(Perhaps Less Simple) Monadic Equational Reasoning

Elisabet Lobo-Vesga

Joint work with:
Andrés Sicard-Ramírez

Universidad EAFIT
Medellín, Colombia

January 2017

Introduction

[^0]
Just do lt: Simple Monadic Equational Reasoning ${ }^{3}$

${ }^{3}$ Gibbons, J., \& Hinze, R. (2011) Just do it: simple monadic equational reasoning.

```
Haskell
class Monad m where
    return :: a m a
    (>=) :: m a }->(\textrm{a}->\textrm{m}\mathrm{ b) }->\mathrm{ m m b
```


Properties

```
return x > f = f x
mx >}=\mathrm{ return =mx
(mx >= f)>=g=
    mx > = (\lambda x m f x > m)
```

Agda ${ }^{4}$

```
record Monad (M : Set }->\mathrm{ Set) : Set }1\mathrm{ where
    constructor mkMonad
    field
        return : {A : Set} }->\textrm{A}->\textrm{M A
        _>=_ : {A B : Set} }->\mathrm{ MA }->\mathrm{ (A M M B) }->\mathrm{ M B
        unity-left : {A B : Set} {f: A }->\mathrm{ : M B} (x : A) }
        (return x) >>= f \equivfx
        unity-right : {A : Set} (mx : M A) }->\textrm{mx}>>=return \equivm
        associativity : {A B C : Set} {f:A 隹 M B } {g : B -> M C} (mx : M A) }
```


[^1]
Tower of Hanoi

(Source: Blogspot. Image by Unknown)

Rules

1. Only one disk can be move at a time
2. A disk can only be moved if it's the uppermost disk on a stack
3. No disk may be placed on top of a smaller disk

Tower of Hanoi

Recursive solution

- Let n be the total number of discs
- Number the discs from 1 (topmost) to n (bottom-most)

1. Move $n-1$ discs from the source to the spare peg
2. Move disk n from the source to the target peg
3. Move $n-1$ discs from the spare to the target peg

(Source: Wikipedia. Image by Cmglee)

Tower of Hanoi

```
MonadCount
-- Supports effect of counting
record MonadCount {M : Set }->\mathrm{ Set} (monad : Monad M) : Set 1 where
    constructor mkMonadCount
    field
        tick : M T
```


Extra functions

-- Sequential composition
$>_{\perp}:\{A B:$ Set $\} \rightarrow M A \rightarrow M B \rightarrow M B$
$\mathrm{mx}>\mathrm{my}=\mathrm{mx} \gg=\lambda_{2} \rightarrow \mathrm{my}$
-- Identity computation
skip : M T
skip $=$ return $t t$

Tower of Hanoi

A counter example

Implementation

```
-- Ticks the counter once for each move of a disk
hanoi : N }->\mathrm{ M T
hanoi zero = skip
hanoi (suc n) = hanoi n > tick > hanoi n
-- Repeats a unit computation a fixed number of times
rep:\mathbb{N }->\mathrm{ M T }->\mathrm{ M T}
rep zero mx = skip
rep (suc n) mx = mx > rep n mx
```


Properties of rep

```
rep-1 : (mx : M T) }->\mathrm{ rep 1 mx 三mx
rep-mn: \forallmn m (mx : M T) -> rep (m + n) mx \equiv (repmmx mep n mx)
```


Tower of Hanoi

A counter example

Proof

```
-- Solving a Tower of Hanoi of \(n\) discs requires \(2^{n}-1\) moves (by induction)
moves : \(\forall \mathrm{n} \rightarrow\) hanoi \(\mathrm{n} \equiv \mathrm{rep}\left(2^{\wedge} \mathrm{n}-1\right)\) tick
moves zero \(=\) refl -- Base case
moves (suc \(n\) ) \(=\)-- Inductive step
    begin
        (hanoi \(n \gg\) tick \(\gg\) hanoi \(n\) )
        \(\equiv\langle\) cong f (moves n) 〉 -- Inductive Hypothesis
        (rep \(\left(2^{\wedge} \mathrm{n}-1\right)\) tick \(\gg\) tick \(\gg \operatorname{rep}\left(2^{\wedge} \mathrm{n}-1\right)\) tick)
            \(\equiv\langle\) cong g (sym (rep-1 tick)) 〉
        (rep ( \(2^{\wedge} \mathrm{n}-1\) ) tick \(\gg\) rep 1 tick \(\left.\gg \mathrm{rep}\left(2^{\wedge} \mathrm{n}-1\right) \mathrm{tick}\right)\)
            \(\equiv\left\langle\operatorname{cong}(\lambda \mathrm{x} \rightarrow \mathrm{x} \gg \mathrm{r})\left(\operatorname{sym}\left(\mathrm{rep}-\mathrm{mn}\left(2^{\wedge} \mathrm{n}-1\right) 1\right.\right.\right.\) tick)\(\left.)\right\rangle\)
        (rep \(\left.\left(2^{\wedge} \mathrm{n}-1+1\right) \mathrm{tick} \gg \operatorname{rep}\left(2^{\wedge} \mathrm{n}-1\right) \mathrm{tick}\right)\)
            \(\equiv\left\langle\operatorname{sym}\left(\mathrm{rep}-\mathrm{mn}\left(2^{\wedge} \mathrm{n}-1+1\right)\left(2^{\wedge} \mathrm{n}-1\right) \mathrm{tick}\right)\right\rangle\)
        \(\operatorname{rep}\left(\left(2^{\wedge} \mathrm{n}-1\right)+1+\left(2^{\wedge} \mathrm{n}-1\right)\right) \operatorname{tick}\)
            \(\equiv\langle\operatorname{cong}(\lambda \mathrm{x} \rightarrow\) rep x tick) \((\operatorname{sym}(\mathrm{thm} \mathrm{n}))\rangle\)
        rep \(\left(2^{\wedge}(n+1)-1\right)\) tick
            \(\equiv\left\langle\operatorname{cong}\left(\lambda x \rightarrow \operatorname{rep}\left(2^{\wedge} x-1\right) \operatorname{tick}\right)(\operatorname{sym}(\operatorname{succ} n))\right\rangle\)
        rep \(\left(2^{\wedge}(\right.\) suc \(\left.n) ~-1\right) ~ t i c k ~\)
        where \(f=\lambda x \rightarrow x>t i c k>x\)
            r \(=\) rep \(\left(2^{\wedge} n-1\right)\) tick
        \(\mathrm{g}=\lambda \mathrm{x} \rightarrow \mathrm{r} \gg \mathrm{x} \gg \mathrm{r}\)
```


What did just happened?

- We modeled a problem using monads in Agda
- We proved that our solution behaves as expected only using the properties of monads (not their instances)
- We were able to use ("simple") equational reasoning in our proofs

Monad Except

```
-- Exceptional computations
record MonadExcept {M : Set }->\mathrm{ Set} {Mnd : Monad M}
    (monad : MonadNonDet Mnd) : Set }1\mathrm{ where
    constructor mkMonadExcept
    field
        catch : {A: Set} }->\textrm{MAB}->\textrm{MA}->\textrm{MA
        catch-fail1 : {A : Set} (h : M A) }->\mathrm{ catch fail h 三h
        catch-fail2 : {A : Set} (m : M A) -> catch m fail \equivm
        catch-catch : {A : Set} (m h h' : M A) }
            catch m (catch h h') \equivcatch (catch m h) h'
        catch-return : {A : Set} (x : A) (h : M A) -> catch (return x) h = return x
```


Fast Product

Reasoning with exceptions

fastProd


```
-- Computes the product of a list of Natural numbers
product\mathbb{N}: List }\mathbb{N}->\mathbb{N
product\mathbb{N [] = 1}
product\mathbb{N}(x :: xs) = x * product\mathbb{N xs}
work : List }\mathbb{N}->M\mathbb{N
work xs = if (elem 0 xs) then fail else (return (product\mathbb{N xs))}
fastProd : List \mathbb{N }->\mathrm{ M N}
fastProd xs = catch (work xs) (return 0)
```


Fast Product

Reasoning with exceptions

```
-- Fast product is equivalent to product
pureFastProd : (xs : List N) }->\mathrm{ fastProd xs इ return (productN xs)
pureFastProd xs =
    begin
        catch (if (elem 0 xs) then fail else (return (product\mathbb{N xs))) (return 0)}
        \equiv\langle pop-if catch (elem 0 xs) >
        (if (elem 0 xs) then mx else my)
        \equiv\langle cong ( }\lambda\textrm{x}->\mathrm{ (if (elem 0 xs) then x else my))
            (catch-fail (return 0)) >
        (if (elem 0 xs) then (return 0) else my)
            \equiv\langle cong ( }\lambda\textrm{x}->\mathrm{ (if (elem 0 xs) then (return 0) else x))
                (catch-return (product\mathbb{N xs) (return 0)) )}
    (if (elem 0 xs) then (return 0) else (return (product\mathbb{N xs)))}
        \equiv\langle sym (push-function-into-if return (elem 0 xs)) \rangle
    return (if (elem 0 xs) then 0 else (product\mathbb{N xs))}
        \equiv\langle cong return extra-if \rangle
    return (product\mathbb{N xs)}
    where mx = catch fail (return 0)
        my = catch (return (product\mathbb{N xs)) (return 0)}
        extra-if = if-cong ( }\lambda\textrm{p}->\mathrm{ sym (product02 xs p)) ( }\lambda, -> refl)
```

(Perhaps Less Simple) Monadic Equational Reasoning Source code: https://github.com/elobove/monadic-agda

Questions?

[^0]: ${ }^{1}$ Moggi, E. (1991) Notions of computation and monads.
 ${ }^{2}$ Wadler, P. (1995) Monads for functional programming.
 ${ }^{3}$ Gibbons, J., \& Hinze, R. (2011) Just do it: simple monadic equational reasoning.

[^1]: ${ }^{4}$ Villa Izasa, J. P. (2014) Category Theory Applied to Functional Programming.

