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Abstract—The purpose of this paper is to present the re-
search results on the PCAMIX method showing how useful
it is in todays real world. In most current databases we
commonly find mixed variables, that is, quantitative and
qualitative variables. PCAMIX method can deal with these
mixed databases and make possible to obtain significant
statistical elements over a population under study. Besides
that, we construct a useful indicator for result analysis and
deeper study of certain selected population characteristics.
An application case used for the understanding of the
method shows its evident effectiveness and an indicator is
obtained giving important information about the quality
of life of relevant places.

Index Terms—Indicator, Mixed data, Principal Components,
Quantification.

I. INTRODUCTION

Currently most of the databases information is of mixed
nature, which means a mixture of qualitative and quantitative
variables like statistical variables that are a representation
of the characteristics associated to a surveyed population to
perform diverse analysis.

When we talk about quantitative variables, we refer to
mathematical variables measured in numerical quantities such
as age, weight, area, volume, etc. These variables can be either
of discrete nature where intermediate values are not allowed
in an established scale, or of continuous nature, which are
those variables that allow any value within a specific range;
and when we refer to qualitative variables, we discuss the
variables that express qualities or characteristics of a sample
population and among them ordinals and nominal variables
can be distinguished, ordinals because they can take different
sorted values according to an established scale values and
nominal variables because they can not be subjected to a
sorting criteria.

Methods for quantifying qualitative data and especially
methods for the analysis of mixed data are relatively recent,
because most data analysis methods have focused over the
years in the treatment of only pure quantitative data or
pure qualitative data. Within these categories are two impor-
tant methods, the Principal Component Analysis (PCA) for
quantitative variables and Correspondence Analysis (CA) for
qualitative variables.

To deal with mixed data several methods have been pro-
posed by different authors, those are the cases of PCAMIX
proposed by de Leeuw & van Rijckevorsel (1980), and later
on during the years 1988 and 1989 of an alternative for the
PCAMIX method called INDOOR proposed by Kiers (1988).

The appearance of these methods for mixed databases has
meant great and specific support to decision-makers by pro-
viding important information and indicators over population
problems requiring solutions.

In this article we can find a description of the methods
used throughout the research and an application case with
results obtained by applying the PCAMIX method to a mixed
selected database. Also an important indicator is obtained
giving important population related information.

II. METHODOLOGY

A. Principal Component Analysis (PCA)

It considers a set of variables (x1, x2, ..., xp) upon a group
of objects or individuals and based on them a new set of
variables y1, y2, ..., yp is calculated, but these new variables
are uncorrelated with each other and their variances should
decrease gradually, (Rencher (1934)).
Each yj (where j = 1, ..., p) is a linear combination of original
x1, x2, ..., xp described as follows:

yj = aj1x1 + aj2x2 + ...+ ajpxp = a′jx

where a′j = (a1j , a2j , ..., apj) is a vector of constants, and
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x =

 x1
...
xp


The goal is to maximize the variance, so aij coefficients are

increased. Besides that, to keep transformation orthogonality
it is required that vector a′j module be 1, that is,

a
′

jaj =

p∑
k=1

a2kj = 1

The first component is calculated by choosing a′1 in such
way that y1 gets the greatest variance subjected to the cons-
traint that a′1a1 = 1. The second principal component is
calculated by means of an a′2 that makes y2 uncorrelated to
y1. The same procedure is applied to select y3 through yp.

B. Principal Component Analysis for Mixed data (PCAMIX)

This method considers the mixture of qualitative and quan-
titative variables. For qualitative variables it is necessary to
calculate the quantification matrix associated (this procedure
is explained in more detail in the next subsection). Then this
matrix is concatenated with the matrix of quantitative variables
to perform the Principal Component Analysis, (Kiers (1991)).
It is important to highlight that this process is done with the
purpose of reducing the number of variables that describe the
problem, therefore the components that explain 80% of the
variance of the data is selected.

C. Quantification Matrices

The idea of using quantification matrices is to define corre-
lation coefficients between the variables.

Among the most commonly quantification matrices used,
due to its effectiveness and characteristics in the results, we
can find:

1) Quantification Matrix GjG
′
j: The G matrix is an indi-

cator matrix with a binary structure, where 1 denotes that the
individual meets certain characteristic and 0 tells us that the
object does not meet certain feature of any category.

After obtaining this indicator matrix the product of this
matrix is by itself but transposed, getting a square matrix,
also known as Burt matrix which also give information about
the frequency and the relationship between individuals and
variables, through contingency tables.

In the diagonal blocks containing diagonal matrices appear
marginal frequencies of each of the variables analyzed. Out-
side the diagonal cross frequency tables appear, corresponding
to all combinations 2 to 2 of the variables analyzed.

The elements of the quantification matrix GjG
′
j are given

by:

Sii′j =


1 if object i and object i′ belong to

the same category

0 if object i and object i′ belong to
different category

where Sii′j it is a measure of similarity between sample
objects i and i′ in terms of a particular variable j.

The frequency categories and the number of categories are
not taken into account in this measure of similarity (Kiers
(1989)).

2) Quantification Matrix Gj(G
′
jGj)

−1G′j: In this case the
G matrix is like the one in the previous case but here it is
multiplied by itself transposed G′jGj giving the Burt matrix
inverted.
Here the value of the diagonal elements of the matrix G′jGj

tell us when i and i′ objects belong to the same category,
that is, when individuals are similar, because when making
the product of the matrices Gj(G′jGj)

−1Gj we obtain a
matrix where we find the values of the diagonal of G′jGj for
individuals having similarity and zero for those not having.

It can be seen again as a measure of similarity, because their
values are higher when objects are in the same category. The
similarity between objects that are in the same category now
depend on the number of objects in this category. The higher
the frequency of a category, the greater the probability of two
objects being in the same categories.

The elements of the quantification matrix Gj(G
′
jGj)

−1G′j
are given by:

Sii′j =


f−1g if object i and object i′ belong to

the same category

0 if object i and object i′ belong to
different category

where f−1g is the gth diagonal element of (G′jGj)
−1 (Kiers

(1989)).

3) Quantification Matrix JGj(G
′
jGj)

−1G′jJ: Saporta pro-
posed J matrix with the objective of centering the observa-
tions.

The J matrix is the subtraction between the identity matrix
of dimension n and a vector product between a column of
ones and a row of ones, divided by the sample size.

J = In −
11′

n

This quantification matrix is a normalized version of the
χ2 measure. Where χ2 = 0 if variables are statistically
independent.

The elements of the quantification matrix
JGj(G

′
jGj)

−1G′jJ are given by:

Sii′j =


f−1g − n−1 if object i and object i′ belong to

the same category

−n−1 if object i and object i′ belong to
different category
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These similarities differ from the previous matrix in which
these are reduced by n−1, which leads to negative similarities
between objects belonging to different categories and slightly
reduced, but always positive between objects that fall into the
same category.

Next, the procedure of PCAMIX method explained in detail
below:

Max X ′AX

s.t X ′X = 1

where X is a nx1 vector and A is a nxn matrix.

X ′AX = X ′KΛK ′X

= Y ′ΛY

=
[
y1 y2 ... yn

]

λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 0 λn



y1
y2
...
yn


=

n∑
i=1

λiy
2
i

≤
n∑

i=1

λ1y
2
i λi ≤ λ1∀i

= λi

∑n
i=1 y

2
i

1

where λ1 is an upper bound for g(x) = X ′AX . This upper
bound can be reached by taking X = K1, the first column of
K, and this results.

g(K1) = K ′1AK1 = K ′1λ1K1 = λ1K
′
1K1 = λ1

due to,

[A− λ1In]K1 = 0

and it found the maximum of the quadratic form X ′AX
subject to the restriction X ′X = 1.

The maximum is the largest eigenvalue of A, and is reached
when X is the eigenvector associated.

Homogeneity analysis also known as Multiple Correspon-
dence Analysis, is a generalization of PCA for qualitative
variables.

A qualitative variable can, in this context, be conveniently
represented by a matrix Gi, of order nxki, where kj is
the number of categories of the variable j. Each of the n
individuals has a score of 1 for the category to which he/she
belongs, and a score of zero in any other case.

Gi =

1
2
...
n


1 0 0 ... 0
0 1 0 ... 0
...

...
...

. . .
...

0 0 0 ... 1



A matrix of this kind is called indicator matrix. In the
case of m qualitative variables, m indicator matrices will be
involved, they can be collected in a supermatrix.

G =
[
G1 G2 ... Gm

]
of order nxk, where k = k1 + k2 + ... + km, the total

number of categories of the m variables.

Homogeneity analysis is a technique in which weights
are obtained and collected in the vectors Y1, Y2, ..., Ym of
order (kjx1) to quantify the categories of variables. As a
result the quantified variables are constructed of the form
G1Y1, G2Y2, ..., GmYm. GjYj is of order (nx1), (Gifi (1990)).

The weights are chosen to make quantified variables as
homogeneous as possible.

This means that the quantified variables deviate a least as
possible of a certain vector X , in the sense of minimum
squares specifically, the weights and X are chosen to mini-
mize, (ten Berge (1993)).

l(Y1, ..., Ym, X) =

m∑
j=1

(GjYj −X)′(GjYj −X)

s.t X ′X = n
n∑

i=1

Xi = 0

Restrictions have been introduced to avoid getting trivial
solutions.

X = 0 and Yj = 0 or X = j and Yj = jkj , respectively,
j = 1, ...,m

GjJkj = J

A way to find the minimum of l(·) subject to the restrictions
is as follows.
Independently of X the associated Yj = (j = 1, ...,m) must
satisfy:

Yj = (G′jGj)
−1G′jX

= D−1j G′jX

where Dj is defined as the diagonal matrix of order kjxkj
containing the diagonal frequencies of different categories of
j − th variable. Using the above expression the problem can
be simplified or minimize.
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l̃(x) =

m∑
j=1

(GjD
−1
j GjX −X)′(GjD

−1
j G′jX −X)

=

m∑
j=i

(X ′GjD
−1
j G′j −X ′)(GjD

−1
j GjX −X)

=X ′
[

m∑
j=1

GjD
−1
j G′jGjD

−1
j G′j

]
X −X ′

[
m∑

j=1

GjD
−1
j G′j

]
X

−X ′
[

m∑
j=1

GjD
−1
j G′j

]
X +

m∑
i=1

X ′X

=X ′
[

m∑
j=1

GjD
−1
j G′j

]
X − 2X ′

[
m∑

j=1

GjD
−1
j G′j

]
X + nm

=nm−X ′
[

m∑
j=1

GjD
−1
j G′j

]
X

The remaining problem is to maximize the quadratic form:

g(x) = X ′

 m∑
j=1

GjD
−1
j G′j

X
s.t X ′X = n and 1′X = 0

The restriction j′X = 0 is equivalent to the restriction
JX = X where:

J = (In −
11′

n
)

JX −X = 0

[J − In]X = 0

[In −
11′

n
− In]X = 0

11′

n
X = 0

11′X = 0

1′X = 0

whereupon we have

g(x) = g(JX)

= X ′J

 m∑
j=1

GjD
−1
j G′j

 JX
= X ′

 m∑
j=1

JGjD
−1
j G′jJ

X
= X ′WX

= n

(
x√
n

)
W

(
X√
n

)
≤ nλ1(W )

where λ1(W ) is the largest eigenvalue of W.
The upper bound is reached when X is chosen as the first

eigenvector of W , scaling a sum of squares n. This eigenvector

also satisfies both restrictions and clearly it has been found the
minimum of l(Y1, ..., Ym, X).

This procedure was implemented in R programming lan-
guage for a specific aplication case.

III. APPLICATION CASE

For the application case an R database taken from PCAmix-
data library and named “Gironde” is used. This database
consists of 4 data sets characterizing the living conditions
of 540 cities in Gironde – France. The aim of using this
database is to construct an indicator that provides additional
and complementary information about the life quality in cities.

The data set related to employment, housing and services come
from the 2009 Census conducted by INSEE (Institut National
de la Statistique et des Etudes Economiques) and the data
set related to natural environment comes from IGN (Institut
National de l’Information Geographique et forestiere).

This application case works with 16 variables from which 11
are qualitative and 5 quantitative, as shown in Table I and
Table II:

• Qualitative Variables:

Table I – Qualitative variables of Gironde database

DATA SET VARIABLES

Housing Percentage of households
Percentage of social housing

Services

Number of butcheries
Number of bakeries
Number of post offices
Number of dental offices
Number of supermarkets
Number of nurseries
Number of doctor’s offices
Number of chemical locations
Number of restaurants

• Quantitative Variables:

Table II – Quantitative variables of Gironde database

DATA SET VARIABLES

Employment Percentage of managers
Average income

Natural environment
Percentage of buildings
Percentage of water
Percentage of vegetation

After applying the PCAMIX method to the selected
database a reduction of 56.25% in the number of variables
is obtained since seven components account for 80% of the
data variance. This information can be seen in Table III:
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Table III – PCAMIX for Gironde database

Standard
deviation

Proportion
of Variance

Cumulative
Proportion

Comp 1 2.6692 0.4453 0.4453
Comp 2 1.2203 0.0931 0.5384
Comp 3 1.1749 0.0863 0.6247
Comp 4 1.0521 0.0692 0.6939
Comp 5 0.9351 0.0546 0.7485
Comp 6 0.8056 0.0405 0.7890
Comp 7 0.7279 0.0331 0.8221
Comp 8 0.7189 0.0323 0.8544
Comp 9 0.6771 0.0287 0.8831

Comp 10 0.6477 0.0262 0.9093
Comp 11 0.6204 0.0241 0.9334
Comp 12 0.5750 0.0207 0.9541
Comp 13 0.5248 0.0172 0.9723
Comp 14 0.4747 0.0141 0.9854
Comp 15 0.3744 0.0088 0.9942
Comp 16 0.3081 0.0058 1

An indicator is a numeric data as the result of a process that
scientifically quantifies a characteristic of a sample. It gives
information about the status of a particular situation or any
particular characteristic at any given time and space, (Aguilar
(2004)).
An indicator is generally a statistical data that synthesizes
information of certain variables or parameters that affect the
situation analyzed. Indicators can be qualitative and quantita-
tive. In this case, as all variables carry quantitative terms the
resulting indicator will carry them too.

In the procedure of analyzing “Gironde” database the in-
dicator of life quality is the first component chosen and it
explains the 44.53% of data variance. Therefore, the indicator
gets established as follows:

Z1 = 0, 278Y1 + 0, 262Y2 + 0, 298Y3 + 0, 325Y4 + 0, 301Y5+

+0, 336Y6 + 0, 156Y7 + 0, 193Y8 + 0, 340Y9+

+0, 350Y10 + 0, 309Y11 + 0, 112Y12 + 0, 198Y14

where Y1 is the percentage of households, Y2 is the percen-
tage of social housing, Y3 is the number of butcheries, Y4 is the
number of bakeries, Y5 is the number of post offices, Y6 is the
number of dental offices, Y7 is the number of supermarkets,
Y8 is the number of nurseries, Y9 is the number of doctor’s
offices, Y10 is the number of chemical locations, Y11 is the
number of restaurants, Y12 is the percentage of managers and
Y14 is the percentage of buildings.

This way it is quite evident that the higher the value in
each of the abovementioned variables, the higher the city life
indicator.
Based upon this indicator, a ranking of the 10 best and worst
cities of Gironde is presented and for this, the scores obtained
by means of Principal Components Method are unified in
values ranging among 0 and 100, as follows:

Indicator =
Zi −min(Zi)

max(Zi)−min(Zi)
∗ 100

and the resulting rank of cities is shown in Table IV and
Table V:

Table IV – Ranking of 10 best cities of Gironde

Best cities of Gironde Score
1 Bordeaux 100
2 Bouscat 98,4095
3 Talence 95,8205
4 Begles 92,9496
5 Sainte-Foy-La-Grande 92,0792
6 Arcachon 90,6155
7 Eysines 90,3977
8 Cenon 90,1268
9 Merignac 89,7749
10 Pessac 89,7638

Table V – Ranking of 10 worst cities of Gironde

Worst cities of Gironde Score
531 Fosses-Et-Baleyssac 0,5042
532 Lartigue 0,4705
533 Saint-Exupery 0,3367
534 Saint-Hilaire-De-La-Noaille 0,2719
535 Roquebrune 0,2599
536 Lucmau 0,2540
537 Cauvignac 0,2305
538 Giscos 0,2262
539 Labescau 0,1128
540 Saint-Martin-Du-Puy 0

IV. CONCLUDING REMARKS

It is found that the quantification matrices are quite useful
to work with mixed data bases, since the qualitative variables
do not contain numerical information needed to implement
methods that require qualitative variables; in addition, the
utility of the matrices to measure similarity and dissimilarity
between individuals respect to a variable is verified.

The process has the purpose of reducing the number of
variables that describe the problem selecting the components
that explain 80% of the variance of the data. Besides
that, weights are chosen to make quantified variables as
homogeneous as possible, and restrictions are introduced to
avoid trivial solutions.

The PCAMIX method was very useful when it was applied
in a real life case, since it was found that it is possible to
extract relevant information from mixed variables and it is not
necessary to study the pure quantitative or qualitative variables
separately when the data base is mixed.

V. FUTURE WORK

Develop indicators that give important information from
mixed data using PCAMIX method and implement this
method on a database related to EAFIT University.
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