2010)
used a metaheuristic technique in a constrained optimization problem, using
binary variables for the problem and using taboo search. Lu & Hao (2010)
used a multistart adaptive local search that used different neighborhoods and
different strategies to explore those neighborhoods. Finally, Burke & Curtois
(2010) used a previously develop staff rostering model and a variable depth
search method.

2 Problem Description and Formulation

Based on the description proposed in The Second International Nurse Roster-
ing Competition (Ceschia et al. , 2015) the Nurse Scheduling Problem can be
described as follows:

Given a set N = {1, ..., n} of n nurses, a schedule consist in assigning a
subset of nurses to each shift s ∈ S during each day d ∈ D for each required
skill k ∈ K, where S is the set of all available shifts, D is the set of days in
planning horizon and K is the set of nurse skills. Nurses can work on any shift
or they can have a day-off. In this paper, we model days-off as an additional
shift, for instance S = {1, ..., h, h+ 1}, where h is the number of shifts and h+ 1
represents the day-off. Each nurse can have one or more skills and different
requirements can be done for each skill, but in each working shift the nurse can
cover exactly one skill request.

Nurses are also differentiate by different kind of contracts: full time, part
time, on call, or other. The contracts limit the distribution and the number of
assignments within the planning horizon, for instance, the minimum and max-
imum total number of assignments in the planning horizon, the minimum and
maximum number of consecutive working days, the minimum and maximum
number of consecutive days-off, the maximum number of working week-ends in
the planning horizon, and if the nurses must work complete week-end or they
can work just one day in a week-end.

There exists also constraints related to shift types. For instance, for each
shift type (early, late, night, etc.), it is given the minimum and maximum num-
ber of consecutive assignments of that specific shift. A set of forbidden shift
type successions is also given, for instance, if may not be allowed to assign to a
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nurse an early shift the day after a night one.

Requirements are specified for each day and each shift. The optimal and
minimum number of nurses necessary to fulfill the working duties are given for
each tuple shift-day.

The nurse assignments also must consider the border data. That means the
last assignment in previous periods has influence in some constraints. For in-
stance, if a nurse worked the last day before the period to be scheduled, that
day count to compute the number of consecutive working days. In order to con-
sider these features, two types of parameters are defined: parameters BDnsk

represent the number of consecutive working days of nurse n ∈ N in the shift
s ∈ S and skill k ∈ K until the first day of the planning horizon, and param-
eters IBDnsk indicates if BDnsk has a non-zero value (IBDnsk = 1) or not
(IBDnsk = 0).

The constraints described below can be classified into hard constraints (H)
and soft constraints (S) as follows.

Hard constraints: These constraints must be always satisfied by feasible
solutions.

• H1. Single assignment per day: A nurse can be assigned to at most
one shift per day.

• H2. Under-staffing: The number of nurses assigned to each shift s ∈ S
and each skill k ∈ K during a day d ∈ D must be at least equal to the
minimum requirement MRsdk. The parameter rnk indicates if the nurse
n ∈ N has the skill k ∈ K (rnk = 1), or not (rnk = 0). Here the minimum
requirement for days-off is equal to zero (MRh+1,d,k = 0).

• H3. Shift type successions: The shift type assignments of one nurse in
two consecutive days must not belong to the set of prohibited successions
P . Here, a prohibited shift succession (s1, s2) ∈ P means that if the shift
s1 ∈ S is performed by a nurse during a day, that nurse cannot perform
shift s2 ∈ S on the next day.

• H4. Missing required skill: A skill requirement during a shift and a
day must necessarily be fulfilled by a nurse having that skill.

Soft constraints: These constraints do not have to be satisfied by feasible
solutions but it is desirable. They contribute (or they are penalised) on the
objective function when they are not satisfied. Each one has a specific weight.

• S1. Insufficient staffing for optimal coverage: The number of nurses
for each shift s ∈ S and each skill k ∈ K must be equal to the optimal
requirement ROsdk during the day d ∈ D. Each missing nurse is penalised
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according to the weight provided C1. The decision variables Msdk indicate
the number of missing nurses with skill k ∈ K in the shift s ∈ S on each
day d ∈ D. Extra nurses above the optimal value are not considered in
the cost.

• S2. Consecutive assignments per shift: Minimum and maximum
number of consecutive assignments per shift s ∈ S, MINCASs and
MAXCASs respectively, should be respected. Their evaluation involves
also the border data. Each extra or missing day is multiplied by the corre-
sponding weight. The integer decision variables NMCASnsd indicate the
number of missing days while the binary decision variables NECASnsd

correspond to the number of exceeded days.

• S3. Consecutive global assignments: Minimum and maximum num-
ber of consecutive global assignments, MINCAGn and MAXCAGn,
should be respected. Their evaluation involves also the border data. Each
extra or missing day is multiplied by the corresponding weight. The deci-
sion variables NMCAGnd (integer) and NECAGnd (binary) are, respec-
tively, the number of missing and exceeded consecutive global days.

• S4. Consecutive days off: Minimum and maximum number of consec-
utive days off should be respected. Their evaluation involves also border
data. Each extra or missing day is multiplied by the corresponding weight.

• S5. Preferences: Each assignment to an undesired shift is penalised by
the corresponding weight. The parameter DSns indicates the desirable
level of the shift S ∈ S for the nurse n ∈ N .

• S6. Complete week-end: Some nurses must work complete weekends
if her/his contracts indicate that. This feature is given by the parameter
Wn which is equal to one if nurse n ∈ N must work complete week-end
or zero otherwise. Those nurses can work both week-end days or none. If
they work only one of the two days, this is penalised by the corresponding
weight. The decision variables MDWnd count the missing days in a week-
end for the nurse n.

• S7. Total assignments: For each nurse, the total number of assign-
ments (working days) must be included within the limits (the minimum
MINWDn and the maximum MAXWDn) enforced by her/his contract.
The difference (in either direction), multiplied by its weight, is added to
the objective function. The decision variables NMWDn and NEWDn

compute the number of missing working days and number of exceeded
working days respectively.

• S8. Total working week-ends: For each nurse n ∈ N , the num-
ber of working week-ends must be less than or equal to the maximum
MAXWWn. The number of worked week-ends in excess is add to the
objective function multiplied by the weight. A week-end is considered
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“working” if at least one of the two days is busy for the nurse, and in that
case the binary decision variable WWnd must be equal to 1. The decision
variable NEWWn counts the number of exceeded working week-ends.

To model this optimization problem, we propose a Mixed Integer Linear
Program (MILP). In that model, the binary decision variable xnsdk is equal to
1 if the nurse n ∈ N is assigned to the shift s ∈ S during the day d ∈ D to
perform its skill k ∈ K.

The MILP can be described by the Equations (1) to (27):

min Z = ∆Z1 + ∆Z2 + ∆Z3 + ∆Z4 + ∆Z5 + ∆Z6 + ∆Z7 (1)

s.t.
∑
s∈S

∑
k∈K

xnsdk = 1, ∀ n ∈ N, d ∈ D (2)

∑
n∈N

xnsdk · rnk ≥ RMsdk, ∀ s ∈ S, d ∈ D, k ∈ K (3)

∑
k∈K

(xn,s1,d−1,k + xn,s2,d,k) ≤ 1,

∀ n ∈ N, d ∈ D\{1}, (s1, s2) ∈ P

(4)

∑
n∈N

xnsdk · rnk + Msdk ≥ ROsdk, ∀ s ∈ S, d ∈ D, k ∈ K (5)

∆Z1 = C1 ·
∑
s∈S

∑
k∈K

Msdk (6)

df∑
d=d0

∑
k∈K

xnsdk + NMCASnsd0 ≥

MINCASs ·
∑
k∈K

(xnsd0k − xn,s,d0−1,k),

∀ n ∈ N, s ∈ S, d0 ∈ D \ {1}, d0 ≤ |D| −MINCASs + 1,

df = d0 + MINCASs − 1

(7)

∑
k∈K

BDnsk +
∑
k∈K

df∑
d=1

xnsdk + NMCASn,s,1 ≥

MINCASs ·
∑
k∈K

(xn,s,1,k − IBDnsk),

∀ n ∈ N, s ∈ S, df = MINCASs −BDnsk

(8)
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df∑
d=d0

∑
k∈K

xnsdk −NECASnsd0
≤MAXCASs,

∀ n ∈ N, s ∈ S, d0 ∈ D \ {1}, df = min{d0 + MAXCASs, |D|}

(9)

∑
k∈K

BDnsk +
∑
k∈K

df∑
d=1

xnsdk −NECASn,s,1 ≤MAXCASs,

∀ n ∈ N, s ∈ S, df = MAXCASs −BDnsk + 1

(10)

∆Z2 = C2 ·
∑
n∈N

∑
s∈S

∑
d∈D

(NMCASnsd + NECASnsd) (11)

df∑
d=d0

h∑
s=1

∑
k∈K

xnsdk + NMCAGnd0
≥

MINCAGn ·
∑
s∈S

∑
k∈K

(xnsd0k − xn,s,d0−1,k),

∀ n ∈ N, d0 ∈ D \ {1}, d0 ≤ |D| −MINCAGn + 1,

df = d0 + MINCAGn − 1

(12)

h∑
s=1

∑
k∈K

BDnsk +

h∑
s=1

∑
k∈K

df∑
d=1

xnsdk + NMCAGn,1 ≥

MINCAGn ·
h∑

s=1

∑
k∈K

xn,s,1,k,

∀ n ∈ N, df = MINCAGn −BDnsk

(13)

df∑
d=d0

h∑
s=1

∑
k∈K

xnsdk −NECAGnd0
≤MAXCAGn,

∀ n ∈ N, d0 ∈ D \ {1}, df = min{d0 + MAXCAGn, |D|}

(14)

h∑
s=1

∑
k∈K

BDnsk +

h∑
s=1

∑
k∈K

df∑
d=1

xnsdk −NECAGn,1 ≤MAXCAGn,

∀ n ∈ N, df = MAXCAGn −BDnsk + 1

(15)

∆Z3 = C3 ·
∑
n∈N

∑
d∈D

(NMCAGnd + NECAGnd) (16)

∆Z4 = C4 ·
∑
n∈N

∑
s∈S

∑
d∈D

∑
k∈K

DSns · xnsdk (17)
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∑
k∈K

h∑
s=1

xnsdk −MDWnd ≤
∑
k∈K

h∑
s=1

xn,s,d−1,k + (1−Wn),

∀ n ∈ N, d ∈ {7, 14, 21, 28}

(18)

MDWnd +
∑
k∈K

h∑
s=1

xnsdk ≥
∑
k∈K

h∑
s=1

xn,s,d−1,k + (1−Wn),

∀ n ∈ N, d ∈ {7, 14, 21, 28}

(19)

∆Z5 = C5 ·
∑
n∈N

∑
d∈D′

MDWnd, where D′ = {7, 14, 21, 28} (20)

∑
d∈D

h∑
s=1

∑
k∈K

xnsdk + NMWDn ≥MINWDn, ∀ n ∈ N (21)

∑
d∈D

h∑
s=1

∑
k∈K

xnsdk −NEWDn ≤MAXWDn, ∀ n ∈ N (22)

∆Z6 = C6 ·
∑
n∈N

(NMWDn + NEWDn) (23)

h∑
s=1

∑
k∈K

(xnsdk + xn,s,d−1,k) ≤ 2 ·WWnd

∀ n ∈ N, d ∈ {7, 14, 21, 28}

(24)

h∑
s=1

∑
k∈K

(xnsdk + xn,s,d−1,k) ≥WWnd

∀ n ∈ N, d ∈ {7, 14, 21, 28}

(25)

∑
d∈D′

WWnd −NEWWn ≤MAXWWn,

∀ n ∈ N, where D′ = {7, 14, 21, 28}
(26)

∆Z7 = C7 ·
∑
n∈N

NEWWn (27)

The objective function (1) is the sum of all soft constraint penalisations.

Equations (2) to (4) are referred to the hard constraints. Equation (2) means
that each nurse must be assigned to only one shift on each day, as it is explained
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by constraint H1. Remind that here the set of shifts include days-off (s = h+1).
In Equation (3) the minimum required number of nurses with each skill on each
shift and day is limited as expressed in constraints H2. The presence of the
parameter rnk assures that the assigned nurses have the required skill as it is
asked by constraints H4. Equation (4) guarantees that constraints H3 about
consecutive shift assignments are satisfied.

Equations (5) to (27) are referred to the soft constraints. Constraint (5)
allows to compute the number of nurses required to reach optimal number of
nurses with each skill on each shift and each day, according to constraint S1.
The number of missing nurses is given by the decision variables Msdk. Note
that in these constraints only nurses with the specific skills are considered, so
constraint H4 is also satisfied. Equation (6) define the total violation cost of
constraints S1. In all tested instances the parameter C1 is set to 30.

In constraints (7) to (11) the consecutive assignments per shift constraints
are represented, according to constraints S2. Equation (7) is related to the
minimum consecutive assignments per shift for days after the first day in the
planning horizon, while equation (8) corresponds to the first day of the planning
horizon. Similarly, constraints (9) and (10) describe the maximum consecutive
assignments per shift for days after and the first day on the planning horizon.
In equation (11) the auxiliar variable ∆Z2 cumulates the total violation cost
of constraints S2. Note that as day-off are treated as an additional or dummy
working day, the constraints S4 are also represented by these equations. In all
tested instances the parameter C2 is set to 15 for real working days (s 6= h+ 1)
and 10 for days-off (s = h + 1).

Constraints S3 are modeled by Equations (12) to (16). As Constraints (7) to
(11), Equation (12) represents the minimum number of global consecutive work-
ing days after first day, Equation (13) limits the minimum number of global
consecutive working days in the first day of planning horizon, equations (14)
and (15) have similar meanings but respect to the maximum number of global
consecutive working days, and equation (16) compute the violation cost of con-
straints S3. The weights for consecutive days is C3 = 30.

The Constraint (17) indicates the total cost of undesired assignment shifts
explained by soft constraints S5 The value of parameter C4 is set to 10. The
Equations (18) and (19) allow to compute the missing days in a working week-
end for nurse who must work complete week-ends. Equation (20) compute the
violation cost associated to complete working week-end constraints. Here is
supposed that the first day in the planning horizon is Monday. The violation
weight of these constraints is 30.

Equations (21) and (22) are referred to the minimum and maximum number
of working days of nurses in the planning horizon. Equation (23) cumulates the
violation cost of these constraints. The parameter C6 is set to 20.

8



Constraints (24) and (25) allow to compute variables WWnd while equations
(26) use that variables to calculate the number of exceeded working weekends.
Finally, Equation (27) compute the total cost of exceeded working week-ends.

3 Conclusions and Future work

The scheduling problem in general is an increasingly difficult problem due to the
growing number of specializations in every field and the requirements in time
and money they have. Most, if not all, of the different approaches that have
been used to create solutions to the problem should be taken into consideration
when building a new model and the strategies to solve it because even now some
forms of mathematical approaches, which could be thought to be less efficient
than more complex kinds of approaches, have shown very good results. The
implementation of the model with heuristic strategies and other ideas taken
from the first places of the First Nurse Rostering competition are left for future
work. Strategies taken into consideration for implementation are the partition
of the problem into sub problems for day and shifts and heuristic techniques
such as variable neighborhood search.
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