
(Perhaps Less Simple) Monadic Equational
Reasoning

Elisabet Lobo-Vesga

Joint work with:
Andrés Sicard-Raḿırez

Universidad EAFIT
Medelĺın, Colombia

January 2017

(Perhaps Less Simple) Monadic Equational Reasoning 1/14

Introduction

Pure functional
programming

Equational reasoning

Computational effects

Monads
1, 2

Simple axiomatic
approach

3

Verification

1
Moggi, E. (1991) Notions of computation and monads.

2
Wadler, P. (1995) Monads for functional programming.

3
Gibbons, J., & Hinze, R. (2011) Just do it: simple monadic equational reasoning.

(Perhaps Less Simple) Monadic Equational Reasoning 2/14

Just do It: Simple Monadic Equational Reasoning
3

Monad Count
Nondeterministic

Monad
Monad Except Monad State

Monad

Tower of Hanoi Permutations Fast Product Eight Queens

3
Gibbons, J., & Hinze, R. (2011) Just do it: simple monadic equational reasoning.

(Perhaps Less Simple) Monadic Equational Reasoning 3/14

Monad
Definition

Haskell
class Monad m where

return :: a → m a

(≫=) :: m a → (a → m b) → m b

Properties
return x ≫= f = f x

mx ≫= return = mx

(mx ≫= f) ≫= g =
mx ≫= (λ x → f x ≫= g)

Agda
4

record Monad (M : Set → Set) : Set 1 where

constructor mkMonad

field

return : {A : Set} → A → M A

≫= : {A B : Set} → M A → (A → M B) → M B

unity -left : {A B : Set} {f : A → M B} (x : A) →

(return x) ≫= f ≡ f x

unity -right : {A : Set} (mx : M A) → mx ≫= return ≡ mx

associativity : {A B C : Set} {f : A → M B} {g : B → M C} (mx : M A) →

(mx ≫= f) ≫= g ≡ mx ≫= (λ x → f x ≫= g)

4
Villa Izasa, J. P. (2014) Category Theory Applied to Functional Programming.

(Perhaps Less Simple) Monadic Equational Reasoning 4/14

Tower of Hanoi

(Source: Blogspot. Image by Unknown)

Rules

1. Only one disk can be move at a time

2. A disk can only be moved if it’s the uppermost disk on a stack

3. No disk may be placed on top of a smaller disk

(Perhaps Less Simple) Monadic Equational Reasoning 5/14

https://goo.gl/CBPkNJ

Tower of Hanoi

Recursive solution

▶ Let n be the total number of
discs

▶ Number the discs from 1
(topmost) to n (bottom-most)

1. Move n − 1 discs from the
source to the spare peg

2. Move disk n from the source to
the target peg

3. Move n − 1 discs from the spare
to the target peg

(Source: Wikipedia. Image by Cmglee)

(Perhaps Less Simple) Monadic Equational Reasoning 6/14

https://goo.gl/ufXzv1
https://goo.gl/E1liiE

Tower of Hanoi
A counter example

MonadCount
-- Supports effect of counting

record MonadCount {M : Set → Set} (monad : Monad M) : Set 1 where

constructor mkMonadCount

field

tick : M ⊤

Extra functions
-- Sequential composition

≫ : {A B : Set} → M A → M B → M B

mx ≫ my = mx ≫= λ _ → my

-- Identity computation

skip : M ⊤

skip = return tt

(Perhaps Less Simple) Monadic Equational Reasoning 7/14

Tower of Hanoi
A counter example

Implementation

-- Ticks the counter once for each move of a disk

hanoi : N → M ⊤

hanoi zero = skip

hanoi (suc n) = hanoi n ≫ tick ≫ hanoi n

-- Repeats a unit computation a fixed number of times

rep : N → M ⊤ → M ⊤

rep zero mx = skip

rep (suc n) mx = mx ≫ rep n mx

hanoi n

tick

hanoi n

Properties of rep
rep−1 : (mx : M ⊤) → rep 1 mx ≡ mx

rep−mn : ∀ m n → (mx : M ⊤) → rep (m + n) mx ≡ (rep m mx ≫ rep n mx)

(Perhaps Less Simple) Monadic Equational Reasoning 8/14

Tower of Hanoi
A counter example

Proof
-- Solving a Tower of Hanoi of n discs requires 2

n
-1 moves (by induction)

moves : ∀ n → hanoi n ≡ rep (2^n ∸ 1) tick

moves zero = refl -- Base case

moves (suc n) = -- Inductive step

begin

(hanoi n ≫ tick ≫ hanoi n)

≡ ⟨ cong f (moves n) ⟩ -- Inductive Hypothesis

(rep (2^n ∸ 1) tick ≫ tick ≫ rep (2^n ∸ 1) tick)

≡ ⟨ cong g (sym (rep−1 tick)) ⟩
(rep (2^n ∸ 1) tick ≫ rep 1 tick ≫ rep (2^n ∸ 1) tick)

≡ ⟨ cong (λ x → x ≫ r) (sym (rep−mn (2^n ∸ 1) 1 tick)) ⟩
(rep (2^n ∸ 1 + 1) tick ≫ rep (2^n ∸ 1) tick)

≡ ⟨ sym (rep−mn (2^n ∸ 1 + 1) (2^n ∸ 1) tick) ⟩
rep ((2^n ∸ 1) + 1 + (2^n ∸ 1)) tick

≡ ⟨ cong (λ x → rep x tick) (sym (thm n)) ⟩
rep (2^(n + 1) ∸ 1) tick

≡ ⟨ cong (λ x → rep (2^x ∸ 1) tick) (sym (succ n)) ⟩
rep (2^(suc n) ∸ 1) tick

�
where f = λ x → x ≫ tick ≫ x

r = rep (2^n ∸ 1) tick

g = λ x → r ≫ x ≫ r

(Perhaps Less Simple) Monadic Equational Reasoning 9/14

What did just happened?

▶ We modeled a problem using monads in Agda

▶ We proved that our solution behaves as expected only using
the properties of monads (not their instances)

▶ We were able to use (“simple”) equational reasoning in our
proofs

(Perhaps Less Simple) Monadic Equational Reasoning 10/14

Monad Except
Another subclass of Monad

-- Exceptional computations

record MonadExcept {M : Set → Set} {Mnd : Monad M}

(monad : MonadNonDet Mnd) : Set 1 where

constructor mkMonadExcept

field

catch : {A : Set} → M A → M A → M A

catch−fail1 : {A : Set} (h : M A) → catch fail h ≡ h

catch−fail2 : {A : Set} (m : M A) → catch m fail ≡ m

catch−catch : {A : Set} (m h h’ : M A) →

catch m (catch h h’) ≡ catch (catch m h) h’

catch−return : {A : Set} (x : A) (h : M A) → catch (return x) h ≡ return x

(Perhaps Less Simple) Monadic Equational Reasoning 11/14

Fast Product
Reasoning with exceptions

7 9 3 0 1 5 = 0

productN

7 9 3 0 1 5 = 0

fastProd

* * * * * = =

-- Computes the product of a list of Natural numbers

productN : List N → N
productN [] = 1

productN (x :: xs) = x * productN xs

work : List N → M N
work xs = if (elem 0 xs) then fail else (return (productN xs))

fastProd : List N → M N
fastProd xs = catch (work xs) (return 0)

(Perhaps Less Simple) Monadic Equational Reasoning 12/14

Fast Product
Reasoning with exceptions

-- Fast product is equivalent to product

pureFastProd : (xs : List N) → fastProd xs ≡ return (productN xs)

pureFastProd xs =

begin

catch (if (elem 0 xs) then fail else (return (productN xs))) (return 0)

≡ ⟨ pop -if catch (elem 0 xs) ⟩
(if (elem 0 xs) then mx else my)

≡ ⟨ cong (λ x → (if (elem 0 xs) then x else my))

(catch−fail1 (return 0)) ⟩
(if (elem 0 xs) then (return 0) else my)

≡ ⟨ cong (λ x → (if (elem 0 xs) then (return 0) else x))

(catch−return (productN xs) (return 0)) ⟩
(if (elem 0 xs) then (return 0) else (return (productN xs)))

≡ ⟨ sym (push -function -into -if return (elem 0 xs)) ⟩
return (if (elem 0 xs) then 0 else (productN xs))

≡ ⟨ cong return extra -if ⟩
return (productN xs)

�
where mx = catch fail (return 0)

my = catch (return (productN xs)) (return 0)

extra -if = if -cong (λ p → sym (product 02 xs p)) (λ _ → refl)

(Perhaps Less Simple) Monadic Equational Reasoning 13/14

(Perhaps Less Simple) Monadic Equational Reasoning
Source code: https://github.com/elobove/monadic-agda

Questions?

(Perhaps Less Simple) Monadic Equational Reasoning 14/14

https://github.com/elobove/monadic-agda

