Representations of Ordinal Numbers

Juan Sebastián Cárdenas-Rodríguez

Andrés Sicard-Ramírez*

Mathematical Engineering, Universidad EAFIT

September 19, 2019

[^0]
Ordinal numbers

Cantor

> Cantor defined ordinal numbers by two principles of generation and a first ordinal [Tiles 2004].

Cantor at early 20th century.*

[^1]
Ordinal numbers

Cantor

Cantor defined ordinal numbers by two principles of generation and a first ordinal [Tiles 2004].

- 0 is the first ordinal number.

Cantor at early 20th century.*

[^2]
Ordinal numbers

Cantor

Cantor defined ordinal numbers by two principles of generation and a first ordinal [Tiles 2004].

- 0 is the first ordinal number.
- The successor of an ordinal number is an ordinal number.

Cantor at early 20th century.*

[^3]
Ordinal numbers

Cantor

Cantor at early 20th century.*

Cantor defined ordinal numbers by two principles of generation and a first ordinal [Tiles 2004].

- 0 is the first ordinal number.
- The successor of an ordinal number is an ordinal number.
- The limit of an infinite increasing sequence of ordinals is an ordinal number.

[^4]
Ordinal numbers

Constructing Some Ordinals

Example

Let's construct some ordinals using the previous rules.

Ordinal numbers

Constructing Some Ordinals

Example

Let's construct some ordinals using the previous rules.

$$
0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega+\omega=\omega \cdot 2
$$

Ordinal numbers

Constructing Some Ordinals

Example

Let's construct some ordinals using the previous rules.

$$
\begin{aligned}
& 0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega+\omega=\omega \cdot 2, \\
& \omega \cdot 2+1, \omega \cdot 2+2, \ldots, \omega \cdot 3, \ldots, \omega \cdot n, \omega \cdot n+1, \ldots
\end{aligned}
$$

Ordinal numbers

Constructing Some Ordinals

Example

Let's construct some ordinals using the previous rules.

$$
\begin{aligned}
& 0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega+\omega=\omega \cdot 2 \\
& \omega \cdot 2+1, \omega \cdot 2+2, \ldots, \omega \cdot 3, \ldots, \omega \cdot n, \omega \cdot n+1, \ldots \\
& \omega^{2}, \omega^{2}+1, \omega^{2}+2, \ldots, \omega^{3}, \omega^{3}+1, \ldots, \omega^{\omega}, \ldots
\end{aligned}
$$

Ordinal numbers

Constructing Some Ordinals

Example

Let's construct some ordinals using the previous rules.

$$
\begin{aligned}
& 0,1,2, \ldots, \omega, \omega+1, \omega+2, \ldots, \omega+\omega=\omega \cdot 2 \\
& \omega \cdot 2+1, \omega \cdot 2+2, \ldots, \omega \cdot 3, \ldots, \omega \cdot n, \omega \cdot n+1, \ldots \\
& \omega^{2}, \omega^{2}+1, \omega^{2}+2, \ldots, \omega^{3}, \omega^{3}+1, \ldots, \omega^{\omega}, \ldots \\
& \omega^{\omega^{\omega}}, \ldots, \omega^{\omega^{\omega}}, \ldots, \omega^{\omega^{\omega^{\omega}}}, \ldots, \epsilon_{0}, \ldots
\end{aligned}
$$

Ordinal numbers

von Neumann Ordinals
von Neumann [1928] defined ordinals by:
Definition
An ordinal is a set α that satisfies:

- For every $y \in x \in \alpha$ it occurs that $y \in \alpha$. This is called a transitive property.
- The set α is well-ordered by the membership relationship.

Ordinal numbers

von Neumann Ordinals
von Neumann [1928] defined ordinals by:
Definition
An ordinal is a set α that satisfies:

- For every $y \in x \in \alpha$ it occurs that $y \in \alpha$. This is called a transitive property.
- The set α is well-ordered by the membership relationship.

Remark
Observe that the definition is not recursive as Cantor's.

Ordinal numbers

Some von Neumann Ordinals

$$
0:=\emptyset
$$

Ordinal numbers

Some von Neumann Ordinals

$$
\begin{aligned}
0 & :=\emptyset \\
1 & :=\{0\} \\
2 & :=\{0,1\}
\end{aligned}
$$

Ordinal numbers

Some von Neumann Ordinals

$$
\begin{aligned}
0 & :=\emptyset \\
1 & :=\{0\} \\
2 & :=\{0,1\} \\
& \vdots \\
\omega & :=\{0,1,2, \ldots\} \\
\omega+1 & :=\{0,1,2, \ldots, \omega\}
\end{aligned}
$$

Ordinal numbers

Some von Neumann Ordinals

$$
\begin{aligned}
0 & :=\emptyset \\
1 & :=\{0\} \\
2 & :=\{0,1\} \\
& \vdots \\
\omega & :=\{0,1,2, \ldots\} \\
\omega+1 & :=\{0,1,2, \ldots, \omega\}
\end{aligned}
$$

It is important to see that it occurs that:

$$
0 \in 1 \in 2 \in \ldots \omega \in \omega+1 \in \ldots
$$

Ordinal numbers

Countable Ordinals

Definition

A countable ordinal is an ordinal whose cardinality is finite or denumerable.

Ordinal numbers

Countable Ordinals

Definition

A countable ordinal is an ordinal whose cardinality is finite or denumerable.
The first non-countable ordinal is defined as:
$\omega_{1}:=$ Set of all countable ordinals

Ordinal numbers

Countable Ordinals

Definition

A countable ordinal is an ordinal whose cardinality is finite or denumerable.

The first non-countable ordinal is defined as:
$\omega_{1}:=$ Set of all countable ordinals
It is important to notice that the countable ordinals are the ordinals of the first and second class of Cantor.

Ordinal numbers

Hilbert Definition
Hilbert defined the natural and ordinal numbers using predicate logic [Hilbert 1925].

Ordinal numbers

Hilbert Definition

Hilbert defined the natural and ordinal numbers using predicate logic [Hilbert 1925].

Nat(0)
$\operatorname{Nat}(n) \rightarrow \operatorname{Nat}(\operatorname{succ}(n))$
$\{P(0) \wedge \forall n[P(n) \rightarrow P(\operatorname{succ}(n))]\} \rightarrow[\operatorname{Nat}(n) \rightarrow P(n)]$

Ordinal numbers

Hilbert Definition

Hilbert defined the natural and ordinal numbers using predicate logic [Hilbert 1925].

Nat(0)
$\operatorname{Nat}(n) \rightarrow \operatorname{Nat}(\operatorname{succ}(n))$
$\{P(0) \wedge \forall n[P(n) \rightarrow P(\operatorname{succ}(n))]\} \rightarrow[\operatorname{Nat}(n) \rightarrow P(n)]$

On(0)
$\mathrm{On}(n) \rightarrow \operatorname{On}(\operatorname{succ}(n))$
$\{\forall n[\operatorname{Nat}(n) \rightarrow \operatorname{On}(f(n))]\} \rightarrow \operatorname{On}(\lim (f(n)))$
$\{P(0) \wedge \forall n[P(n) \rightarrow P(\operatorname{succ}(n))] \wedge \forall f \forall n[P(f(n)) \rightarrow P(\lim f)]]\}$

$$
\rightarrow[\mathrm{On}(n) \rightarrow P(n)]
$$

Ordinal numbers

Hilbert Definition

Hilbert defined the natural and ordinal numbers using predicate logic [Hilbert 1925].

$$
\begin{aligned}
& \operatorname{Nat}(0) \\
& \operatorname{Nat}(n) \rightarrow \operatorname{Nat}(\operatorname{succ}(n)) \\
& \{P(0) \wedge \forall n[P(n) \rightarrow P(\operatorname{succ}(n))]\} \rightarrow[\operatorname{Nat}(n) \rightarrow P(n)] \\
& \\
& \begin{aligned}
& \operatorname{On}(0) \\
& \operatorname{On}(n) \rightarrow \operatorname{On}(\operatorname{succ}(n)) \\
&\{\forall n[\operatorname{Nat}(n) \rightarrow \operatorname{On}(f(n))]\} \rightarrow \operatorname{On}(\lim (f(n))) \\
&\{P(0) \wedge \forall n[P(n) \rightarrow P(\operatorname{succ}(n))]\wedge \forall f \forall n[P(f(n)) \rightarrow P(\lim f)]]\} \\
& \rightarrow[\operatorname{On}(n) \rightarrow P(n)]
\end{aligned}
\end{aligned}
$$

where Nat and On are propositional functions representing both numbers.

Ordinal numbers

Computable Ordinals

Church and Kleene [1937] defined computable ordinals as ordinals that are λ-definable.

Ordinal numbers

Computable Ordinals

Church and Kleene [1937] defined computable ordinals as ordinals that are λ-definable.

Remark
The computable ordinals are less than the countable ones, as there are less λ-terms than real numbers.

Ordinal numbers

Computable Ordinals

Church and Kleene [1937] defined computable ordinals as ordinals that are λ-definable.

Remark
The computable ordinals are less than the countable ones, as there are less λ-terms than real numbers.

The first countable ordinal that is non-computable is called $\omega_{1}^{\mathrm{CK} *}$.

Ordinal numbers

Computable Ordinals

Church and Kleene [1937] defined computable ordinals as ordinals that are λ-definable.

Remark

The computable ordinals are less than the countable ones, as there are less λ-terms than real numbers.

The first countable ordinal that is non-computable is called $\omega_{1}^{\mathrm{CK} *}$. Furthermore, all non-countable ordinals are non-computable.

Representations

Hardy

Hardy represented ordinals by sequences of natural numbers and defined two operations [Hardy 1904].

Representations

Hardy

Hardy represented ordinals by sequences of natural numbers and defined two operations [Hardy 1904].

- 0, 1, 2, ... $\rightarrow 0$

Representations

Hardy

Hardy represented ordinals by sequences of natural numbers and defined two operations [Hardy 1904].

- 0, 1, 2, .. $\rightarrow 0$
- $1,2,3, \ldots \rightarrow 1$
- $2,3,4, \ldots \rightarrow 2$

Representations

Hardy

Hardy represented ordinals by sequences of natural numbers and defined two operations [Hardy 1904].

- 0, 1, 2, .. $\rightarrow 0$
- $1,2,3, \ldots \rightarrow 1$
- $2,3,4, \ldots \rightarrow 2$
- 0, 2, 4, $6 \ldots \rightarrow \omega$
- $2,4,6,8 \ldots \rightarrow \omega+1$
- $4,6,8,10 \ldots \rightarrow \omega+2$

Representations

Hardy

Hardy represented ordinals by sequences of natural numbers and defined two operations [Hardy 1904].

- 0, 1, 2, ... $\rightarrow 0$
- $1,2,3, \ldots \rightarrow 1$
- $2,3,4, \ldots \rightarrow 2$
- 0, 2, 4, $6 \ldots \rightarrow \omega$
- $2,4,6,8 \ldots \rightarrow \omega+1$
- $4,6,8,10 \ldots \rightarrow \omega+2$
- $0,4,8,12, \ldots \rightarrow \omega \cdot 2$
- $4,8,12,16, \ldots \rightarrow \omega \cdot 2+1$
- $8,12,16,20, \ldots \rightarrow \omega \cdot 2+2$

Representations

Hardy

Here this representation can be written representing the sequences of natural numbers as functions. In this manner, it is obtained that:

$$
0_{x}:=x
$$

Representations

Hardy

Here this representation can be written representing the sequences of natural numbers as functions. In this manner, it is obtained that:

$$
\begin{aligned}
0_{x} & :=x \\
1_{x} & :=x+1 \\
2_{x} & :=x+2
\end{aligned}
$$

Representations

Hardy

Here this representation can be written representing the sequences of natural numbers as functions. In this manner, it is obtained that:

$$
\begin{aligned}
0_{x} & :=x \\
1_{x} & :=x+1 \\
2_{x} & :=x+2 \\
& \vdots \\
\omega_{x} & :=2 x
\end{aligned}
$$

Representations

Hardy

Here this representation can be written representing the sequences of natural numbers as functions. In this manner, it is obtained that:

$$
\begin{aligned}
0_{x} & :=x \\
1_{x} & :=x+1 \\
2_{x} & :=x+2 \\
& \vdots \\
\omega_{x} & :=2 x \\
(\omega+1)_{x} & :=2(x+1) \\
(\omega+2)_{x} & :=2(x+2)
\end{aligned}
$$

Representations

Hardy

Here this representation can be written representing the sequences of natural numbers as functions. In this manner, it is obtained that:

$$
\begin{aligned}
0_{x} & :=x \\
1_{x} & :=x+1 \\
2_{x} & :=x+2 \\
& \vdots \\
\omega_{x} & :=2 x \\
(\omega+1)_{x} & :=2(x+1) \\
(\omega+2)_{x} & :=2(x+2) \\
& \vdots \\
(\omega \cdot n+k)_{x} & :=2^{n}(x+k)
\end{aligned}
$$

Representations

Martin-Löf's Representation

Martin-Löf's represented ordinals in his type theory [Martin-Löf 1984].

Representations

Martin-Löf's Representation

Martin-Löf's represented ordinals in his type theory [Martin-Löf 1984].

zero : Nat

n : Nat
succ n : Nat

Representations

Martin-Löf's Representation

Martin-Löf's represented ordinals in his type theory [Martin-Löf 1984].

$$
\begin{array}{cc}
\hline \text { zero: Nat } & \text { succ } n: \text { Nat } \\
\frac{\text { zero }_{\mathrm{o}}: \mathrm{On}}{} & \frac{n: \mathrm{On}}{\operatorname{succ}_{\circ} n: \mathrm{On}}
\end{array}
$$

Representations

Martin-Löf's Representation

Remark
Martin-Löf's definition is analogous to Cantor and Hilbert's definition.

Representations

Martin-Löf's Representation

Remark
Martin-Löf's definition is analogous to Cantor and Hilbert's definition.

Question
Which ordinal cannot be constructed by Martin-Löf's representation?

Representations

Martin-Löf's Representation

Remark
Martin-Löf's definition is analogous to Cantor and Hilbert's definition.

Question
Which ordinal cannot be constructed by Martin-Löf's representation?

Is it possible to define, similarly, a ω_{1}^{ML} ?

References I

目 Church, Alonzo and Kleene (1937). "Formal Definitions in the Theory of Ordinal Numbers". In: Fundamenta
Mathematicae 28, pp. 11-21.
: Hardy, Godfrey H. (1904). "A Theorem Concerning the Infinite Cardinal Numbers". In: Quarterly Journal of Mathematics 35, pp. 87-94.
围 Hilbert, David (1925). "On the Infinite". In: Reprinted in:
From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 (1967). Ed. by Jean van Heijenoort. Vol. 9.
Harvard University Press, pp. 367-392.
Martin-Löf, Per (1984). Intuitonistic Type Theory. Bibliopolis.
Neumann, J. von (1928). "Die Axiomatisierung der
Mengenlehre". In: Mathematische Zeitschrift 27.1, pp. 669-752.

References II

Tiles, Mary (2004). The Philosophy of Set Theory: An Historical Introduction to Cantor's Paradise. Courier Corporation.

[^0]: *Tutor

[^1]: *Taken from Wikipedia.

[^2]: *Taken from Wikipedia.

[^3]: *Taken from Wikipedia.

[^4]: *Taken from Wikipedia.

