ENGINEERING SCHOOL
MECHANICAL ENGINEERING DEPARTMENT
ACADEMIC PROGRAM

COURSE : DESCRIPTIVE GEOMETRY
CODE : IM0231
SINCE : January 2008
TIME INTENSITY : 2 presental hours/week
MODALITY : Magisterial
CHARACTERISTIC : Suficientable
PRE-REQUISITES : None
CO-REQUISITES : None
CREDITS : 2

1. GENERAL OBJECTIVE:
At the end of the course students are expected to present the solutions to any practical problem that involves descriptive geometry, and to illustrate them in detail (i.e. setting up, execution and manufacturing plans). They should also: use different procedures and methods of descriptive geometry for the solution of real problems. Interpret projections based on defined techniques; learn to use the hexahedron (cube) and multiple views; learn to use the dihedral system, and apply the basic elements of descriptive geometry to represent the physical world.

2. CONTENTS:
How to use the hexahedron (cube) and multiple views; dihedral system; representations of objects; interpret real problems that can be represented in projections using points or lines; interpret real problems that can be represented in projections using planes and surfaces; represent problems applying the basic elements of descriptive geometry; manage techniques and procedures using the line, the plane and the surface; solve complex problems using the methods and techniques learned in the course.

3. EVALUATION:

<table>
<thead>
<tr>
<th>Type of evaluation</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>First partial exam</td>
<td>50%</td>
</tr>
<tr>
<td>Second partial exam</td>
<td></td>
</tr>
<tr>
<td>Third partial exam</td>
<td></td>
</tr>
<tr>
<td>Class work and quizzes</td>
<td>25%</td>
</tr>
<tr>
<td>Workshop</td>
<td></td>
</tr>
<tr>
<td>Final Project</td>
<td>25%</td>
</tr>
</tbody>
</table>

4. BIBLIOGRAPHY:
WELLMAN B. Leighton. GEOMETRÍA DESCRIPTIVA.