
Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions Using Haskell

Juan Pedro Villa Isaza

Logic and Computation Research Group
EAFIT University, Medellín, Colombia

October 8, 2007 / Logic and Computation Seminar

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Outline

1 Introduction
Introduction to Regular Expressions
Regular Expressions

2 Regular Expressions Using Haskell
Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Outline

1 Introduction
Introduction to Regular Expressions
Regular Expressions

2 Regular Expressions Using Haskell
Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Outline

1 Introduction
Introduction to Regular Expressions
Regular Expressions

2 Regular Expressions Using Haskell
Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Abstract

Abstract

Regular expressions (known as regexps or regexes) are a
way to describe text through pattern matching. You might
want to use regular expressions to validate data, to pull
pieces of text out of larger blocks, or to substitute new text
for old text. Today, regular expressions are included in most
programming languages as well as many scripting
languages, editors, applications, databases, and
command-line tools. In Regular Expressions Using Haskell,
we show how to use regular expressions with the Haskell
programming language, and we give an introduction to the
standard library that implements regexps in Haskell, the
Text.Regex.Posix library.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expressions and Pattern Matching.
Regular expressions, pattern matching and regular expression engines.

A regular expression is a string containing a combination of
normal characters and special metacharacters or
metasequences. The normal characters match
themselves. Metacharacters and metasequences are
characters or sequences of characters that represent ideas
such as quantity, locations, or types of characters.
Pattern matching consists of finding a section of text that is
described (matched) by a regular expression. The
underlying code that searchs the text is the regular
expression engine.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expressions and Pattern Matching.
Regular expressions, pattern matching and regular expression engines.

A regular expression is a string containing a combination of
normal characters and special metacharacters or
metasequences. The normal characters match
themselves. Metacharacters and metasequences are
characters or sequences of characters that represent ideas
such as quantity, locations, or types of characters.
Pattern matching consists of finding a section of text that is
described (matched) by a regular expression. The
underlying code that searchs the text is the regular
expression engine.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expressions and Pattern Matching.

You can guess the results of most matches by keeping two
rules in mind.

1 The earliest (leftmost) match wins. Regular expressions
are applied to the input starting at the first character and
proceeding toward the last. As soon as the regular
expression engine finds a match, it returns.

2 Standard quantifiers are greedy. Quantifiers specify how
many times something can be repeated. The standard
quantifiers attempt to match as many times as possible.
They settle for less than the maximum only if this is
necessary for the success of the match. The process of
giving up characters and trying less-greedy matches is
called backtracking.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expressions and Pattern Matching.

You can guess the results of most matches by keeping two
rules in mind.

1 The earliest (leftmost) match wins. Regular expressions
are applied to the input starting at the first character and
proceeding toward the last. As soon as the regular
expression engine finds a match, it returns.

2 Standard quantifiers are greedy. Quantifiers specify how
many times something can be repeated. The standard
quantifiers attempt to match as many times as possible.
They settle for less than the maximum only if this is
necessary for the success of the match. The process of
giving up characters and trying less-greedy matches is
called backtracking.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expression Engines.

Regular expression engines have subtle differences based on
their type. There are two classes of engines: Deterministic
Finite Automaton (DFA) and Nondeterministic Finite Automaton
(NFA). DFAs are faster but lack many of the features of an NFA,
such as capturing, lookaround, and non-greedy quantifiers. In
the NFA world, there two types: Traditional and POSIX.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expression Engines.
DFA engines.

DFAs compare each character of the input string to the regular
expression, keeping track of all matches in progress. Since
each character is examined at most once, the DFA engine is
the fastest. One additional rule to remember with DFAs is that
the alternation metasequence is greedy. When more than one
option in an alternation (foo|foobar) matches, the longest
one is selected. So, rule number 1 can be amended to read
“the longest leftmost match wins”.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expression Engines.
Traditional NFA engines.

Traditional NFA engines compare each element of the regex to
the input string, keeping track of positions where it chose
between two options in the regex. If an option fails, the engine
backtracks to the most recently stored position. For standard
quantifiers, the engine chooses the greedy option of matching
more text; however, if that options leads to the failure of the
match, the engine returns to a saved position and tries a less
greedy path. The traditional NFA engine uses ordered
alternation, where each option in the alternation is tried
sequentally. A longer match may be ignored if an earlier match
leads to a succesful match. So, rule number 1 can be amended
to read “the first leftmost match after greedy quantifiers have
had their fill.”

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expression Engines.
POSIX NFA engines.

POSIX NFA engines work similarly to traditional NFAs with one
exception: a POSIX engine always picks the longest of the
leftmost matches. For example, the alternation cat |
category would match the full word “category” whenever
possible, even if the first alternative (“cat”) matched and
appeared earlier in the alternation.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Outline

1 Introduction
Introduction to Regular Expressions
Regular Expressions

2 Regular Expressions Using Haskell
Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Preliminaries.

Let Σ be a finite set of symbols and let L, L1, and L2 be sets of
strings from Σ∗. The concatenation of L1 and L2, denoted L1L2,
is the set {xy |x is in L1 and y is in L2}. That is, the strings in
L1L2 are formed by choosing a string L1 and following it by a
string L2, in all possible combinations.

Define L0 = {ε} and Li = LLi−1 for i ≥ 1.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Preliminaries.

The Kleene closure (or just closure) of L, denoted L∗, is the set

L∗ =
∞⋃

i=0

Li

and the positive closure of L, denoted L+, is the set

L+ =
∞⋃

i=1

Li .

That is, L∗ denotes words constructed by concatenating any
number of words from L. L+ is the same, but the case of zero
words, whose “concatenation” is defined to be ε, is excluded.
Not that L+ contains ε if and only if L does.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expressions.

Definition (Regular expressions)
Let Σ be an alphabet. The regular expressions over Σ and the
sets that they denote are defined recursively as follows.

1 ∅ is a regular expression and denotes the empty set.
2 ε is a regular expression and denotes the set {ε}.
3 For each a in Σ, a is a regular expression and denotes the

set {a}.
4 If r and s are regular expressions denoting the languages

R and S, respectively, then (r + s), (rs), and (r∗) are
regular expressions that denote the sets R ∪ S, RS, and
R∗, respectively.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expressions.

Definition (Regular expressions)
Let Σ be an alphabet. The regular expressions over Σ and the
sets that they denote are defined recursively as follows.

1 ∅ is a regular expression and denotes the empty set.
2 ε is a regular expression and denotes the set {ε}.
3 For each a in Σ, a is a regular expression and denotes the

set {a}.
4 If r and s are regular expressions denoting the languages

R and S, respectively, then (r + s), (rs), and (r∗) are
regular expressions that denote the sets R ∪ S, RS, and
R∗, respectively.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expressions.

Definition (Regular expressions)
Let Σ be an alphabet. The regular expressions over Σ and the
sets that they denote are defined recursively as follows.

1 ∅ is a regular expression and denotes the empty set.
2 ε is a regular expression and denotes the set {ε}.
3 For each a in Σ, a is a regular expression and denotes the

set {a}.
4 If r and s are regular expressions denoting the languages

R and S, respectively, then (r + s), (rs), and (r∗) are
regular expressions that denote the sets R ∪ S, RS, and
R∗, respectively.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expressions.

Definition (Regular expressions)
Let Σ be an alphabet. The regular expressions over Σ and the
sets that they denote are defined recursively as follows.

1 ∅ is a regular expression and denotes the empty set.
2 ε is a regular expression and denotes the set {ε}.
3 For each a in Σ, a is a regular expression and denotes the

set {a}.
4 If r and s are regular expressions denoting the languages

R and S, respectively, then (r + s), (rs), and (r∗) are
regular expressions that denote the sets R ∪ S, RS, and
R∗, respectively.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expressions.

Definition (Regular expressions)
Let Σ be an alphabet. The regular expressions over Σ and the
sets that they denote are defined recursively as follows.

1 ∅ is a regular expression and denotes the empty set.
2 ε is a regular expression and denotes the set {ε}.
3 For each a in Σ, a is a regular expression and denotes the

set {a}.
4 If r and s are regular expressions denoting the languages

R and S, respectively, then (r + s), (rs), and (r∗) are
regular expressions that denote the sets R ∪ S, RS, and
R∗, respectively.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Regular Expressions.

In writing regular expressions we can omit many parentheses if
we assume that ∗ has higher precedence than +. When
necessary to distinguish between a regular expression r and
the language denoted by r , we use L (r) for the latter. When no
confusion is possible we use r for both the regular expression
and the language denoted by the regular expression.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Equivalence of Finite Automata and Regular
Expressions.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Equivalence of Finite Automata and Regular
Expressions.

Theorem
Let r be a regular expression. Then there exists an NFA with
ε-transitions that accepts L (r).

Theorem
If L is accepted by a DFA, then L is denoted by a regular
expression.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Introduction to Regular Expressions
Regular Expressions

Equivalence of Finite Automata and Regular
Expressions.

Theorem
Let r be a regular expression. Then there exists an NFA with
ε-transitions that accepts L (r).

Theorem
If L is accepted by a DFA, then L is denoted by a regular
expression.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Outline

1 Introduction
Introduction to Regular Expressions
Regular Expressions

2 Regular Expressions Using Haskell
Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Overview

Chris Kuklewicz has developed a regular expression library
for Haskell that has been implemented with a variety of
backends. Some of these backends are native Haskell
implementations, others are not and rely on external C
libraries such as libpcre.
Speed is something that should be benchmarked by the
actual user, since the story changes so much with the task,
new GHC, compiler flags, etc. The algorithm used may be
a useful thing (backtracking vs NFA/DFA).
All backends support String, (Seq Char), ByteString, and
ByteString.Lazy.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Overview

Chris Kuklewicz has developed a regular expression library
for Haskell that has been implemented with a variety of
backends. Some of these backends are native Haskell
implementations, others are not and rely on external C
libraries such as libpcre.
Speed is something that should be benchmarked by the
actual user, since the story changes so much with the task,
new GHC, compiler flags, etc. The algorithm used may be
a useful thing (backtracking vs NFA/DFA).
All backends support String, (Seq Char), ByteString, and
ByteString.Lazy.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Overview

Chris Kuklewicz has developed a regular expression library
for Haskell that has been implemented with a variety of
backends. Some of these backends are native Haskell
implementations, others are not and rely on external C
libraries such as libpcre.
Speed is something that should be benchmarked by the
actual user, since the story changes so much with the task,
new GHC, compiler flags, etc. The algorithm used may be
a useful thing (backtracking vs NFA/DFA).
All backends support String, (Seq Char), ByteString, and
ByteString.Lazy.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Overview

Backend POSIX/Perl Speed Native impl?
regex-posix POSIX Very slow No
regex-parsec Both Slow Yes
regex-tre POSIX Fast No
regex-tdfa Perl Fast Yes
regex-pcre Perl Fast No
regex-dfa POSIX Fast Yes

Table: Feature matrix of backends

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Outline

1 Introduction
Introduction to Regular Expressions
Regular Expressions

2 Regular Expressions Using Haskell
Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Module that provides the Regex backend that wraps the c
posix regex api. This is the backend being used by the
regex-compat package to replace Text.Regex.
The version that comes with GHC 6.6 is 0.71.
Haskell Hierarchical Libraries: Text.Regex.Posix.

Juan Pedro Villa Isaza Regular Expressions Using Haskell

http://www.haskell.org/ghc/docs/latest/html/libraries/regex-posix/Text-Regex-Posix.html


Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Module that provides the Regex backend that wraps the c
posix regex api. This is the backend being used by the
regex-compat package to replace Text.Regex.
The version that comes with GHC 6.6 is 0.71.
Haskell Hierarchical Libraries: Text.Regex.Posix.

Juan Pedro Villa Isaza Regular Expressions Using Haskell

http://www.haskell.org/ghc/docs/latest/html/libraries/regex-posix/Text-Regex-Posix.html


Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Module that provides the Regex backend that wraps the c
posix regex api. This is the backend being used by the
regex-compat package to replace Text.Regex.
The version that comes with GHC 6.6 is 0.71.
Haskell Hierarchical Libraries: Text.Regex.Posix.

Juan Pedro Villa Isaza Regular Expressions Using Haskell

http://www.haskell.org/ghc/docs/latest/html/libraries/regex-posix/Text-Regex-Posix.html


Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Outline

1 Introduction
Introduction to Regular Expressions
Regular Expressions

2 Regular Expressions Using Haskell
Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Introduction.

While Haskell’s regexp libraries provide the same
functionality that you’ll find in Perl, Python, and Java, they
provide a rich and fairly abstract interface that can be
daunting to newcomers.
The standard library that implements regexps is
Text.Regex.Posix. As the name suggests, this wraps the
system’s native POSIX extended regexp library.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Introduction.

While Haskell’s regexp libraries provide the same
functionality that you’ll find in Perl, Python, and Java, they
provide a rich and fairly abstract interface that can be
daunting to newcomers.
The standard library that implements regexps is
Text.Regex.Posix. As the name suggests, this wraps the
system’s native POSIX extended regexp library.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Introduction.

Perl-style regexps are much more expressive, and hence
far more widely used. POSIX regexps look superficially
similar to Perl-style regexps, but they´re not as expressive,
and they have different matching behaviour.
The only advantage of the POSIX regexp library is that it’s
bundled with GHC; you don’t have to fetch any extra bits to
get it to work.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Introduction.

Perl-style regexps are much more expressive, and hence
far more widely used. POSIX regexps look superficially
similar to Perl-style regexps, but they´re not as expressive,
and they have different matching behaviour.
The only advantage of the POSIX regexp library is that it’s
bundled with GHC; you don’t have to fetch any extra bits to
get it to work.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Introduction.

The simplest way to use regexps is via the “= ” function,
which we normally use as an infix operator (It’s exactly the
same operator that Perl uses for regexp matching.)
This function is polymorphic in both its arguments and its
return type. Here’s a simplified type signature: (= ) ::
string -> pattern -> result.
Since the result type is polymorphic, ghci has no way to
infer what type we might actually want.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Introduction.

The simplest way to use regexps is via the “= ” function,
which we normally use as an infix operator (It’s exactly the
same operator that Perl uses for regexp matching.)
This function is polymorphic in both its arguments and its
return type. Here’s a simplified type signature: (= ) ::
string -> pattern -> result.
Since the result type is polymorphic, ghci has no way to
infer what type we might actually want.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Introduction.

The simplest way to use regexps is via the “= ” function,
which we normally use as an infix operator (It’s exactly the
same operator that Perl uses for regexp matching.)
This function is polymorphic in both its arguments and its
return type. Here’s a simplified type signature: (= ) ::
string -> pattern -> result.
Since the result type is polymorphic, ghci has no way to
infer what type we might actually want.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Introduction.

By constraining the type of the result to Bool, we get a
simple True or False answer when we ask if the match
has succeeded. But we can also use String as the result
type, which gives as the first string that matches, or an
empty string if the match fails.
If we use [String], we get a list of every string that matches.
It’s also possible to get more detail about the context in
which a match occurred using tuples.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Introduction.

By constraining the type of the result to Bool, we get a
simple True or False answer when we ask if the match
has succeeded. But we can also use String as the result
type, which gives as the first string that matches, or an
empty string if the match fails.
If we use [String], we get a list of every string that matches.
It’s also possible to get more detail about the context in
which a match occurred using tuples.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Examples.

$ ghci

Loading package base ... linking ... done.

> :mod +Text.Regex.Posix

> "bar" =~ "(foo|bar)"

> "bar" =~ "(foo|bar)" :: Bool
True

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Examples.

> let pat = "(foo[a-z]*bar|quux)"

> "foodiebar, fooquuxbar" =~ pat :: String
"foodiebar"

> "nomatch" =~ pat :: String
""

> "foodiebar, fooquuxbar" =~ pat :: [String]
["foodiebar","fooquuxbar"]

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Regular Expressions
Text.Regex.Posix
A Haskell Regular Expression Tutorial

Examples (Text.Regex.Base.)

> :mod +Text.Regex.Base

> "the foodiebar" =~ pat :: (MatchOffset,MatchLength)
(4,9)

> "no match" =~ pat :: [(MatchOffset,MatchLength)]
[]

> a <- "foo" =~~ "foo" :: IO Int
1

> "foo" =~~ "bar" :: Maybe String
Nothing
> "foo" =~~ "foo" :: Maybe String
Just "foo"

> "foo foo foo" =~ "foo" :: [String]
["foo","foo","foo"]
> "foo foo foo" =~~ "foo" :: [String]
["foo"]

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Summary

Outlook
In practice, you will want to avoid the Text.Regex.Posix
implementation.
The regexp library is experimental.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Summary

Outlook
In practice, you will want to avoid the Text.Regex.Posix
implementation.
The regexp library is experimental.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

Summary

Outlook
In practice, you will want to avoid the Text.Regex.Posix
implementation.
The regexp library is experimental.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

For Further Information

John E. Hopcroft and Rajeev Motwani and Jeffrey D.
Ullman, Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 2007.

Bryan O’Sullivan, A Haskell regular expression tutorial.
Bryan O’Sullivan’s blog, 2007.

Tony Stubblebine, Regular Expression Pocket Reference.
O’Reilly Media, 2003.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

For Further Information

John E. Hopcroft and Rajeev Motwani and Jeffrey D.
Ullman, Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 2007.

Bryan O’Sullivan, A Haskell regular expression tutorial.
Bryan O’Sullivan’s blog, 2007.

Tony Stubblebine, Regular Expression Pocket Reference.
O’Reilly Media, 2003.

Juan Pedro Villa Isaza Regular Expressions Using Haskell



Introduction
Regular Expressions Using Haskell

Summary

For Further Information

John E. Hopcroft and Rajeev Motwani and Jeffrey D.
Ullman, Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 2007.

Bryan O’Sullivan, A Haskell regular expression tutorial.
Bryan O’Sullivan’s blog, 2007.

Tony Stubblebine, Regular Expression Pocket Reference.
O’Reilly Media, 2003.

Juan Pedro Villa Isaza Regular Expressions Using Haskell


	Introduction
	Introduction to Regular Expressions
	Regular Expressions

	Regular Expressions Using Haskell
	Regular Expressions
	Text.Regex.Posix
	A Haskell Regular Expression Tutorial

	Summary

