
Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Curry
Integrating Logic and Functional Paradigms

Santiago Palacio-Gómez

Universidad EAFIT
Seminario de Lógica y Computación

September 11, 2013



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

I do not take credit for the content here. All the research on this
matter was made by Michael Hanus and partners. I only intend
to make a summary, of what I think are the most important
aspects of the language; all with educational purposes.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

1 Introduction

2 Main Elements

3 Narrowing
Basic Definitions
Rewrite Strategy
Formal Definition

4 Needed Narrowing
Definition
Example
Inductively Sequential TRS
Strict Equality
Weakly Needed Narrowing

5 Non-Determinism
Handling Non-Determinism
Lazy vs Strict Evaluation

6 Bibliography



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Table of Contents I

1 Introduction

2 Main Elements

3 Narrowing
Basic Definitions
Rewrite Strategy
Formal Definition

4 Needed Narrowing
Definition
Example
Inductively Sequential TRS
Strict Equality
Weakly Needed Narrowing

5 Non-Determinism
Handling Non-Determinism
Lazy vs Strict Evaluation

6 Bibliography



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Curry related first paper was published in 1995, by Michael
Hanus, Herber Kuchen and Juan José Moreno-Navarro, for the
International Logic Programming Symposium in 1995,
Workshop on Visions for the Future of Logic Programming.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Table of Contents I

1 Introduction

2 Main Elements

3 Narrowing
Basic Definitions
Rewrite Strategy
Formal Definition

4 Needed Narrowing
Definition
Example
Inductively Sequential TRS
Strict Equality
Weakly Needed Narrowing

5 Non-Determinism
Handling Non-Determinism
Lazy vs Strict Evaluation

6 Bibliography



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Main Elements

From functional languages, Curry takes elements such as:

Expressions.

Functions, high order functions.

Types.

Scope (where clauses, let clauses).



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Table of Contents I

1 Introduction

2 Main Elements

3 Narrowing
Basic Definitions
Rewrite Strategy
Formal Definition

4 Needed Narrowing
Definition
Example
Inductively Sequential TRS
Strict Equality
Weakly Needed Narrowing

5 Non-Determinism
Handling Non-Determinism
Lazy vs Strict Evaluation

6 Bibliography



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Basic Definitions

From the definitions in pure functional programming, we
borrow:

Function definition.

Constructors.

Patterns

TRS (term rewriting system).



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

TRS

It’s worth remembering the definition of a TRS as a set of
rewriting rules of the form lÑ r with linear pattern l as lhs
and a term r as rhs.
It must also be noticed, that the traditional definition of the
TRS was changed, by not requiring that varprq Ď varplq.

Example

add Z y = y

add (S x) y = S (add x y)



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Basic Definitions II

We will also take the definitions of position p in a term t (t|p),
term replacement trssp and substitutions.

A term t is called irreducible or in normal form if there is no
term s such that tÑ s.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Rewrite Strategy

The goal of a sequence of rewrite steps is to compute a normal
form. A rewrite strategy determines for each step a rule and a
position to apply the next step. A normalizing strategy is one
that terminates a rewrite sequence in a normal form, when it
exists.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Constructor Rooted Normalized Form

Sometimes, the result itself could not be important. For
example take the function:

Example

idNil [] = []

If we try to find the normal form of idNil[1+2], we would get
idNil[3] as normal form.
So, the interesting results of functional computations are
constructor terms or values.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Narrowing

Functional logic languages are more flexible than pure
functional languages since they instantiate variables in a term
(free variables), in order to apply the rewrite step. The
combination of variable instantiation and rewriting is called
Narrowing.

Example

last :: [a] -> a

last x

| _++[e] =:= x = e



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Formal Definition

Formally, t;p,R,σ t
1 is a narrowing step if t|p is not a variable,

and σptq Ñp,R t
1.

Since in functional logic languages we are interested in
computing values, as well as answers, we say that t;˚

σ c
computes the value c with answer σ, if c is a value.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Example

Consider the following program, containing the definition of
Naturals, the add operation and a “less than or equal” test.

Example

data Nat = Z | S Nat

add Z y = y

add (S x) y = S (add x y)

leq Z _ = True

leq (S _) Z = False

leq (S x) (S y) = leq x y



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Efficiency

Now, consider the initial term leq v (add w Z) where v and w
are free variables. By applying leq1, v is instantiated to Z and
the result True is computed:

leq v (add w Z) ;tv ÞÑZu True

However, we could also do the following:

leq v (add w Z) ;tw ÞÑZu leq v Z ;tv ÞÑZu True

But this would not be optimal since it computes the same value
as the first derivation with a less general answer.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Table of Contents I

1 Introduction

2 Main Elements

3 Narrowing
Basic Definitions
Rewrite Strategy
Formal Definition

4 Needed Narrowing
Definition
Example
Inductively Sequential TRS
Strict Equality
Weakly Needed Narrowing

5 Non-Determinism
Handling Non-Determinism
Lazy vs Strict Evaluation

6 Bibliography



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Definition

Designed to perform only necessary narrowing steps.

Lazy or demand-driven.

When performing a narrowing step, if an argument expression
must be constructor rooted:

If the corresponding position is a variable, it’s
non-deterministically instantiated.

If the corresponding position is an expression, it’s
evaluated to be constructor-rooted.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Example

Consider again the program of Natural numbers and the
expression leq v (add w Z).

To get every possible result:

How is v instantiated?

How is w instantiated?



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Inductively Sequential TRS

To simplify the computational process of needed narrowing,
Inductively Sequential TRS are defined. We will characterize a
definitional tree T (using the subsumption ordering : t ď σptq) of
an operation f with the following properties. Each property
will be exemplified from using the natural numbers example.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Leaves Property

The maximal elements of T , called the leaves, are the lhs of the
rules defining f .

Example

The leaves of add are add Z y and add (S x) y.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Root Property

Has a minimum element, called the root, of the form
fpx1, x2, . . . , xnq where x1, . . . xn are pairwise distinct variables.

Example

The root of add is add x y.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Parent Property

For every pattern π different from the root, there exists a
unique π1, the parent, such that π1 ă π and there isn’t any π2

such that π1 ă π2 ă π.

Example

leq x y could* be parent of leq (S x’) y and leq x (S x’);
however, it is not the parent of leq (S x’) (S y’).



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Induction Property

Every child of π differs from each other only at a common
position, called the inductive position, which is the position of a
variable in π.

Example

leq (S x) y and leq Z y could be siblings; however
leq (S x) y and leq x (S y), differ in two positions, thus
could not be siblings.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Inductively Sequential TRS II

An operation is called inductively sequential, if it has a
definitional tree and its rules do not contain extra variables.

A TRS is inductively sequential, if every define operation is
inductively sequential.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Applicability

Needed narrowing is applicable to many operations in logic
functional languages (and every operation in pure functional
languages), however extensions may be useful for particular
operations.

Example

or _ True = True

or True _ = True

or False False = False



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Use of Definitional Trees in Narrowing

Definitional Trees can be computed at compile time and they
contain all information for the decisions to the steps in the
rewriting process.
We could define a needed narrowing step as an application to
an operation-rooted term t by considering it’s definitional tree.
First, we find the maximal node pi that unifies with t, and
applies the following algorithm.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Needed Narrowing Algorithm

If π is a leaf, we apply the corresponding rule

If π is a branch, let p be it’s inductive position, we consider
the corresponding subtermt|p

If t|p is rooted by a constructor c, if there is a child with c
at the inductive position, we examine the child, else we fail.
If t|p is a variable, we non-deterministaclly instantiate this
variable by the constructor term at the inductive position of
a child, and proceed to examine the child.
If t|p is operation rooted, we recusively apply the
computation of a needed narrowing step to σpt|pq, where σ
is the substitution, result of previous case distinctions.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Strict Equality

The equality symbol =:= is called strict equality, i.e. the
equation t1 “:“ t2 is satisfied iff t1 and t2 are reducible to the
same ground constructor or term. (Note that when t1 is not
reducible, t1 “:“ t1 does not succeed).
We can define “:“ as follows:

c “:“ c “ Success @c{0
c x1 . . . xn “:“ c y1 . . . yn “ x1 “:“ y1 & . . . xn “:“ yn @c{n
Success & Success “ Success



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Strict Equality Solutions

A solution for an equation t1 “:“ t2 is a substitution σ, if
σpt1q “:“ σpt2q;

˚ Success.
We have then, that needed narrowing is correct, complete and
minimal (if there are two derivations, then their substitutions
are independent). And, in successful derivations, needed
narrowing computes the shortest of all possible narrowing
derivations.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Weakly Needed Narrowing

If we take the previously shown code:

or _ True = True

or True _ = True

or False False = False

We must extend the definition of inductively sequential TRS to
a weakly orthogonal TRS by requiring only that, for all variants
of rules l1 Ñ r1, l2 Ñ r2, if σpl1q “ σpl2q then σpr1q “ σpr2q.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Weakly Needed Narrowing II

Then, we can also extend the definition of definitional trees by
adding or-branches, which are conceptually the union of two
definitional trees.
In the previous example, we could create a tree for the rules
or2, or3 and the rule or1, then, we could join those trees by an
or-branch.
This new way of resolving operations is also confluent, for the
condition we required.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Table of Contents I

1 Introduction

2 Main Elements

3 Narrowing
Basic Definitions
Rewrite Strategy
Formal Definition

4 Needed Narrowing
Definition
Example
Inductively Sequential TRS
Strict Equality
Weakly Needed Narrowing

5 Non-Determinism
Handling Non-Determinism
Lazy vs Strict Evaluation

6 Bibliography



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Handling Non-Determinism

This same principle may also be extended to handle
non-deterministic operations and extra variables, by simply
examining every possible or branch, and not requiring that all
the rules are confluent to the same normal form. For example,
the rule:

x ? _ = x

_ ? y = y

Gives two results for 0 ? 1, namely 0 and 1.



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Lazy vs Strict Evaluation

Consider the following functions:

choose x _ = x

choose _ y = y

coin = choose 0 1

double x = x+x

What would happen if we call double coin?



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Lazy vs Strict Evaluation Examples

Example

coin = 0 ? 1

double x = x+x

insert e [] = [e]

insert e (x:xs) = (e:x:xs) ? (x : (insert e xs))

perm [] = []

perm (x:xs) = insert x (perm xs)



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Lazy vs Strict Evaluation Examples II

Example

sorted :: [Integer] -> [Integer]

sorted [] = []

sorted [x] = [x]

sorted (x:y:xs) | ((x < y)::Bool) =:= True

= x : (sorted (y:xs))

mySort x = sorted (perm x)



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Table of Contents I

1 Introduction

2 Main Elements

3 Narrowing
Basic Definitions
Rewrite Strategy
Formal Definition

4 Needed Narrowing
Definition
Example
Inductively Sequential TRS
Strict Equality
Weakly Needed Narrowing

5 Non-Determinism
Handling Non-Determinism
Lazy vs Strict Evaluation

6 Bibliography



Introduction Main Elements Narrowing Needed Narrowing Non-Determinism Bibliography

Bibliography

Curry: A tutorial Introduction. Draft of December 2007.
Antoy Sergio, Hanus Michael, Taken from
http://www.informatik.uni-kiel.de/ Curry/tutorial/ the
15th of April, 2013.

Functional Logic Programming: From Theory to Curry.
Hanus Michael. Institut für Informatik, CAU Kiel,
Germany. As sent May the 13th of 2013.

Curry An integrated functional language. September
11,2012. Hanus Michael, retrieved the 15th of April 2013.

Curry: A truly Integrated Functional Logic Language.
December 1995. Hanus Michael, Kuchen Herbert,
Moreno-Navarro Juan José, retrieved 9th of September
2013.


	Introduction
	Main Elements
	Narrowing
	Basic Definitions
	Rewrite Strategy
	Formal Definition

	Needed Narrowing
	Definition
	Example
	Inductively Sequential TRS
	Strict Equality
	Weakly Needed Narrowing

	Non-Determinism
	Handling Non-Determinism
	Lazy vs Strict Evaluation

	Bibliography

