
An Introduction to Erlang

Alejandro Gómez Londoño

Universidad EAFIT

8th March, 2013

What’s Erlang?

Erlang is a concurrent functional
programming language, designed
for writing concurrent programs
that “run forever.”

History

Developed in Ericsson Computer Science Laboratory (1986)

History
“Solve Ericsson’s software problem.” 1

SPOTS project

It was an initiative to find better ways to write telecom software
under some requirements like...

Very large number of concurrent activities

Real time requirements

Fault tolerance

1J. Armstrong. A history of Erlang. In Proceedings of the third ACM
SIGPLAN conference on History of programming languages, HOPL III, pages
6–1–6–26, New York, NY, USA, 2007. ACM.

History
SPOTS project

Make the phones ring

To do so, they wrote POTS1 in almost every programming
language available and some of the conclusions that came out
were:

“Small languages were thought desirable”2

“Functional programming was liked”

“Logic programming was best in terms of elegance”

Concurrency was essential

1Plain Ordinary Telephone Service.
2J. Armstrong. A history of Erlang. In Proceedings of the third ACM

SIGPLAN conference on History of programming languages, HOPL III, pages
6–1–6–26, New York, NY, USA, 2007. ACM.

History

X Developed in Ericsson Computer Science Laboratory (1986)

It was first implemented in Prolog

History
Early experiments

Joe Armstrong was working in his ”POTS”smalltalk
implementation alongside developing a graphical notation for
defining his programs.

A certain day he showed his work to a colleague only to find him
saying “but that’s a Prolog program.”1

Joe quickly adapted his work to Prolog and threw away his
smalltalk stuff.

1J. Armstrong. A history of Erlang. In Proceedings of the third ACM
SIGPLAN conference on History of programming languages, HOPL III, pages
6–1–6–26, New York, NY, USA, 2007. ACM.

History

X Developed in Ericsson Computer Science Laboratory (1986)

X It was first implemented in Prolog

Open Source Erlang was released in 1998

History
Erlang becomes open source

After Ericson banned the project in 1998, the development team
obtained the approval to release Erlang at the end of the year.

Most of the Erlang development team left Ericsson, and started a
new company called ”Blue tail”for product development using
Erlang.

History

X Developed in Ericsson Computer Science Laboratory (1986)

X It was first implemented in Prolog

X Open Source Erlang was released in 1998

Main features

Concurrency

Fault tolerance

Garbage collection

Functional

Suitable for...

Large software for server use

Higher-level protocol implementation

Soft real-time systems

Banking, e-commerce, computer telephony and instant
messaging systems are also a good choice

Non suitable for...

Number crunching

Low level drivers

Image processing

Basic data types

Numbers

1> 1 + 2.0.

3.0

2> 2/3.

0.6666666666666666

3> 2 div 3.

0

4> 2*3+1.

7

5> 2*(3+1).

8

Basic data types

Variables

1> Var.

* 1: variable ’Var’ is unbound

2> Var = 14.

14

3> Var.

14

4> Var + 1.

15

5> Var = 34.

** exception error: no match of

right hand side value 34

Basic data types

Atoms

1> am_an_atom.

am_an_atom

2> is_atom(am).

true

3> Var=atom_1.

atom_1

4> is_atom(Var_1).

* 1: variable ’Var_1’ is unbound

5> is_atom(Var).

true

Basic data types

Boolean Algebra & Comparison operators

1> true and false.

false

2> true or

2> (false and true).

true

3> true or

3> false and true.

true

4> false and true or true.

true

5> 49 == 49.0.

true

6> 49 =:= 49.0.

false

7> 49 =/= 49.1.

true

8> 49 /= 49.0.

false

Basic data types

Tuples

1> { 15 , the_atom }.
{15,the_atom}
2> X = { 15 , the_atom }.
15,the_atom

3> { A, _ } = X.

{15,the_atom}
4> A.

15

Basic data types

Lists

1> [1,this,is,madness,2,3,4].

[1,this,is,madness,2,3,4]

2> [X|Y] = [1,3,4,5,6,7].

[1,3,4,5,6,7]

3> X.

1

4> Y.

[3,4,5,6,7]

Basic data types

Bit Syntax

0> <<Sign:1,Exp:8,Man:23>>=<<255,255,255,0>>.

<<255,255,255,0>>

1> Sign.

1

2> Man.

8388352

3> Exp.

255

Functions

Pattern matching

fibonacci(0) ->

0;

fibonacci(1) ->

1;

fibonacci(X) ->

fibonacci(X-1) + fibonacci(X-2).

Functions

Pattern matching (Lists)

head([X|_]) ->

X.

length([]) ->

0;

length([_|Y]) ->

1 + length(Y).

Functions

Guards

what_is(X) when is_atom(X) ->

"is an atom";

what_is(X) when is_list(X) ->

"is a list";

what_is(X) when is_integer(X) ->

"is a number".

Functions

Anonymous functions

fun(Args1) ->

Expression1, Exp2, ..., ExpN;

(Args2) ->

Expression1, Exp2, ..., ExpN;

(Args3) ->

Expression1, Exp2, ..., ExpN

end

Other features

Call by value

Strong typing

Dynamic typing

High order functions

Concurrency

“Is a property of systems in which several computations are
executing simultaneously, and potentially interacting with
each other”

“For many Erlangers, concurrency refers to the idea of having
many actors running independently, but not necessarily all at
the same time”1

1F. Hèbert. Learn You Some Erlang for Great Good!: A Beginner’s Guide.
No Starch Press Series. No Starch Press, 2013.

Actor model

“Erlang uses the actor model, and each actor is a separate process
in the virtual machine. In a nutshell, if you were an actor in
Erlang’s world, you would be a lonely person, sitting in a dark
room with no window, waiting by your mailbox to get a message”

“Erlang’s actor model can be imagined as a world where everyone
is sitting alone in their own room and can perform a few distinct
tasks. Everyone communicates strictly by writing letters and that’s
it.”1

1F. Hèbert. Learn You Some Erlang for Great Good!: A Beginner’s Guide.
No Starch Press Series. No Starch Press, 2013.

Some Code1

go() ->

Pid2 = spawn(echo, loop, []),

Pid2 ! {self(), hello},
receive

Pid2, Msg ->

io:format("P1 ~w~n",[Msg])

end,

Pid2 ! stop.

1F. Hèbert. Learn You Some Erlang for Great Good!: A Beginner’s Guide.
No Starch Press Series. No Starch Press, 2013.

Some Code1

loop() ->

receive

{From, Msg} ->

From ! self(), Msg,

loop();

stop ->

true

end.

1F. Hèbert. Learn You Some Erlang for Great Good!: A Beginner’s Guide.
No Starch Press Series. No Starch Press, 2013.

Research and cool stuff

Use of Prolog for developing a new programming language1

A practical subtyping system for Erlang 2

Practical Type Inference Based on Success Typings 3

HiPe

1J. L. Armstrong, S. Virding, and M. C. Williams. Use of Prolog for
developing a new programming language, 1992.

2S. Marlow and P. Wadler. A practical subtyping system for Erlang. In In
Proceedings of the International Conference on Functional Programming (ICFP
’97, pages 136–149. ACM Press, 1997.

3T. Lindahl and K. Sagonas. Practical type inference based on success
typings. In Proceedings of the 8th ACM SIGPLAN international conference on
Principles and practice of declarative programming, PPDP ’06, pages 167–178,
New York, NY, USA, 2006. ACM.

	History

