Kripke Semantics

A Semantic for Intuitionistic Logic

By Jonathan Prieto-Cubides

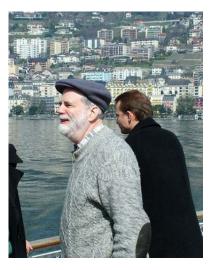
Updated: 2016/11/18

Supervisor: Andrés Sicard-Ramírez Logic and Computation Research Group EAFIT University Medellín, Colombia

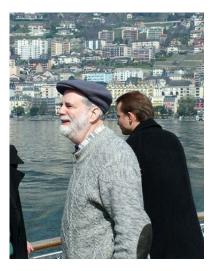
History

Saul Kripke

- He was born on November
 13, 1940 (age 75)
- Philosopher and Logician
- Emeritus Professor at Princeton University
- In logic, his major contributions are in the field of Modal Logic



- In Modal Logic, we attributed to him the notion of *Possible Worlds*
- \bigcirc Its notable ideas
 - Kripke structures
 - Rigid designators
 - Kripke semantics



The study of semantic is the study of *the truth*

- Kripke semantics is one of many (see for instance (Moschovakis, 2015)) semantics for *intuitionistic* logic
- It tries to capture different possible *evolutions* of the world over time
- The abstraction of *a world* we call a *Kripke structure*
- Proof rules of intuitionistic logic are *sound* with respect to krikpe structures

Derivation (proof) rules of the \land connective

$$\frac{\ \ \Gamma \vdash \varphi \quad \ \Gamma \vdash \psi}{\ \ \Gamma \vdash \varphi \ \land \psi} \land \text{-intro}$$

$$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \land -elim_1$$
$$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \land -elim_2$$

Derivation (proof) rules of the \lor connective

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \lor -intro_1 \qquad \frac{\Gamma \vdash \varphi \lor \psi \qquad \Gamma, \varphi \vdash \sigma \qquad \Gamma, \psi \vdash \sigma}{\Gamma \vdash \sigma} \lor -elim$$

$$\frac{\mathsf{I} \vdash \psi}{\mathsf{\Gamma} \vdash \varphi \lor \psi} \lor -intro_2$$

_

Derivation (proof) rules of the ightarrow connective

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} \rightarrow \text{-intro} \qquad \qquad \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \varphi \rightarrow \psi}{\Gamma \vdash \psi} \rightarrow \text{-elim}$$

Derivation (proof) rules of the \neg connective where $\neg \varphi \equiv \varphi \rightarrow \bot$

$$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \neg \text{-intro} \qquad \qquad \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \text{ explosion}$$

Other derivation (proof) rules

$$\frac{1 \vdash \varphi}{\Gamma \vdash \top} unit \qquad \frac{1 \vdash \varphi}{\Gamma, \psi \vdash \varphi} weaken$$

The list of derivation rules are the same above plus the following rule

$$\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi} RAA$$

Def. A *Kripke model* is a quadruple $\mathcal{K} = \langle K, \Sigma, C, D \rangle$ where

- \bigcirc K is a (non-empty) partially ordered set
- \bigcirc C is a function defined on the constants of L
- \bigcirc D is a set-valued function on K

 \bigcirc Σ is a function on K such that

•
$$C(c) \in D(I)$$
 for all $k \in K$

- $D(k) \neq \emptyset$ for all $k \in K$
- $\Sigma(k) \subset A_{t_k}$ for all $k \in K$

where A_{t_k} is the set of all atomic sentences of L with constants for the elements of D(k). (See the full description (van Dalen, 2004) or review a short description on (Moschovakis, 2015)) D and Σ satisfy the following conditions:

(i) $k \le l \Rightarrow D(k) \subseteq D(l)$ (ii) $\perp \notin \Sigma(k)$, for all k (iii) $k \le l \Rightarrow \Sigma(k) \subseteq \Sigma(l)$

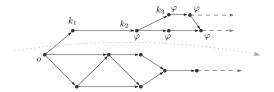


Figure: A Kripke model example

Lemma

 $\Sigma(k) \subseteq Sent_k$, $\Sigma(k)$ satisfies¹:

(i)
$$\varphi \lor \psi \in \Sigma(k) \Leftrightarrow \varphi \in \Sigma(k) \text{ or } \psi \in \Sigma(k)$$

(ii) $\varphi \land \psi \in \Sigma(k) \Leftrightarrow \varphi \in \Sigma(k) \text{ and } \psi \in \Sigma(k)$

(iii)
$$\varphi \rightarrow \psi \in \Sigma(k) \Leftrightarrow \text{for all } l \ge k \ (\varphi \in \Sigma(l) \Rightarrow \psi \in \Sigma(l))$$

(iv) $\exists x \varphi(x) \in \Sigma(k) \Leftrightarrow$ there is an $a \in \mathcal{D}(k)$ such that $\varphi(\overline{a}) \in \Sigma(k)$

(v) $\forall x \varphi(x) \in \Sigma(k) \Leftrightarrow$ for all $l \ge k$ and $a \in \mathcal{D}(l) \varphi(\overline{a}) \in \Sigma(l)$

Proof.

Immediate. (Also see (van Dalen, 2004, p. 165))

¹Set of all sentences with parameters in $\mathcal{D}(k)$.

Notation

We write $k \Vdash \varphi$ for $\varphi \in \Sigma(k)$ to say "k forces φ "

Using this notation, we can reformulate on terms of \Vdash . For instance look at the last two items

(iv) $k \Vdash \exists x \varphi(x) \Leftrightarrow$ there is an $a \in \mathcal{D}(k)$ such that $k \Vdash \varphi(\overline{a})$ (v) $k \Vdash \forall x \varphi(x) \Leftrightarrow$ for all $l \ge k$ and $a \in \mathcal{D}(l) \ l \Vdash \varphi(\overline{a})$

Corollary

Proof.

(i)
$$k \Vdash \neg \varphi \Leftrightarrow k \Vdash \varphi \to \bot \Leftrightarrow$$
 for all $l \ge k (l \Vdash \varphi \Rightarrow l \Vdash \bot)$, for all $l \ge k (l \nvDash \varphi)$

(ii) White-board

Lemma

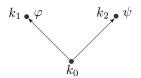
$$k \leq I, \ k \Vdash \varphi \Rightarrow I \Vdash \varphi$$

Proof.

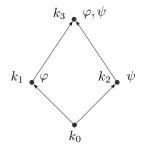
- $\, \odot \,$ If φ is an atom, we are done by definition above
- $\bigcirc \ \mathsf{If} \ \varphi \ \mathsf{is} \ \varphi_1 \lor \varphi_2$
- Rest. White-board
- If φ is $\forall x \varphi_1(x)$, then let $k \Vdash \forall x \varphi_1(x)$ and $l \ge k$ Suppose $p \ge l$ and $a \in D(p)$, then, since $p \ge k$, $p \Vdash \varphi_1(\overline{a})$ Therefore, $l \Vdash \forall x \varphi_1(x)$

In the bottom node k_0 no atoms are known, in the node k_1 only φ is known

$$\begin{array}{c} k_1 \bullet \varphi \\ \\ \\ k_0 \not\Vdash \varphi \lor \neg \varphi \\ \\ k_0 \end{pmatrix}$$



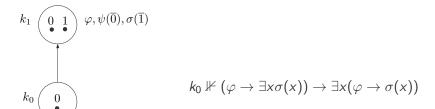
 $k_0 \nvDash \neg (\varphi \land \psi) \to \neg \varphi \lor \neg \psi$

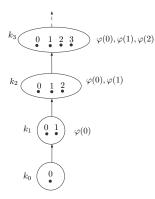


$$k_0 \nVdash (\psi o arphi) o (
eg \psi \lor arphi)$$

In the bottom node the following implications are forced: $\varphi_2 \rightarrow \varphi_1, \varphi_3 \rightarrow \varphi_2, \varphi_3 \rightarrow \varphi_1$ $k_1 \bullet \varphi_1, \varphi_2$ $k_0 \not\Vdash (\varphi_1 \leftrightarrow \phi_2)$ $\lor (\varphi_2 \leftrightarrow \phi_3)$ $\lor (\varphi_1 \leftrightarrow \phi_3)$

Note that in this example, $D(k_0) = \{0\}$ and $D(k_1) = \{0, 1\}$





$$k_0
vert \forall x \neg \neg arphi(x)
ightarrow \neg \neg orall x arphi(x)$$

Theorem

(Soundness Theorem)
$$\Gamma \vdash \varphi \Rightarrow \Gamma \Vdash \varphi$$

Proof (See (van Dalen, 2004))

Use induction on the derivation \mathcal{D} of φ from Γ . We will abbreviate " $k \Vdash \psi(\vec{a})$ for all $\psi \in \Gamma$ " by " $k \Vdash \Gamma(\vec{a})$ ". The model \mathcal{K} is fixed in the proof

(1) \mathcal{D} consists of just φ , then obviously $k \Vdash \Gamma(\vec{a}) \Rightarrow k \Vdash \varphi(\vec{a})$ for all k and $(\vec{a}) \in \mathcal{D}(k)$

(2) D ends with application of a derivation rule (∧I) Induction hypothesis: ∀k∀ā ∈ D(k)(k ⊨ Γ(ā) ⇒ k ⊨ φ_i(ā)), for i = 1,2. Now choose a k ∈ K and ā ∈ D(k) such that k ⊨ Γ(ā), then k ⊨ φ₁(ā) and k ⊨ φ₂(ā), so k ⊨ (φ₁ ∧ φ₂)(ā) (∧E) Immediate

(∨I) Immediate.

- (VE) Induction hypothesis: $\forall k (k \Vdash \Gamma \Rightarrow k \Vdash \varphi \lor \psi)$, $\forall k (k \Vdash \Gamma \varphi \Rightarrow k \Vdash \sigma)$, $\forall k (k \Vdash \Gamma \psi \Rightarrow k \Vdash \sigma)$. Now let $k \Vdash \Gamma$, then by the ind.hyp. $k \Vdash \phi \lor \psi$, so $k \Vdash \varphi$ or $k \Vdash \psi$). In the first case $k \Vdash \Gamma, \varphi$, so $k \Vdash \sigma$. In the second case $k \Vdash \Gamma, \psi$, so $k \Vdash \sigma$. In both cases $k \Vdash \sigma$, so we are done
- $(\rightarrow I)$ Induction hypothesis:

 $(\forall k)(\forall \vec{a} \in \mathcal{D}(k))(k \Vdash \Gamma(\vec{a}), \varphi(\vec{a}) \Rightarrow k \Vdash \psi(\vec{a})).$ Now let $k \Vdash \Gamma(\vec{a})$ for some $\vec{a} \in \mathcal{D}(k)$. We want to show $k \Vdash (\varphi \to \psi)(\vec{a})$, so let $l \ge k$ and $l \Vdash \varphi(\vec{a})$. By monotonicity $l \Vdash \Gamma(\vec{a})$, and $\vec{a} \in \mathcal{D}(l)$, so ind. hyp. tell us that $l \Vdash \psi(\vec{a})$. Hence $\forall l \ge k(l \Vdash \varphi(\vec{a}) \Rightarrow l \Vdash \psi(\vec{a}))$, so $k \Vdash (\varphi \to \psi)(\vec{a})$

 $(\rightarrow E)$ Immediate

- (\perp) Induction hypothesis: $\forall k(k \Vdash \Gamma \Rightarrow k \Vdash \bot)$. Since, evidently, no k can force Γ , $\forall k(k \Vdash \Gamma \Rightarrow k \Vdash \varphi)$ is correct
- (∀I) The free variables in Γ are x and z does not occur in the sequence x. Induction hypothesis:
 (∀k)(∀a, b ∈ D(k))(k ⊨ Γ(a ⇒ k ⊨ φ(a, b)). Now let k ⊨ Γ(a) for some a ∈ D(k), we must show k ⊨ ∀zφ(a, z). So let l ≥ k and b ∈ D(l). By monotonicity l ⊨ Γ(a) and a ∈ D(l), so by the ind. hyp. l ⊨ φ(a, b). This shows (∀l ≥ k)(∀b ∈ D(l))(l ⊨ φ(a, b)), and hence k ⊨ ∀zφ(a, z)
 (∀E) Immediate

(∃I) Immediate

 $(\exists E)$ Induction hypothesis:

 $(\forall k)(\forall \vec{a} \in \mathcal{D}(k))(k \Vdash \Gamma(\vec{a}) \Rightarrow k \Vdash \exists z \varphi(\vec{a}, z))$ and $(\forall k)(\forall \vec{a}, b \in \mathcal{D}(k))(k \Vdash \varphi(\vec{a}, b), k \Vdash \Gamma(\vec{a}) \Rightarrow k \Vdash \sigma(\vec{a}))$. Here the variables in Γ and σ are \vec{x} , and z does not occur in the sequence \vec{x} . Now let $k \Vdash \Gamma(\vec{a})$, for some $\vec{a} \in \mathcal{D}(k)$, then $k \Vdash \exists z \varphi(\vec{a}, z)$. So let $k \Vdash \varphi(\vec{a}, b)$ for some $b \in \mathcal{D}(k)$. By the induction hypothesis $k \Vdash \sigma(\vec{a})$

Theorem

(Completeness Theorem) $\Gamma \vdash \varphi \Leftrightarrow \Gamma \Vdash \varphi$ (Γ and φ closed)

Proof. (See (van Dalen, 2004) for the lemma mention below) We have already shown \Rightarrow . For the converse we assume $\Gamma \nvDash \varphi$ and apply Lemma 6.3.9, which yields a contradiction.

References

- [1] van Dalen, Dirk. Logic and Structure. 4th ed. Springer, 2004.
- [2] Moschovakis, Joan. Intuitionistic Logic, The Stanford Encyclopedia of Philosophy, Edward N. Zalta, 2015.