Introduction PALPS Semantics Example Simulation and Verification Current Work Conclusions References

A process calculus for spatially-explicit ecological models

Mauricio Toro Department of Computer Science, Universidad Eafit (joint work with A. Philippou)

Eafit: Logic and Computation Group Seminar 09 June 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- One trend of **theoretical ecology**: Individual-based modeling of ecosystems.
- Individual-based modeling is the opposite to population-based modeling
- Application area: Metapopulations
 - Local populations in spatially-separated habitat patches

- Populations interact locally inside a patch
- Individuals can disperse among patches
- Conservation ecology, species reintroduction

- One trend of **theoretical ecology**: Individual-based modeling of ecosystems.
- Individual-based modeling is the opposite to population-based modeling
- Application area: Metapopulations
 - Local populations in spatially-separated habitat patches

- Populations interact locally inside a patch
- Individuals can disperse among patches
- Conservation ecology, species reintroduction

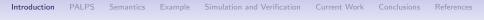
Background (2)

- Mathematical models to represent the average behavior
 - Differential equations
 - Recurrence equations
- Formal methods individual-based modeling of ecological systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Process calculi, P-systems, cellular automata

Background (2)


- Mathematical models to represent the average behavior
 - Differential equations
 - Recurrence equations
- Formal methods individual-based modeling of ecological systems

• Process calculi, P-systems, cellular automata

Background (3)

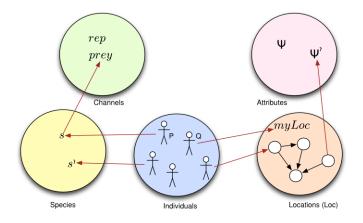
- Simulations carried out by ecologists often impose an order on the events that may take place within a model
- Ordering can have implications on the simulation
- Examples of temporal **process ordering** in ecological systems

- Concurrent ordering
- Reproduction before mortality
- Mortality before reproduction

Background (3)

- Simulations carried out by ecologists often impose an order on the events that may take place within a model
- Ordering can have implications on the simulation
- Examples of temporal **process ordering** in ecological systems

- Concurrent ordering
- Reproduction before mortality
- Mortality before reproduction


Our contributions

- Process Algebra with Locations for Population Systems (PALPS)
 - spatial calculus, locations, location attributes
 - location dependent behavior of individuals
 - Process ordering as a policy
 - semantics for a **policy** for actions
 - formal translation to model checker PRISM

simulation results

• Basic entities

• Individuals, Species, Locations, Channels and Attributes

• Examples of expressions

- There is only one individual of species s in myloc: s@myloc = 1
- Temperature is less than 40 or Humidity is higher that 90 at location *l*:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $T@\ell > 40 \lor H@\ell > 90$

• Total number of individuals at location ℓ : s@myloc + s'@myloc < 10

• Examples of expressions

- There is only one individual of species s in myloc: s@myloc = 1
- Temperature is less than 40 or Humidity is higher that 90 at location ℓ :

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $T@\ell > 40 \lor H@\ell > 90$

• Total number of individuals at location ℓ : s@myloc + s'@myloc < 10

• Examples of expressions

- There is only one individual of species s in myloc: s@myloc = 1
- Temperature is less than 40 or Humidity is higher that 90 at location ℓ :

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $T@\ell > 40 \lor H@\ell > 90$

• Total number of individuals at location ℓ : s@myloc + s'@myloc < 10

PALPS syntax (1)

• The individual level

$$P ::= \mathbf{0}$$

$$| \sum_{i \in I} \eta_i \cdot P_i$$

$$| \sum_{i \in I} p_i : P_i$$

$$| \operatorname{cond} (e_1 \triangleright P_1, \dots, e_n \triangleright P_n)$$

$$| C$$

inactive individual non-deterministic choice probabilistic choice conditional constant

Actions

 $\eta ::= a \mid \overline{a} \mid go \ell \mid \sqrt{input,output,move,time}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

PALPS syntax (1)

• The individual level

$$P ::= \mathbf{0}$$

$$| \sum_{i \in I} \eta_i . P_i$$

$$| \sum_{i \in I} p_i : P_i$$

$$| \operatorname{cond} (e_1 \triangleright P_1, \dots, e_n \triangleright P_n)$$

$$| C$$

inactive individual non-deterministic choice probabilistic choice conditional constant

• Actions

 η ::= $a \mid \overline{a} \mid go \ell \mid \sqrt{}$ input,output,move,time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

PALPS syntax (2)

The species level

$$R ::= !rep.P$$

• The system level

$$S ::= \mathbf{0}$$

$$| P: \langle \mathbf{s}, \ell$$

$$| R: \langle \mathbf{s} \rangle$$

$$| S_1 | S_2$$

$$| S \setminus L$$

inactive system located individuals named species parallel composition restriction PALPS syntax (2)

• The species level

$$R ::= !rep.P$$

• The system level

$$\begin{array}{cccc} S & ::= & \mathbf{0} \\ & | & P: \langle \mathbf{s}, \ell \rangle \\ & | & R: \langle \mathbf{s} \rangle \\ & | & S_1 | S_2 \\ & | & S \setminus L \end{array}$$

inactive system located individuals named species parallel composition restriction

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへ⊙

PALPS semantics (1)

- Operational semantics defined at the level of configurations (*E*, *S*)
 - E: an environment
 - S: a population system
- The environment in needed to evaluate the expressions
- As an example, the initial environment for

$$S \stackrel{\text{def}}{=} (P_0:\langle \ell, \mathbf{s}, 2 \rangle | P_0:\langle \ell', \mathbf{s} \rangle | (!rep.P_0):\langle \mathbf{s} \rangle) \backslash \{rep\}.$$

is

$$E \stackrel{\mathrm{def}}{=} \{(\ell, \mathbf{s}, 2), (\ell', \mathbf{s}, 1)\}$$

PALPS semantics (1)

- Operational semantics defined at the level of configurations (*E*, *S*)
 - E: an environment
 - S: a population system
- The environment in needed to evaluate the expressions
- As an example, the initial environment for

$$S \stackrel{\text{def}}{=} (P_0:\langle \ell, \mathbf{s}, 2 \rangle | P_0:\langle \ell', \mathbf{s} \rangle | (!rep.P_0):\langle \mathbf{s} \rangle) \setminus \{rep\}.$$

is

$${\it E} \stackrel{
m def}{=} \{(\ell, {f s}, 2), (\ell', {f s}, 1)\}$$

PALPS semantics (2)

- Two transition relations
 - Probabilistic transition relation

$$(E,S) \xrightarrow{w}_{p} (E',S')$$

• Non-deterministic transition relation

$$(E,S) \stackrel{\alpha}{\longrightarrow}_n (E',S')$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

PALPS semantics (3)

- The semantics is given at two levels
 - Individual level
 - System level
- Asynchronous communication
- All processes synchronize on the time passing actions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

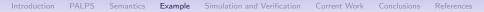
PALPS semantics (3)

- The semantics is given at two levels
 - Individual level
 - System level
- Asynchronous communication
- All processes synchronize on the time passing actions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

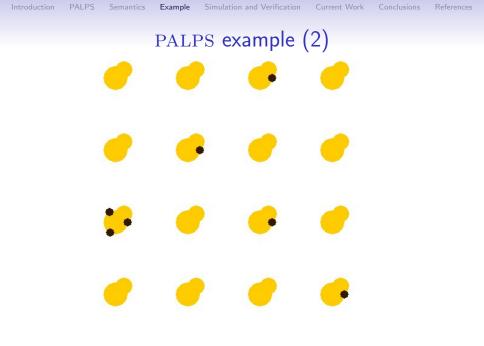
Process ordering in PALPS (1)

- A **policy** *σ* is a partial order on the set of PALPS non-probabilistic actions.
- A policy is set of tuples (α, β) , where α, β are actions
- A policy models process ordering in ecological systems


• A prioritized transition relation

$$\frac{(E,S) \stackrel{\alpha}{\longrightarrow}_n (E',S') \text{ and } (E,S) \not\stackrel{\beta}{\longrightarrow}_n (\alpha,\beta) \in \sigma}{(E,S) \stackrel{\alpha}{\longrightarrow}_{\sigma} (E',S')}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


Process ordering in PALPS (3)

- Examples of policies in PALPS. Let $\ell, \ell' \in Loc$,
 - Concurrent ordering $\sigma = \{\}$
 - Reproduction before dispersal $\sigma = \{(\tau_{rep,\ell,s}, \tau_{go,\ell',s})\}$
 - Dispersal before reproduction $\sigma = \{(\tau_{go,\ell',s}, \tau_{rep,\ell,s})\}$


```
PALPS example (1)
```

- Varroa-mite parasites live on an $n \times n$ lattice of honey-bee cells and cycle through the following.
 - **Death**: with probability *p*
 - Dispersal: randomly
 - **Reproduction**: produces an offspring of size *b*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

PALPS example (3)

• The individual level

$$P_{0} \stackrel{\text{def}}{=} p:P_{1} + (1-p):\sqrt{.0}$$

$$P_{1} \stackrel{\text{def}}{=} \sum_{\ell \in \mathsf{Nb}(\mathsf{myloc})} \frac{1}{4} : go \ell.$$

$$\operatorname{cond} (\mathbf{s}@\mathsf{myloc} = 1 \rhd P_{2}; \ \mathsf{true} \rhd \sqrt{.0})$$

$$P_{2} \stackrel{\text{def}}{=} \overline{rep}^{b}.\sqrt{.0}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where
$$\overline{rep}^{b} \stackrel{\text{def}}{=} \underbrace{\overline{rep}...\overline{rep}}_{b \text{ times}}$$

PALPS example (4)

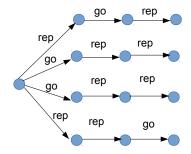
• The species level

$$R \stackrel{\text{def}}{=} ! rep. P_0$$

• The system level

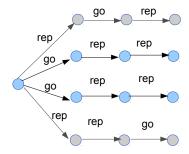
$$System \stackrel{\text{def}}{=} (P_0:\langle \ell, \mathbf{s}, 2 \rangle | P_0:\langle \ell', \mathbf{s} \rangle | (!rep.P_0):\langle \mathbf{s} \rangle) \setminus \{rep\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



• We use the policy **dispersal before reproduction** $\{(\tau_{rep,\ell,s}, \tau_{go,\ell',s}) | \ell, \ell' \in Loc\}$ for this example.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()


• Semantics of the policy **dispersal before reproduction** $\{(\tau_{rep,\ell,s}, \tau_{go,\ell',s})\}$ for the example.

Introduction PALPS Semantics Example Simulation and Verification Current Work Conclusions References

PALPS example (7)

• Semantics of the policy **dispersal before reproduction** $\{(\tau_{rep,\ell,s}, \tau_{go,\ell',s})\}$ for the example.

Encoding of PALPS into PRISM (1)

- PRISM is a probabilistic model checker¹
- To translate PALPS into the PRISM language
 - each process is a module
 - the execution flow is captured by a local variable
 - all processes synchronize on the \surd action

¹www.prismmodelchecker.org/

Encoding of PALPS into PRISM (1)

- PRISM is a probabilistic model checker¹
- $\bullet~$ To translate ${\rm PALPS}$ into the ${\rm PRISM}$ language
 - each process is a module
 - the execution flow is captured by a local variable
 - all processes synchronize on the \surd action

Encoding of PALPS into PRISM (2)

- To translate PALPS into the PRISM language
 - we map binary communication into multi-way communication
 - replication is bounded
 - we define a global variable for each action to ensure the semantics of the policy

Encoding of PALPS into PRISM (3)

Correctness

For any configuration (E, Sys) and policy σ , where E is compatible with Sys, whenever $(E, Sys) \xrightarrow{\alpha} (E', Sys')$ then $\llbracket (E, Sys) \rrbracket \longrightarrow^m \llbracket (E', Sys') \rrbracket$ where $1 \le m \le 3$.

• A similar result holds in the opposite direction.

Model checking of PALPS using PRISM (1)

• Verification of probabilistic temporal PCTL properties

- Probability of extinction of the population in the next 10 years is less than a certain threshold p_e
- Within the next 20 years with some high probability, members of the population s will outnumber the members of population s'
- Compare the average number of individuals of species *s* at time unit *t* to a constant

Model checking of PALPS using PRISM (1)

• Verification of probabilistic temporal PCTL properties

- Probability of extinction of the population in the next 10 years is less than a certain threshold p_e
- Within the next 20 years with some high probability, members of the population s will outnumber the members of population s'
- Compare the average number of individuals of species *s* at time unit *t* to a constant

Model checking of PALPS using PRISM (1)

• Verification of probabilistic temporal PCTL properties

- Probability of extinction of the population in the next 10 years is less than a certain threshold p_e
- Within the next 20 years with some high probability, members of the population s will outnumber the members of population s'
- Compare the average number of individuals of species s at time unit t to a constant

Model checking of PALPS using PRISM (2)

- Semantics of model checking
 - Defined over Markov Decision Processes: Computes minimum and maximum probabilities
 - Approximation defined over Discrete-Time Markov Chains: Computes reward-based properties, steady state and reachability

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Model checking of PALPS using PRISM (2)

- Semantics of model checking
 - Defined over Markov Decision Processes: Computes minimum and maximum probabilities
 - Approximation defined over Discrete-Time Markov Chains: Computes reward-based properties, steady state and reachability

Simulation of PALPS using PRISM

- Explore random paths of execution
- Search for deadlocks using **PRISM** simulation
- Perform model-checking by simulation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results for the example (1)

Case study	Number of	Construction	RAM
size	States	time (sec.)	(GB)
No policy			
3 PALPS individuals	130397	8	0.5
4 PALPS individuals	1830736	101	1.9
Policy σ			
3 PALPS individuals	27977	3	0.3
4 PALPS individuals	148397	10	0.7
Extended policy			
3 PALPS individuals	20201	3	0.3
4 PALPS individuals	128938	9	0.6

Table : Performance of building probabilistic models in $\ensuremath{\mathrm{PRISM}}$ with and without policies.

Results for the example (2)

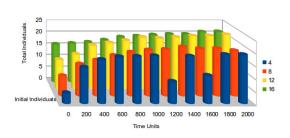
- Applying a policy σ = {(τ_{rep,ℓ,s}, τ_{go,ℓ',s})|ℓ, ℓ' ∈ Loc} reduced the size of the state space by a factor of 10
- Applying a policy for the execution of actions among individuals reduced the state space by about 20% more

Results for the example (2)

- Applying a policy σ = {(τ_{rep,ℓ,s}, τ_{go,ℓ',s})|ℓ, ℓ' ∈ Loc} reduced the size of the state space by a factor of 10
- Applying a policy for the execution of actions among individuals reduced the state space by about 20% more

Results for the example (3)

• Results obtained using statistical model checking

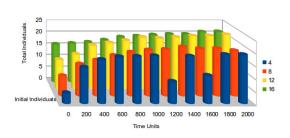

• Using simulation to verify a PCTL property

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Results for the example (4)

• Expected population size vs simulation time for different initial sizes of the population, with offspring size b = 2.

Average total number of individuals per time unit

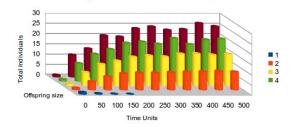

 The total number of individuals after a "long time" is independent of the initial number of individuals.

э

Results for the example (4)

• Expected population size vs simulation time for different initial sizes of the population, with offspring size b = 2.

Average total number of individuals per time unit

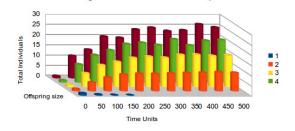

 The total number of individuals after a "long time" is independent of the initial number of individuals.

э

Results for the example (5)

• Expected population size vs simulation time for different offspring sizes. Probability to die p = 0.1 and initial population i = 1.

Average total number of individuals per time unit



For b > 2, the total number of individuals is periodic until extinction.

Results for the example (5)

• Expected population size vs simulation time for different offspring sizes. Probability to die p = 0.1 and initial population i = 1.

Average total number of individuals per time unit

For b > 2, the total number of individuals is periodic until extinction.

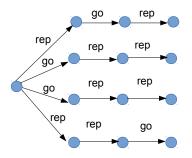
Reducing the state space (1)

• We reduced the state space of PALPS models with policies, but

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- for some applications, it is still too big
- Proposed solution
 - Synchronous communication [3]
 - Mean-field semantics

Reducing the state space (1)

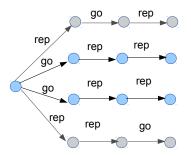

• We reduced the state space of PALPS models with policies, but

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- for some applications, it is still too big
- Proposed solution
 - Synchronous communication [3]
 - Mean-field semantics

Reducing the state space (2)

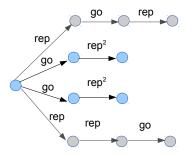
• Complete state space



(日)、

э.

Reducing the state space (3)


• State-space reduced with a policy

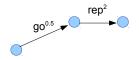
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Reducing the state space (4)

• State-space reduced with synchronous communication

・ロト ・ 雪 ト ・ ヨ ト

Conclusions


• PALPS

- Discrete space, discrete time, probabilistic behavior
- · Location attributes and location-dependent behavior
- Policies that
 - Reduce the state space
 - Allow to model different process orderings
- Semantics for PALPS with synchronous communication
- Support for simulation and analysis of models through PRISM translation


▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Mean-field semantics à la WSCCS

• T H A N K Y O U Do you have any question?

References

- A. Philippou, M. Toro-Bermdez and Margarita Antonaki. PALPS: A process calculus for spatially-explicit ecological models. Scientific Annals of Computer Science, 23(1):119–167, 2013.
- A. Philippou and M. Toro-Bermdez. Process ordering in a process calculus for spatially-explicit ecological models. In Proc. of MokMasd '13, Madrid, Spain, September, 2013. Volume 8368 of Lecture Notes in Computer Science, pages 345–361, Springer July 2013.
- M. Toro-Bermdez, A. Philippou, C. Kassara, S. Sfenthourakis. Synchronous Parallel Composition in a Process Calculus for Ecological Models. In Proc. of ICTAC 2014. Volume of Lecture Notes in Computer Science, 424–441, Springer October 2014.