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Intuitionistic logic

“Intuitionistic logic, sometimes more generally called
constructive logic, refers to systems of symbolic logic
that differ from the systems used for classical logic by
more closely mirroring the notion of constructive proof...
Formalized intuitionistic logic was originally developed by
Arend Heyting to provide a formal basis for Brouwer’s
programme of intuitionism.”
[Wikipedia contributors, 2019]
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Intuitionistic logic

A natural deduction system for Intuitionistic Logic (IL)
([van Dalen, 2013]):

[A]

...
B ⊃I

A ⊃ B

A ⊃ B A ⊃E
B

A B ∧I
A ∧ B

A ∧ B ∧E1A
A ∧ B ∧E2B

A ∨I1A ∨ B

B ∨I2A ∨ B
A ∨ B

[A]

...
C

[B]

...
C ∨E

C

Table: Rules for propositional connectives in IL
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Intuitionistic logic

Definition of negation: ¬A def
= A ⊃ ⊥.

⊥ ⊥E
A

Table: Bottom elimination rule

A(x)
∀I∀x .A(x)

∀x .A(x)
∀E

A(t)

A(t)
∃I∃x .A(x) ∃x .A(x)

[A(y)]

...
C
∃E

C

Table: Rules for quantifiers in IL
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Intuitionistic logic

The following are not theorems of IL:

Tertium Non Datur: A ∨ ¬A.
Doble negation elimination: ¬¬A ⊃ A.
Reductio ad adsurdum: (¬A ⊃ B) ⊃ ((¬A ⊃ ¬B) ⊃ A) .

The following are theorems of IL:

Law of contradiction: (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A).
Ex falso sequitur quodlibet: ¬A ⊃ (A ⊃ B).

IL satisfies the disjunction property: `IL A ∨ B iff `IL A or
`IL B.

Several intuitionistic theories, for instance Heyting arithmetic,
satisfy the existence property: if ∃x .A(x) is a theorem of the
theory, then A(t) is a theorem of the theory for some term t.

IL satisfies substitution by equivalents.
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Intuitionistic logic

The Brouwer-Heyting-Kolmogorov (BHK) interpretation (or proof
interpretation) for IL ([Troelstra and van Dalen, 1988]):

a proves A ∧ B if a is a pair 〈b, c〉 such that b proves A and c
proves B.

a proves A ∨ B if a is a pair 〈b, c〉 such that b is a natural
number and if b = 0 then c proves A, otherwise c proves B.

a proves A ⊃ B if a is a construction that converts any proof
p of A into a proof a(p) of B.

no a proves ⊥.

In order to deal with the quantifiers, it is assumed that some
domain D of objects is given.

a proves ∀x .A(x) if a is a construction such that, for each
b ∈ D, a(b) proves A(b).

a proves ∃x .A(x) if a is a pair 〈b, c〉 such that b ∈ D and c
proves A(b).
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Intuitionistic type theory

A brief historical review:

(1908) Bertran Russel’s proposed a ramified theory of types.

(1920s) Leon Chwistek and Frank P. Ramsey proposed an
unramified type theory, now known as theory of simple types
(or simple theory of types).

(1940) Alonso Church introduced the simply typed
lambda-calculus.

(1958) Haskell Curry establishes a correspondence between
the simply typed lambda-calculus and the implicational
fragment of intuitionistic logic.

(1969) William A. Howard extended the correspondence to
firts-order predicate logic, which is now known as the
Curry-Howard correspondence.

(1970s) Per Martin-Löf introduces several different versions of
his theory of types.
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Intuitionistic type theory

The name “intuitionistic type theory (ITT)” is somewhat
ambiguous, but usually refers to a version (or a modified version)
of Martin-Löf’s type theory. Because of that, “intuitinistic type
theory” and “Martin-Löf’s type theory” are considered synonyms.

ITT is based on:

Martin-Löf’s analysis of the notion of “judgement” (in
mathematics).

Martin-Löf’s (intuitionistic) conception of the logical
connectives.

The Curry-Howard correspondence.

A (not precisely defined) notion of “inductive definition”.
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Intuitionistic type theory

ITT extends the BHK-interpretation “to the more general setting
of intuitionistic type theory and thus provides a general conception
not only of what a constructive proof is, but also of what a
constructive mathematical object is.”
([Dybjer and Palmgren, 2016]).

For Martin-Löf, “A judgement is an act of knowledge, for instance
asserting that something holds. When reasoning mathematically
we are making a sequence of judgements about mathematical
objects. One kind of judgement may be to state that some
mathematical statement is true, another kind of judgement may be
to state that something is a mathematical object, is a set, for
instance. The logical rules give a method for producing correct
judgements from earlier judgements.” [Palmgren, 2013, p. 10]
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Intuitionistic type theory

Martin-Löf’s type theory have four basic forms of judgements
([Martin-Löf, 1984, p. 5–10]):

1 A is a set (abbreviated A : set).

2 A and B are equal sets (abbreviated A = B).

3 a is an element of the set A (abbreviated a : A).

4 a and b are equal elements of the set A (abbreviated a =
b : A).
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Intuitionistic type theory

Four different interpretations for Martin-Löf’s judgements forms
are ([Martin-Löf, 1984, p. 5]):

A : set a : A

A is a set a is an element of the set A A is non-empty

A is a proposition a is a proof (construction) of
proposition A

A is true

A is an intention
(expectation)

a is a method of fulfilling
(realizing) the intention (ex-
pectation) A

A is fulfillable
(realizable)

A is a problem
(task)

a is a method of solving the
problem (doing the task) A

A is solvable
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Intuitionistic type theory

Defining a set (or a type) in Martin-Löf’s type theory requires the
following rules ([Martin-Löf, 1984, p. 24]):

Formation: says that we can form a certain set from certain
other sets or families of sets.

Introduction: say what are the canonical elements (and equal
canonical elements) of the set, thus giving its meaning.

Elimination: shows how we may define functions on the set
defined by the introduction rules.

Equality/Computation: relate the introduction and
elimination rules by showing how a function defined by means
of the elimination rule operates on the canonical elements of
the set which are generated by the introduction rules.

J. C. Agudelo-Agudelo Towards a Paraconsistent Type Theory



Intuitionistic type theory

Definition of sets related with logical connectives
([Palmgren, 2013]):

Function set:

→-formation

A : set B : set
A→ B : set

→-introduction

[x : A]

...
b(x) : B

λx .b(x) : A→ B

→-elimination
b : A→ B a : A

Ap(b, a) : B

→-computation

a : A

[x : A]

...
b(x) : B

Ap(λx .b(x), a) = b(a) : B
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Intuitionistic type theory

Product of two sets:

×-formation

A : set B : set
A× B : set

×-introduction

a : A b : B
(a, b) : A× B

×-elimination

c : A× B
π1(c) : A

c : A× B
π2(c) : B

×-computation

a : A b : B
π1((a, b)) = a : A

a : A b : B
π2((a, b)) = b : B
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Intuitionistic type theory

Disjoint union of two sets:

+-formation +-introduction
A : set B : set

A + B : set
a : A

inl(a) : A + B
b : B

inr(b) : A + B

+-elimination

c : A + B

[x : A]

...

d(x) : C

[y : B]

...

e(y) : C

D(c, (x)d(x), (y)e(y)) : C

+-computation

inl(a) : A + B

[x : A]

...

d(x) : C

[y : B]

...

e(y) : C

D(inl(a), (x)d(x), (y)e(y)) = d(a) : C

inr(b) : A + B

[x : A]

...

d(x) : C

[y : B]

...

e(y) : C

D(inr(b), (x)d(x), (y)e(y)) = e(b) : C
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Intuitionistic type theory

Product of a family of sets:

Π-formation

A : set

[x : A]

...
B(x) : set

Πx : A.B(x) : set

Π-introduction

[x : A]

...
b(x) : B(x)

λx .b(x) : Πx : A.B(x)

Π-elimination

b : Πx : A.B(x) a : A

Ap(b, a) : B(a)

Π-computation

a : A

[x : A]

...
b(x) : B(x)

Ap(λx .b(x), a) = b(a) : B(a)
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Intuitionistic type theory

Disjoint union of a family of sets:

Σ-formation
A : set

[x : A]

...

B(x) : set

Σx : A.B(x) : set

Σ-introduction
a : A b : B(a)

(a, b) : Σx : A.B(x)

Σ-elimination

c : Σx : A.B(x)

[x : A, y : B(x)]

...

d(x , y) : C((x , y))

E(c, (x , y)d(x , y)) : C(c)

Σ-computation

a : A b : B(a)

[x : A, y : B(x)]

...

d(x , y) : C((x , y))

E((a, b), (x , y)d(x , y)) = d(a, b) : C((a, b))
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Intuitionistic type theory

Empty set:

N0-formation

N0 : set

N0-elimination

c : N0 C : set

R0(c) : C
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Intuitionistic type theory

The Curry-Howard correspondence for ITT:

Logic Type theory

Proposition Type
Connective Type constructor
Implication Function type
Conjunction Product of two types
Disjunction Disjoint union of two types
For all Product of a family of types
Exists Disjoint union of a family of types
Absurdity Empty type
Proof Term
Provability Inhabitation
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Nelson’s paraconsistent logic

Some objections against IL:

“... definitions of constructiveness other than that advocated by
the intuitionists are conceivable. For that matter, even the small
number of actual intuitionists do not completely agree about the
delimination of the constructive.”[Heyting, 1971, p. 10]

“Serious objections against the use of negation in mathematics
have been raised by Griss [...]. Though agreeing completely with
Brouwer’s basic ideas on the nature of mathematics, he contends
that every mathematical notion has its origin in a mathematical
construction, which can actually be carried out; if the construction
is impossible, then the notion cannot be clear.”[Heyting, 1971, p.
124]
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Nelson’s paraconsistent logic

“The justification [of the ex falso rule] in terms of constructions is
not universally accepted, e.g. [Johansson, 1936] rejected the rule
and formulated his so-called minimal logic, which has the same
rules of intuitionistic logic with deletion of the ex falso
rule.”[van Dalen, 2002, p. 12]

Some proposals to overcome the objections against IL:

Georg F. C. Griss: eliminate negation from IL (negationless
constructive mathematics).

Ingebrigt Johansson: eliminate the ex falso rule from IL
(minimal logic).

David Nelson: define constructive rules for negation
(Nelson’s logic with strong (or constructive) negation).
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Nelson’s paraconsistent logic

A natural deduction system for Nelson’s Logic N (also known as
N3) is obtained by adding to the system for IL the rules
([Prawitz, 1965, p. 97]):

A ¬¬I¬¬A
¬¬A ¬¬E
A

A ¬B ¬⊃ I¬(A ⊃ B)
¬(A ⊃ B)

¬⊃E1A

¬(A ⊃ B)
¬⊃E2¬B

¬A ¬∧I1¬(A ∧ B)
¬B ¬∧I2¬(A ∧ B)

¬(A ∧ B)

[¬A]

...
C

[¬B]

...
C
¬∧E

C

¬A ¬B ¬∨I¬(A ∨ B)
¬(A ∨ B)

¬∨E1¬A
¬(A ∨ B)

¬∨E2¬B

Table: Rules for negation of propositional connectives in N
J. C. Agudelo-Agudelo Towards a Paraconsistent Type Theory



Nelson’s paraconsistent logic

¬A(t)
¬∀I¬∀x .A(x) ¬∀x .A(x)

[¬A(y)]

...
C
¬∀E

C

¬A(x)
¬∃I¬∃x .A(x)

¬∃x .A(x)
¬∃E¬A(t)

Table: Rules for negation of quantifiers in N

Intuitionistic and strong negation are connected by the additional
rule:

A ¬A ⊥I⊥
Table: Bottom introduction rule
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Nelson’s paraconsistent logic

Under a logic L:

A theory Γ is contradictory if there exists a formula A such
that Γ `L A and Γ `L ¬A.

A theory Γ is trivial if Γ `L A for every formula A.

A paraconsistent logic is a logic that admits contradictory but
non-trivial theories.

IL and N are not paraconsistent logics.

Nelson’s logic N− (also known as N4), introduced in
[Almukdad and Nelson, 1984]), can be defined by removing the
bottom rules from N. The logic N− is paraconsistent.
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Nelson’s paraconsistent logic

The following are not theorems of N−:
Non-contradiction: ¬(A ∧ ¬A).
Ex falso sequitur quodlibet: ¬A ⊃ (A ⊃ B).
Law of contradiction: (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A).
Reductio ad adsurdum: (¬A ⊃ B) ⊃ ((¬A ⊃ ¬B) ⊃ A).

The following are theorems of N−:
Doble negation: (¬¬A ⊃ A) ∧ (A ⊃ ¬¬A).
De Morgan laws.
(¬(A ∧ B) ⊃ (¬A ∨ ¬B)) ∧ ((¬A ∨ ¬B) ⊃ ¬(A ∧ B))

N− satisfies the disjunction property: `N− A ∨ B iff `N− A
or `N− B.

N− satisfies the constructive falsity principle:
`N− ¬(A ∧ B) iff `N− ¬A or `N− ¬B.

N− does not satisfy substitution by equivalents (however
substitution is valid for equivalent formulas whose negations
are also equivalents).
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N− does not satisfy substitution by equivalents (however
substitution is valid for equivalent formulas whose negations
are also equivalents).
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Nelson’s paraconsistent logic

The following are not theorems of N−:
Non-contradiction: ¬(A ∧ ¬A).
Ex falso sequitur quodlibet: ¬A ⊃ (A ⊃ B).
Law of contradiction: (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A).
Reductio ad adsurdum: (¬A ⊃ B) ⊃ ((¬A ⊃ ¬B) ⊃ A).
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Nelson’s paraconsistent logic

Extension of the BHK-interpretation, where refutation is a
primitive notion and a construction c proves ¬A iff c refutes A
([López-Escobar, 1972]):

c refutes ¬A iff c proves A.

c refutes A ∧ B iff c = (i , d) with i either 0 or 1 and if i = 0,
then d refutes A and if i = 1 then d refutes B.

c refutes A∨B iff c = (d , e) and d refutes A and e refutes B.

c refutes A ⊃ B iff c = (d , e) and d proves A and e refutes B.

c refutes ∀x .A(x) iff c = (a, d) and d refutes A(a).

c refutes ∃x .A(x) iff c is a general method of construction
such that given any individual (i.e construction) a from the
species under consideration, c(a) (i.e. c applied to a) refutes
A(a).
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Towards a paraconsistent type theory

Main objective: construct a type theory based on Nelson’s
paraconsistent logic N−.

Related works:

[Wansing, 1993]: introduced a typed lambda-calculus (λC )
where types are the propositional formulas of N− and rules are
based on the rules of N−. A formulas-as-types correspondence
and a semantics for λC is provided. Assignation of types is
not unique and issues like normalization are left open.

[Kamide, 2010]: a different typed lambda calculus for the
propositional fragment of N− is provided and strong
normalization for this calculus is proven.
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Towards a paraconsistent type theory

A proposal of a paraconsistent theory of types (PTT): add
opposite types to ITT, including introduction, elimination and
computation rules for each type constructor.

−-formation

A : set

A : set
−-introduction −-elimination

a : A

a : A
a : A
a : A

a : A b : B

(a, b) : A→ B
c : A→ B
π1(c) : A

c : A→ B

π2(c) : B
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Towards a paraconsistent type theory

−-introduction −-elimination

a : A

inl(a) : A× B
b : B

inr(b) : A× B
c : A× B

[x : A]

...
d(x) : C

[y : B]

...
e(y) : C

D(c , (x)d(x), (y)e(y)) : C

a : A b : B

(a, b) : A + B

c : A + B

π1(c) : A

c : A + B

π2(c) : B
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Towards a paraconsistent type theory

−-introduction −-elimination

a : A b : B(a)

(a, b) : Πx : A.B(x) c : Πx : A.B(x)

[x : A, y : B(x)]

...
d(x , y) : C ((x , y))

E (c , (x , y)d(x , y)) : C (c)

[x : A]

...

b(x) : B(x)

λx .b(x) : Σx : A.B(x)

b : Σx : A.B(x) a : A

Ap(b, a) : B(a)

Note: −-computation rules are defined just in the same way that in
ITT.
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Towards a paraconsistent type theory

The Curry-Howard correspondence for PTT:

Logic Type theory

Proposition Type
Connective Type constructor
Implication Function type
Conjunction Product of two types
Disjunction Disjoint union of two types
For all Product of a family of types
Exists Disjoint union of a family of types
Negation Opposite type
Proof/Refutation Term
Provability/Refutability Inhabitation
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Towards a paraconsistent type theory

Some properties of PTT:

Tolerance to contradictions.

No uniqueness of types.

Strong normalization.

J. C. Agudelo-Agudelo Towards a Paraconsistent Type Theory



References I

Almukdad, A. and Nelson, D. (1984).
Constructible falsity and inexact predicates.
The Journal of Symbolic Logic, 49(1):231–233.

Dybjer, P. and Palmgren, E. (2016).
Intuitionistic type theory.
In Zalta, E. N., editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University,
winter 2016 edition.

Heyting, A. (1971).
Intutionism. An Introduction.
North-Holland Publishing Company, 3 edition.

J. C. Agudelo-Agudelo Towards a Paraconsistent Type Theory



References II

Kamide, N. (2010).
Automating and computing paraconsistent reasoning:
Contraction-free, resolution and type systems.
Reports on Mathematical Logic, 45:3–21.
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