Formalization of Programs with Positive Inductive Types

Elisabet Lobo-Vesga Andrés Sicard-Ramírez

Universidad EAFIT Medellín, Colombia

February 2015

- A type is a classification of data and operations on them ¹
- A system/language has inductive types if we can create elements of a type with constants and functions of itself

data \mathbb{N} : Set where zero : \mathbb{N} suc : (n : \mathbb{N}) $\rightarrow \mathbb{N}$

 Inductive types can be represented as least fixed-points of appropriated functions (functors)¹

$$\mathbb{N} = \mu X.1 + X$$

¹Sicard-Ramírez, A. (2014). Verification of Functional Programs. http://www1.eafit.edu.co/asr/courses/fpv-CB0683/slides/fpv-slides.pdf

Formalization of Programs with Positive Inductive Types

```
If we have a type
```

```
data D : Set where lam : (D \rightarrow D) \rightarrow D
```

with his functor $D = \mu X.X \rightarrow X$ we can classify D as a **negative**, **positive** or **strictly positive** type as follow:

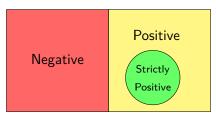
"The occurrence of a type variable is *positive* iff it occurs within an even number of left hand sides of \rightarrow -types, it is *strictly positive* iff it never occurs on the left hand side of a \rightarrow -type."²

Formalization of Programs with Positive Inductive Types

 $^{^2}$ Abel, A. and Altenkirch, T. (2000). A Predicative Strong Normalisation Proof for a λ -Calculus with Interleaving Inductive Types, p. 21.

Positive data A : Set where conA : $A \rightarrow X \rightarrow X \rightarrow A$ Negative data B : Set where conB : (B \rightarrow B) \rightarrow B Strictly Positive data C : Set where $\texttt{conC} : \texttt{X} \rightarrow \texttt{Y} \rightarrow \texttt{C}$

- Proof assistants require strictly positive inductive types to avoid non-terminating functions
- Real world problems use non-strictly positive types, however verification of them is uncommon.



Inductive Types

What do we propose?

To identify and formalize some problem that make use of positive inductive types using the programming logic of A. Bove, P. Dybjer and A. Sicard-Ramírez which support positive inductive types.³

³Sicard-Ramírez, A. (2014). Reasoning about Functional Programs by Combining Interactive and Automatic Proofs. Unpublished doctoral dissertion, University of the Republic, Uruguay.

Definition

Continuation Passing Style (CPS) is a style of programming in which functions do not return values; rather, they pass control onto a *continuation*, which specifies what happens next. They are used to manipulate and alter the control flow of a program.⁴

⁴Haskell/Continations passing style. Retrieved from Wikibooks Web site: http://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Breadth-first search

In 2000 Matthes uses continuations to do a breadth-first binary tree search⁵. In his example Matthes cites Hofmann's unpublished work (Approaches to recursive data types - a case study, 1995) that defines the type of continuations as:

data Cont = D | C ((Cont \rightarrow [Int]) \rightarrow [Int])

Q: Does the program terminate for every input tree?

⁵Matthes, R. (2000). Lambda Calculus: A Case for Inductive Definitions. Retrieved from Lecture Notes Online Web site: http://www.irit.fr/~Ralph.Matthes/papers/esslli.pdf

Formalization of Programs with Positive Inductive Types

Data types

data Btree : Set where L : $(x : \mathbb{N}) \rightarrow Btree$ N : $(x : \mathbb{N})$ (l r : Btree) $\rightarrow Btree$ data Cont : Set where D : Cont C : ((Cont \rightarrow List $\mathbb{N}) \rightarrow$ List $\mathbb{N}) \rightarrow Cont$

We use the flag -no-positivity-check to work with non-strictly positive types.

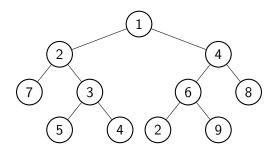
Functions

```
breadth : Btree \rightarrow Cont \rightarrow Cont
breadth (L x) k = C \ \lambda g \rightarrow
x :: (apply k g)
breadth (N x s t) k = C \ \lambda g \rightarrow
x :: (apply k (g \circ breadth s \circ breadth t))
```

Functions ex : Cont \rightarrow List \mathbb{N} ex D = [] ex (C f) = f ex breadthfirst : Btree \rightarrow List \mathbb{N} breadthfirst t = ex (breadth t D)

We use NO_TERMINATION_CHECK pragma to work with non structural recursive function.

Example



exList = [1,2,4,7,3,6,8,5,4,2,9]

Problems

Although our implementation type-checked we cannot conclude that the program terminates because we use the flag -no-positivity-check and the pragma NO_TERMINATION_CHECK, this implies that our program is unsound when viewed as logic and also it weakens the reasoning that can be done about it⁶.

⁶Weirich, S. and Casinghino, C. (2012). Generic Programming with Dependent Types. pp 217–258.

Postulates

We postulate a domain of terms and the term constructors

postulate			
D		:	Set
zero	[] d	:	D
succ		:	$D \rightarrow D$
	::_	:	$\text{D} \ \rightarrow \ \text{D} \ \rightarrow \ \text{D}$
lam		:	(D \rightarrow D) \rightarrow D
node	cont	:	$\mathrm{D} \ \rightarrow \ \mathrm{D} \ \rightarrow \ \mathrm{D} \ \rightarrow \ \mathrm{D}$

Inference rules

We declare the unary predicates $\mathbb N$ and $\mathtt{List}\mathbb N$ whith their introduction rules.

```
-- Natural numbers

data \mathbb{N} : \mathbb{D} \rightarrow Set where

nzero : \mathbb{N} zero

nsucc : \forall \{n\} \rightarrow \mathbb{N} n \rightarrow \mathbb{N} (succ n)

-- List of Natural numbers

data List\mathbb{N} : \mathbb{D} \rightarrow Set where

lnnil : List\mathbb{N} []

lncons : \forall \{n ns\} \rightarrow \mathbb{N} n \rightarrow List\mathbb{N} ns \rightarrow

List\mathbb{N} (n :: ns)
```

Inference rules

We declare the unary predicates Btree and Cont whith their introduction rules.

```
-- Binary Nat Tree

data Btree : D \rightarrow Set where

Leaf : \forall \{x\} \rightarrow \mathbb{N} \ x \rightarrow Btree x

Node : \forall \{x \mid r\} \rightarrow \mathbb{N} \ x \rightarrow Btree l \rightarrow

Btree r \rightarrow Btree (node x l r)

-- Continuations

data Cont : D \rightarrow Set where

D' : Cont d

C' : \forall \{x \ xs \ ys\} \rightarrow ((Cont \ x \rightarrow List\mathbb{N} \ xs) \rightarrow

List\mathbb{N} \ ys) \rightarrow Cont (cont x \ xs \ ys)
```

Problems

With further work we may be able to implement apply, breadth and ex functions and finally formalize that breadthfirst is (or not) a terminating functions.

```
breadthfirst : \forall {t} \exists [ xs ] \rightarrow
Btree t \rightarrow List\mathbb{N} xs
```