Braun Trees in Agda

Camilo Andrés Rodríguez Garzón University EAFIT, Medellín Colombia

May 25, 2017 Logic and Computation Research Group

What are Braun trees?

Among the many types of balanced binary trees, the Braun trees (Braun & Rem, 1983) are perhaps the most limited. A Braun tree is a binary tree which is as balanced as it can possibly be, every node satisfies the following condition:

• The left subtree has either the same number of nodes as the right subtree or one more.

Braun trees

A binary tree is a Braun tree if:

- It is empty or
- Its left and right subtrees are Braun trees

Braun trees are balanced, their maximum depth is O ($\log_2 n$), where n is the number of elements in the tree.

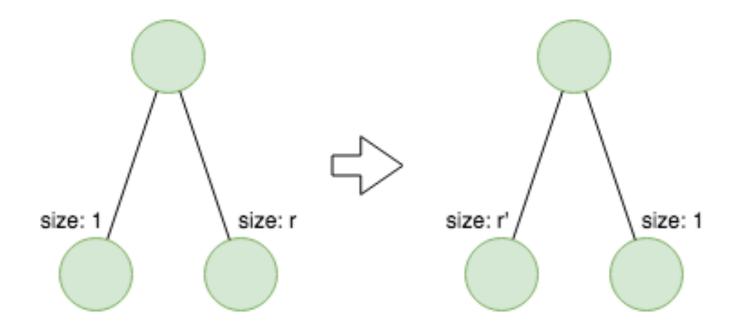
With dependent types (Stump, 2015) we can define the type of height-balanced trees of a certain size, the type BraunTree is indexed by a natural number which represents the size of the tree.

BraunTree 0 BraunTree 1

BraunTree n

Property balanced of Braun trees

The trick for maintain the property of balanced Braun trees occur during insertion data.



The index n is the size of the tree (number of elements of type A)

```
postulate
A : Set
_<A_ : A \rightarrow A \rightarrow B
data BraunTree : (n : N) \rightarrow Set where
empty : BraunTree 0
node : \forall \{m \ n\}
\rightarrow A \rightarrow BraunTree m \rightarrow BraunTree n
\rightarrow m \equiv n V m \equiv suc n
\rightarrow BraunTree (suc (m + n))
```

Data type Braun trees

postulate

```
a : A
```

```
data1 : BraunTree 0
data1 = empty
```

Method of Braun trees

• Insert

```
{- we will keep smaller (_<A_) elements closer to the root of the Braun tree as we insert -}
btInsert : ∀ {n} → A → BraunTree n → BraunTree (suc n)
btInsert x empty = node x empty empty (inj1 refl)
btInsert x (node{m}{n} y tree1 treer p)
rewrite +comm m n
with p | if x <A y then (x , y) else (y , x)
... | inj1 m≡n | (v1 , v2) = node v1 (btInsert v2 treer) tree1 (inj2 (cong suc (sym m≡n)))
... | inj2 m≡sucn | (v1 , v2) = node v1 (btInsert v2 treer) tree1 (inj1 (sym m≡sucn))</pre>
```

Method of Braun trees

• Insert

Bibliography

- W. Braun. and M. Rem. (1983) A logarithmic implementation of flexible arrays. Memorandum MR83/4. Eindhoven University of Technology.
- A. Stump. (2015) Verified Functional Programing in Agda. [Online]. Disponible: <u>https://play.google.com/books/reader?id=kMwvDAAAQBAJ&printsec=frontcover&output=reader&hl=es&pg</u> <u>=GBS.PP1</u>

THANKS!