Lagrangian-Eulerian method for two-dimensional hyperbolic conservation laws

Jorge Agudelo In collaboration with:

Eduardo Abreu, John Pérez and José Albeiro Sánchez

Seminar of the PhD in Mathematical Engineering Universidad EAFIT

12/04/2019

Objectives

Bibliographic review

Lagrangian-Eulerian scheme in one dimension

Some numerical tests with the Lagrangian-Eulerian scheme

Basic ideas for the extension of the Lagrangian-Eulerian scheme to two dimensions

Objectives

 Construct an improved Lagrangian-Eulerian conservative scheme on a triangular mesh to solve the hyperbolic problem

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} + \frac{\partial g(u)}{\partial y} = 0, \ (x, y, t) \in \Omega \times (0, T], \\ u(x, y, 0) = \eta(x, y), \ (x, y) \in \Omega. \end{cases}$$

 Advance in the formulation, construction and application of an improved Lagrangian-Eulerian conservative scheme on a triangular mesh for hyperbolic conservation laws with source term (nonhomogeneous case).

Bibliographic review

MMOC (Modified Method of Characteristics). Douglas Jr, J. and Russell, T.F., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristic with finite element or finite difference procedures, SIAM J, Numer. Anal. 19 (1982) 871-885.

ELLAM (Eulerian Lagrangian Localized Adjoint Method). Celia, M. A., Russell, T. F., Herrera, I. and Ewing, R. E., Advances in Water Resources, 13 (1990).

MMOCAA (Modified Method of Characteristic with Adjusted Advection). Douglas Jr, J., Huang, C.S. and Pereira, F., Numerische Mathematik 83 (1999) 353-369.

LCELM (A Locally Conservative Eulerian-Lagrangian Numerical Method and its Application to nonlinear transport in porous media) Douglas Jr, J., Pereira, F. and Yeh, L. M., Computational Geosciences 1 (2000) 1-40.

LCELM-FD (A Locally Conservative Eulerian-Lagrangian Finite Difference Method for a Parabolic Equation) Douglas Jr, J. and Huang, C.S., BIT Numerical Mathematics, 41 (3) (2001) 480-489.

ELEM (Eulerian Lagrangian Explicit Methods). Mancuso, S., (2004), Dissertação de mestrado, Instituto Politécnico do Rio de Janeiro - Universidade do Estado do Rio de Janeiro.

DSTC (Dynamical Space Time Coarsening) Souza Boy, G., Mancuso, S. e Pereira, F., (2006) revista TEMA.

LEAM (Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws) Pérez Sepúlveda, J. A., (2015).

FVATM (A new finite volume approach for transport models and related applications with balancing source terms) Abreu, E., Lambert, W., Perez, J., Santo, A. (2017). Mathematics and Computers in Simulation.

FRSLES (A fast, robust, and simple Lagrangian–Eulerian solver for balance laws and applications) Abreu, E., Pérez, J. (2019). Computers and Mathematics with Applications.

Lagrangian-Eulerian scheme in one dimension

Scalar hyperbolic problem

It is considered the one-dimensional hyperbolic conservation law:

$$\frac{\partial u}{\partial t} + \frac{\partial H(u)}{\partial x} = 0, \ x \in [a, b], \ t \ge 0,$$
(1)

with initial condition given by $u(x,0) = \eta(x), x \in [a,b]$.

In the divergent form, (1) reads [Dafermos]

$$\nabla_{t,x} \cdot \begin{pmatrix} u \\ H(u) \end{pmatrix} = 0.$$
 (2)

Discretization

Let $t^n = \sum_{i=0}^{n-1} \Delta t^i$ be the evolution in time after *n* time steps Δt^i . We define the region (cell-centered finite-volume [**Pereira et al. 2000**]),

$$D_j^n = \{(x,t): t^n \leq t \leq t^{n+1}, \sigma_j^n(t) \leq x \leq \sigma_{j+1}^n(t)\},$$

and the intervals $I_j^n = \left[x_{j-1/2}^n, x_{j+1/2}^n\right]$, $\overline{I}_j^{n+1} = \left[\overline{x}_{j-\frac{1}{2}}^{n+1}, \overline{x}_{j+\frac{1}{2}}^{n+1}\right]$. Let U_j^n and \overline{U}_j^{n+1} be numerical approximations of u defined by

$$U_{j}^{n} = \frac{1}{h} \int_{X_{j-\frac{1}{2}}^{n+1}}^{X_{j+\frac{1}{2}}^{n+1}} u(x,t^{n}) dx, \quad \overline{U}_{j}^{n+1} = \frac{1}{h_{j}^{n+1}} \int_{\overline{X}_{j-\frac{1}{2}}}^{\overline{X}_{j+\frac{1}{2}}^{n+1}} u(x,t^{n+1}) dx.$$
(3)

For all $x \in l_j^n$ and for all $t \in [t^n, t^{n+1})$, let the piecewise constant function $U(x, t) = U_j^n$ be the approximate solution of (1).

Lagrangian-Eulerian formulation

[Pereira et al. 2000]

Integrating equation (2) over the region D_j^n of the Fig. (1) and using the Divergence theorem, we have

$$0 = \int_{D_j^n} \nabla_{t,x} \cdot \begin{pmatrix} u \\ H(u) \end{pmatrix} dx dt$$
$$= \int_{\partial D_j^n} \begin{pmatrix} u \\ H(u) \end{pmatrix} \cdot \overrightarrow{n} d(\partial D_j^n).$$
(4)

Lagrangian-Eulerian formulation [Pereira et al. 2000]

This equality leads to the local conservation law:

$$\int_{\overline{x}_{j-\frac{1}{2}}^{n+1}}^{\overline{x}_{j+\frac{1}{2}}^{n+1}} u(x,t^{n+1}) dx = \int_{x_{j}^{n}}^{x_{j+1}^{n}} u(x,t^{n}) dx.$$
(5)

Lagrangian-Eulerian formulation [Pereira et al. 2000]

Since
$$\int_{\sigma_j^n} \begin{pmatrix} u \\ H(u) \end{pmatrix} \cdot \overrightarrow{n} d\sigma_j^n = 0$$
 then,
 $\begin{pmatrix} u \\ H(u) \end{pmatrix} \cdot \overrightarrow{n} = 0, \ \forall (x,t) \in \sigma_j^n.$ (6)

Parameterizing σ_j^n as $r(t) = (t, \sigma_j^n(t)), t \in [t^n, t^{n+1}]$, we get the normal vector to the curve

$$m(t) = \left(rac{d\sigma_j^n(t)}{dt}, -1
ight).$$

Substituting n(t) in (6) we get, for $t^n < t \le t^{n+1}$,

$$\begin{cases} \frac{d\sigma_j^n(t)}{dt} = \frac{H(u)}{u}, \\ \sigma_j^n(t^n) = x_j^n. \end{cases}$$
(7)

Lagrangian-Eulerian formulation [Pereira et al. 2000]

So,

$$\overline{U}_{j}^{n+1} = \frac{h}{2h_{j}^{n+1}} \left(U_{j}^{n} + U_{j+1}^{n} \right).$$
(8)

Lagrangian-Eulerian scheme [Pérez 2015]

From the IVP (7) that defines the integral curve, for each interval time $(t^n, t^{n+1}]$ we have

$$\sigma_j^n(t) = f_j^n(t - t^n) + x_j^n, j \in \mathbb{Z},$$
(9)
where $f_j^n = \frac{H(U_j^n)}{U_j^n}.$

From Fig.(2) we have

$$U_j^{n+1} = \frac{1}{h} \left[c_{0j} \overline{U}_{j-1}^{n+1} + c_{1j} \overline{U}_j^{n+1} \right].$$
(10)

Figura: Approximated Integral Tube

Lagrangian-Eulerian scheme [Pérez 2015]

From the equation of the approximated integral curve (9), we have

$$\overline{x}_{j-\frac{1}{2}}^{n+1} = \sigma_j^n(t^{n+1}) = f_j^n(t^{n+1} - t^n) + x_j^n = x_{j-\frac{1}{2}}^n + c_{0j},$$
$$c_{0j} + c_{1j} = h.$$

These two equations lead to $c_{0j} = \frac{h}{2} + f_j^n \Delta t^n$ and $c_{1j} = \frac{h}{2} - f_j^n \Delta t^n$.

Finally, the Lagrangian-Eulerian scheme can be obtained from the algorithm,

$$\begin{cases} \overline{U}_{j}^{n+1} = \frac{h}{2h_{j}^{n+1}} \left(U_{j}^{n} + U_{j+1}^{n} \right), \\ U_{j}^{n+1} = \frac{1}{h} \left[c_{0j} \overline{U}_{j-1}^{n+1} + c_{1j} \overline{U}_{j}^{n+1} \right]. \end{cases}$$
(11)

Lagrangian-Eulerian scheme. Linear case [Pérez 2015]

In this case H(u) = au. Therefore, $f_i^n = a$ and with this, $h_i^n = h$. So,

$$\overline{U}_{j}^{n+1} = \frac{1}{2} \left(U_{j}^{n} + U_{j+1}^{n} \right), \qquad (12)$$

and

$$U_{j}^{n+1} = \frac{1}{h} \left[\left(\frac{h}{2} + a\Delta t^{n} \right) \overline{U}_{j-1}^{n+1} + \left(\frac{h}{2} - a\Delta t^{n} \right) \overline{U}_{j}^{n+1} \right].$$
(13)

(12) and (13) lead to:

$$U_{j}^{n+1} = \frac{1}{4} (U_{j+1}^{n} + 2U_{j}^{n} + U_{j-1}^{n}) - \frac{a\Delta t^{n}}{2h} (U_{j+1}^{n} - U_{j-1}^{n}), \qquad (14)$$

which corresponds to the Lagrangian-Eulerian scheme.

Lagrangian-Eulerian scheme. Nonlinear case [Pérez 2015]

The Lagrangian-Eulerian scheme for the nonlinear case is:

$$U_{j}^{n+1} = \frac{1}{4} \left(U_{j-1}^{n} + 2U_{j}^{n} + U_{j+1}^{n} \right) - \frac{\Delta t^{n}}{2h} \left(H(U_{j+1}^{n}) - H(U_{j-1}^{n}) \right).$$
(15)

The conservative form of (15) is:

$$U_{j}^{n+1} = U_{j}^{n} - \frac{\Delta t^{n}}{h} [F(U_{j}^{n}, U_{j+1}^{n}) - F(U_{j-1}^{n}, U_{j}^{n})],$$
(16)

where

$$F(U_j^n, U_{j+1}^n) = \frac{h}{4\Delta t^n} (U_j^n - U_{j+1}^n) + \frac{1}{2} (H(U_{j+1}^n) + H(U_j^n))$$

is called Numerical flux.

Lagrangian-Eulerian scheme [Pérez 2015]

Properties

- The scheme is **locally conservative**.
- ► The numerical flux is **monotonous**: *F*(*v*, *w*) is nondecreasing with respect to *v* and nonincreasing with respect to *w* if

$$\frac{\Delta t}{h}\left|\max\left\{H'(u)\right\}\right|\leq \frac{1}{2}.$$

- ► The numerical flux is Lipschitz continuous if H ∈ C¹(K) with K a compact set of ℝ.
- The numerical flux is **consistent**: F(s, s) = H(s).

Some numerical tests with the Lagrangian-Eulerian scheme

Numerical tests

Burgers Inviscid equation, $u_t + \left(\frac{u^2}{2}\right)_x = 0$, with initial condition $u_l = -1, x < 0, u_r = 1, x > 0$.

Numerical tests

Nonconvex flux, $u_t + (H(u))_x = 0$, $H(u) = 0.5(e^{-25(u-0.5)^2} + 8(u-0.5)^2)$ with initial condition $u_l = 1, x < 0, u_r = 0, x > 0$.

Extension of the Lagrangian-Eulerian scheme to two dimensions

- Use square and triangular meshes.
- Put the numerical flux in the faces of the cells.
- Keep the properties of the one-dimensional scheme.

Bibliography

[Abreu et al 2017] Abreu, E., Lambert, W., Perez, J., and Santo, A. (2017). A new finite volume approach for transport models and related applications with balancing source terms. Mathematics and Computers in Simulation, 137, 2-28.

[Abreu and Pérez 2019] Abreu, E., and Pérez, J. (2019). A fast, robust, and simple Lagrangian–Eulerian solver for balance laws and applications. Computers and Mathematics with Applications, 77(9), 2310-2336.

[Dafermos 2005] Dafermos, Constantine M., et al. (2005). Hyperbolic conservation laws in continuum physics (Vol. 3). Berlin: Springer.

[Pereira et al 2000] Douglas, J., Pereira, F., and Yeh, L. M. (2000). A locally conservative Eulerian–Lagrangian numerical method and its application to nonlinear transport in porous media. Computational Geosciences, 4(1), 1-40.

[Pérez 2015] Pérez Sepulveda, J. A. (2015). Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws= Métodos de aproximação Lagrangeano-Euleriano para leis de balanço e leis de conservação hiperbólicas (Thesis = Tese). Universidade Estadual de Campinas, Campinas, Brasil.

Thank you