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Basic Concepts

I A type is a classification of data and operations on them 1

I A system/language has inductive types if we can create
elements of a type with constants and functions of itself

data N : Set where
zero : N
suc : (n : N) → N

I Inductive types can be represented as least fixed-points of
appropriated functions (functors)1

N = µX .1 + X

1Sicard-Raḿırez, A. (2014). Verification of Functional Programs.
http://www1.eafit.edu.co/asr/courses/fpv-CB0683/slides/fpv-slides.pdf
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Basic Concepts

I If we have a type
data D : Set where

lam : (D → D) → D

with his functor D = µX .X → X we can classify D as a
negative, positive or strictly positive type as follow:

“The occurrence of a type variable is positive iff it occurs
within an even number of left hand sides of →-types, it is
strictly positive iff it never occurs on the left hand side of a
→-type.”2

2Abel, A. and Altenkirch, T. (2000). A Predicative Strong Normalisation Proof for
a λ-Calculus with Interleaving Inductive Types, p. 21.
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Basic Concepts

I Positive
data A : Set where

conA : A → X → X → A

I Negative
data B : Set where

conB : (B → B) → B

I Strictly Positive
data C : Set where

conC : X → Y → C
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Statement of the Problem

I Proof assistants require strictly positive inductive types to
avoid non-terminating functions

I Real world problems use non-strictly positive types, however
verification of them is uncommon.

Inductive Types

Negative
Positive

Strictly
Positive
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Apia to the Rescue

What do we propose?
To identify and formalize some problem that make use of positive
inductive types using the programming logic of A. Bove, P. Dybjer
and A. Sicard-Raḿırez which support positive inductive types.3

3Sicard-Raḿırez, A. (2014). Reasoning about Functional Programs by Combining
Interactive and Automatic Proofs. Unpublished doctoral dissertion, University of the
Republic, Uruguay.
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Finding a case of application
Continuations

Definition
Continuation Passing Style (CPS) is a style of programming in which
functions do not return values; rather, they pass control onto a
continuation, which specifies what happens next. They are used to
manipulate and alter the control flow of a program.4

4Haskell/Continations passing style. Retrieved from Wikibooks Web site:
http://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
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Finding a case of application
Continuations

Breadth-first search
In 2000 Matthes uses continuations to do a breadth-first binary tree
search5. In his example Matthes cites Hofmann’s unpublished work
(Approaches to recursive data types - a case study, 1995) that de-
fines the type of continuations as:

data Cont = D | C (( Cont → [Int ]) → [Int ])

Q: Does the program terminate for every input tree?

5Matthes, R. (2000). Lambda Calculus: A Case for Inductive Definitions.
Retrieved from Lecture Notes Online Web site:
http://www.irit.fr/˜Ralph.Matthes/papers/esslli.pdf
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Implementation in Agda
Continuations

Data types
data Btree : Set where

L : (x : N) → Btree
N : (x : N) (l r : Btree) → Btree

data Cont : Set where
D : Cont
C : (( Cont → List N) → List N) → Cont

We use the flag -no-positivity-check to work with non-strictly
positive types.
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Implementation in Agda
Continuations

Functions
apply : Cont → (Cont → List N) → List N
apply D g = g D
apply (C f) g = f g

breadth : Btree → Cont → Cont
breadth (L x) k = C $ λ g →

x :: (apply k g)
breadth (N x s t) k = C $ λ g →

x :: (apply k (g ◦ breadth s ◦ breadth t))
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Implementation in Agda
Continuations

Functions
ex : Cont → List N
ex D = []
ex (C f) = f ex

breadthfirst : Btree → List N
breadthfirst t = ex ( breadth t D)

We use NO TERMINATION CHECK pragma to work with non structural
recursive function.
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Implementation in Agda
Continuations

Example

1

2

7 3

45

4

6

2

8

9

exList = [1 ,2 ,4 ,7 ,3 ,6 ,8 ,5 ,4 ,2 ,9]
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Implementation in Agda
Continuations

Problems
Although our implementation type-checked we cannot conclude that
the program terminates because we use the flag -no-positivity-check
and the pragma NO TERMINATION CHECK, this implies that our program
is unsound when viewed as logic and also it weakens the reasoning
that can be done about it6.

6Weirich, S. and Casinghino, C. (2012). Generic Programming with Dependent
Types. pp 217–258.
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Implementation in Apia
Continuations

Postulates
We postulate a domain of terms and the term constructors

postulate
D : Set
zero [] d : D
succ : D → D
_◦_ _::_ : D → D → D
lam : (D → D) → D
node cont : D → D → D → D
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Implementation in Apia
Continuations

Inference rules
We declare the unary predicates N and ListN whith their introduc-
tion rules.

-- Natural numbers
data N : D → Set where

nzero : N zero
nsucc : ∀ {n} →N n → N (succ n)

-- List of Natural numbers
data ListN : D → Set where

lnnil : ListN []
lncons : ∀ {n ns} →N n → ListN ns →

ListN (n :: ns)
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Implementation in Apia
Continuations

Inference rules
We declare the unary predicates Btree and Cont whith their intro-
duction rules.

-- Binary Nat Tree
data Btree : D → Set where

Leaf : ∀ {x} →N x → Btree x
Node : ∀ {x l r} →N x → Btree l →

Btree r → Btree (node x l r)

-- Continuations
data Cont : D → Set where

D’ : Cont d
C’ : ∀ {x xs ys} → (( Cont x → ListN xs) →

ListN ys) → Cont (cont x xs ys)
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Implementation in Apia
Continuations

Problems
With further work we may be able to implement apply, breadth
and ex functions and finally formalize that breadthfirst is (or
not) a terminating functions.

breadthfirst : ∀ {t} ∃ [ xs ] →
Btree t → ListN xs
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