Type Classes in Coq

Elisabet Lobo-Vesga

EAFIT University

28th April, 2014

What is Coq? ${ }^{1}$

CoQ is a proof assistant developed in France since 1989. It is based on an formal language called Calculus of Inductive Constructions (CIC). CoQ allows to:

- Define functions or predicates
- State mathematical theorems
- Interactively develop formal proofs of these theorems
- Check these proofs
- Extract certified programs to languages like OCaml or Haskell
- Use a tactic language for letting the user define its own proof methods

[^0]
The Coq bundle ${ }^{1}$

- Arithmetics in \mathbb{N}, \mathbb{Z} and \mathbb{Q}
- Libraries about list, finite sets, finite maps, etc.
- coqtop: interactive mode
- coqide: graphical user interface
- coqdoc and coq-tex: documentation tools
- coqc : the compiler (batch compilation)
- coqchk: stand-alone proof verifier (validation of compiled libraries)

Introduction to CoQ^{2}

Declarations

A declaration associates a name with a specification.

- Name: identifier
- Specification: formal expression as logical propositions (Prop), mathematical collections (Set) and abstract types (Type)

```
name : sort
0 : nat
nat : Set
Set : Type
Prop : Type
> : nat }->\mathrm{ nat }->\mathrm{ Prop
list : Type -> Type
```

[^1] Assistant. A Tutorial.

Introduction to CoQ^{2}

Definitions

Inductive nat : Set :=
| 0 : nat
S : nat -> nat.
Definition one
$:=\left(\begin{array}{ll}\text { S } & \text {). }\end{array}\right.$
Definition two : nat $:=S$ one.
Definition double (m:nat) := plus m m.

Introduction to CoQ^{2}

Proofs

Variables A B C : Prop.

Lemma lem :

$$
(A->B->C)->(A->B)->A \rightarrow C .
$$

Proof.
intro H .
intros H' HA.
apply H.
exact HA.
apply H^{\prime}.
assumption. Qed.

Haskell Type Classes

Definition
"Typeclasses define a set of functions that can have different implementations depending on the type of data they are given." ${ }^{3}$

[^2]
Haskell Type Classes

Polymorphism

Parametric polymorphism
"Occurs when a function is defined over a range of types, acting in the same way for each type." ${ }^{4}$

Ad-Hoc polymorphism (Overloading)
"Occurs when a function is defined over several different types, acting in a different way for each type." 4

[^3]
Haskell Type Classes

Implementation
class Functor f where fmap :: (a -> b) -> f a -> f b
data List a = [] | a : [a]
data Maybe a = Nothing | Just a

Haskell Type Classes

Implementation
class Functor f where fmap :: (a -> b) -> f a -> f b
instance Functor List where
fmap _ [] = []
fmap $\bar{f}(x: x s)=f x: f m a p ~ f x s$
instance Functor Maybe where
fmap _Nothing = Nothing
fmap \bar{f} (Just a) $=$ Just (f a)

Type Classes in CoQ ${ }^{5}$

Syntax of Class and Instance declarations

```
Class Id \(\left(\alpha_{1}: \tau_{1}\right) \cdots\left(\alpha_{n}: \tau_{n}\right)\) [:sort] := \{
    \(\mathrm{f}_{1}\)
    :type \({ }_{f 1}\);
```



```
    \(\mathrm{f}_{m} \quad:\) type \(\left._{f m}\right\}\).
```

Instance ident:Id term ${ }_{1} \cdots$ term $_{n}:=\{$
f_{1}
:= termf1 $_{f}$;
!
f_{m}
$:=$ term $\left._{f m}\right\}$.

Where $\alpha_{i}: \tau_{i}$ are called parameters of the class and $f_{k}:$ type ${ }_{k}$ are called the methods.

[^4]
Type Classes in Coq^{5}

Example of Class and Instance declarations

```
Class EqDec (A : Type) := \{
    eqb : \(A \rightarrow A \rightarrow\) bool ;
    eqb_prop:
    \(\forall x y, e q b x y=\) true \(\Rightarrow x=y\}\).
```

Instance eq_bool : EqDec bool := \{ eqb x y := if x then y else negb y \}.

Proof.
intros x y H.
destruct x; destruct y; discriminate || reflexivity. Qed.

Type Classes in CoQ^{5}

Using Type Classes

Binding classes

$$
\begin{aligned}
& \text { Definition neqb }\{A\} \text { \{eqa : EqDec } A\} \\
& (x \text { y }: A):=\text { negb }(e q b x y) .
\end{aligned}
$$

Superclasses

$$
\begin{aligned}
& \text { class (Eq a) => Ord a where } \\
& \text { le :: a -> a -> Bool }
\end{aligned}
$$

Class Ord A $\{\mathrm{E}:$ EqDec A$\}:=\{$ le $: A \rightarrow A \rightarrow$ bool\}.

Type Classes in CoQ ${ }^{5}$
Using Type Classes
Substructures

> Definition neqb $\{A\}$ \{eqa : EqDec A\} $(x$ y : A) := negb (eqb x y).

Superclasses

$$
\begin{aligned}
& \text { class (Eq a) => Ord a where } \\
& \text { le :: a -> a -> Bool }
\end{aligned}
$$

Class Ord A \{E : EqDec A\} := \{ le : A $\rightarrow \mathrm{A} \rightarrow$ bool\}.

[^0]: ${ }^{1}$ Coq website http://coq.inria.fr/what-is-coq

[^1]: ${ }^{2}$ Huet, G., Kahn, G. and Paulin-Mohring, C. (2007). The Coq Proof

[^2]: ${ }^{3}$ O'Sullivan, B., Goerzen, J. and Stewart, D. (2008). Real World Haskell. Chapter 6.

[^3]: ${ }^{4}$ Walder, P. and Stephen, B. (1998). How to make ad-hoc polymorphism less ad hoc.

[^4]: ${ }^{5}$ The Coq Development Team. Reference Manual - The Coq Proof Assistant - Inria (Version 8.4pl4). Chapter 19 Type Classes.

