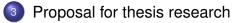
Improving the seismic image in Reverse time migration by analyzing of wavefields and post processing the zero lag Cross Correlation imaging condition

Juan Guillermo Paniagua C.

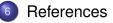
M.Sc. in Engineering Ph.D. student in Mathematical Engineering GGC3 - Research group in Geophysics and computer science GRIMMAT - Research group in mathematical modeling

Advisor: Ph.D. Olga Lucía Quintero M.

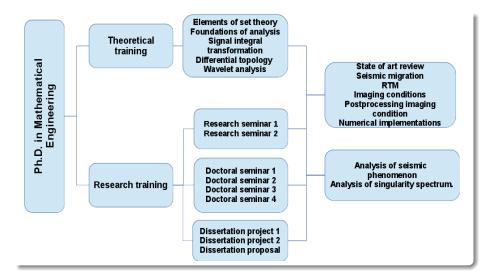
UNIVERSIDAD EAFIT ITM - EAFIT - C3


Outline

Introduction



Problem statement

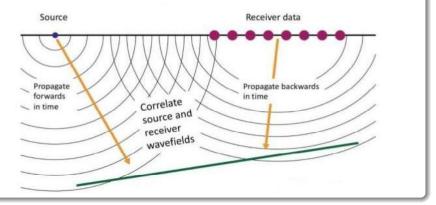


Introduction

Research project ECOPETROL-COLCIENCIAS

Develop algorithms of seismic migration using wave field extrapolation in the direction of time (RTM-Reverse Time Migration), evaluating the preservation of amplitudes and frequencies as well as the conditions of stability, numerical dispersion and computational cost.

Introduction

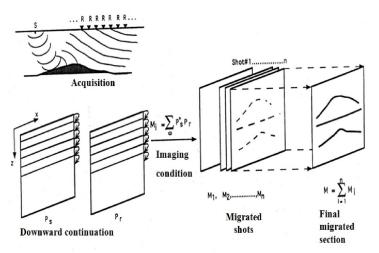


Paniagua, J.G.

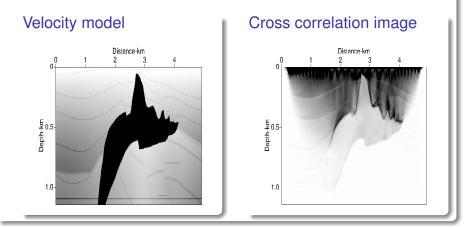
Introduction

Reverse time migration (RTM)

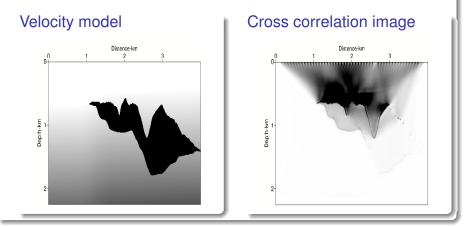
Cross correlation imaging condition


$$I_{CC}(x, z) = \sum_{j=1}^{s_{max}} \sum_{i=1}^{t_{max}} S(x, z; t_i; s_j) R(x, z; t_i; s_j)$$

where


- S: Source wavefield R: Receiver wavefield z: Depth
- x: Distance

t: Time *t_{max}*: Maximum time *s_{max}*: Maximum number of sources (1)


Reverse time migration (RTM)

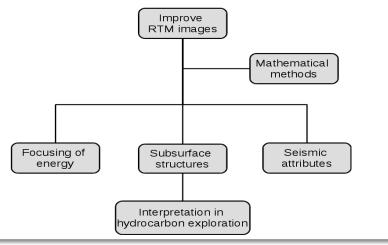
2D SEG EAGE model

2D Sigsbee2A model

Methods to eliminate the artifacts

- Wavefield propagation approaches (Loewenthal, 1987,[25], Baysal, 1984, [3], Fletcher, 2005,[12]).
- Imaging condition approaches (Valenciano and Biondi, 2003, [37], Kaelin et al, 2006, [20], Guitton, 2007, [17], Liu, 2011, [22], Whitmore, 2012, [41], Pestana et al, 2014, [30], Shragge, 2014, [34]).
- Post-imaging condition approaches (Youn, 2001, [43], Guitton et al, 2006, [16]).

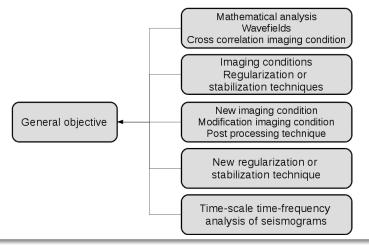
Imaging condition approaches


- Source illumination imaging condition
- Receiver illumination imaging condition
- Inverse scattering imaging condition
- Impedance sensitivity kernel imaging condition

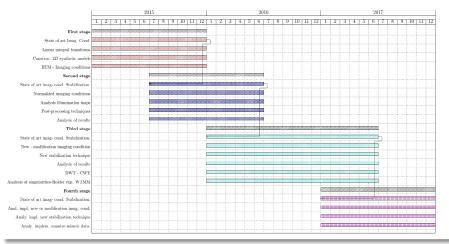
Post-imaging condition approach

Laplacian filtering

Proposal for thesis research


General objective

Pani	adua	, J.G.
1 411	ayua	, u.u.


Proposal for thesis research

Specific objectives

Proposal for thesis research

Methodology

Laguerre-Gauss transform

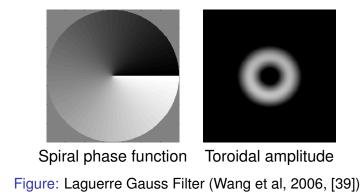
The Laguerre-Gauss transform of I(x, y) is given by (Wang et al, 2006, [39], Guo et al, 2006, [15]):

$$\tilde{l}(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} LG(f_x,f_y) l(f_x,f_y) e^{2\pi i (f_x x,f_y y)} df_x df_y$$
(2)

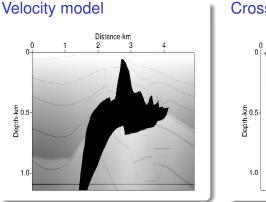
where

$$LG(f_x, f_y) = (f_x + if_y)e^{-(f_x^2 + f_y^2)/\omega^2} = \rho e^{-(\rho^2/\omega^2)}e^{i\beta}$$
(3)

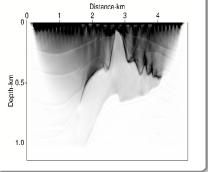
 $\rho = \sqrt{f_x^2 + f_y^2}$, $\beta = \tan^{-1} \left(\frac{f_y}{f_x}\right)$ are the polar coordinates in the spatial frequency domain.

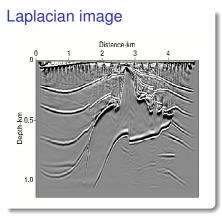

Laguerre-Gauss transform

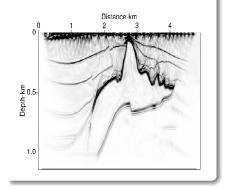
$$\tilde{l}(x,y) = |\tilde{l}(x,y)|e^{i\theta(x,y)} = l(x,y) * LG(x,y)$$
equation (3) we obtain
$$(4)$$

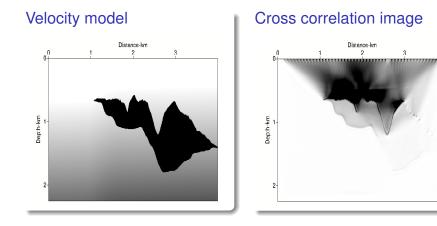

$$LG(x, y) = \mathscr{F}^{-1} \{ LG(f_x, f_y) \} = (i\pi^2 \omega^4) (x + iy) e^{-\pi^2 \omega^2 (x^2 + y^2)} = (i\pi^2 \omega^4) [r e^{-\pi^2 r^2 \omega^2} e^{i\alpha}]$$
(5)

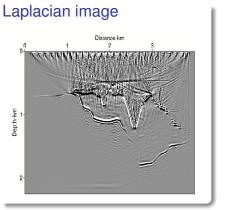
From

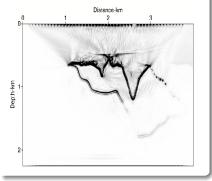

Laguerre-Gauss transform


2D SEG EAGE model


Cross correlation image


2D SEG EAGE model


Laguerre Gauss image


2D Sigsbee2A model

2D Sigsbee2A model

Laguerre Gauss image

Future work

- Perform a mathematical analysis of the source and receiver wavefields obtained in RTM to study its effects in the cross correlation imaging condition and the illumination maps.
- Analyze the effects of stabilization techniques to avoid division by zero in the frequency domain in order to propose a stabilization technique in time domain.
- Analyze of singularity spectrum of the seismograms, and the source and receiver wavefields in order to obtain additional information to use in RTM imaging.

Future work

- Measure the accuracy of the image obtained by Laguerre-Gauss Filtering compared with the true image.
- Implement the new methodologies proposed about the imaging condition in RTM and analyze the results in different synthetic models and real massive data.

For example, if $\kappa = 1$ Suppose that is the set of all sets of size 1. Then, by the pairing axiom, \bigcup is the set of all sets, which cannot exist by Russel's paradox.

- B. Arntsen, B. Kritski, B. Ursin, and L. Amundsen, Shot-profile amplitude crosscorrelation imaging condition, Geophysics 78 (2013), no. 4, S221–S231.
- [2] Edip Baysal, Dan D. Kosloff, and John W. C. Sherwood, *Reverse time migration*, Geophysics 48 (1983), no. 11, 1514–1524.
- [3] Edip Baysal, Dan D. Kosloff, and John W.C. Sherwood, A two way nonreflecting wave equation, Geophysics 49 (1984), no. 2, 132–141.
- [4] B. Biondi, *3-D Seismic Imaging*, Investigations of Geophysics, vol. 14, Society of Exploration Geophysicists, 2006.

- [5] Nándor Bokor and Yoshinori Iketaki, Laguerre-Gaussian radial Hilbert transform for edge-enhancement Fourier transform x-ray microscopy, Optics Express 19 (2009), no. 7, 5533–5539.
- [6] S. Chattopadhyay and G. McMechan, *Imaging conditions for prestack reverse time migration*, Geophysics **73** (2008), no. 3, 81–89.
- [7] J. F. Claerbout, *Toward a unified theory of reflector mapping*, Geophysics **36** (1971), no. 3, 467–481.
- [8] _____, *Imaging the Earth's interior*, Blackwell Scientific Publications, 1985.

- [9] M. Cogan, R. Fletcher, R. King, and D. Nichols, *Normalization strategies for reverse-time migration*, SEG Annual meeting Society of Exploration Geophysicists (2011), 3275–3279.
- [10] J. Costa, F. Silva, R. Alcántara, J. Schleicher, and A. Novais, *Obliquity-correction imaging condition for reverse time migration*, Geophysics **74** (2009), no. 3, S57–S66.
- [11] L. Debnath and D. Bhatta, *Integral transforms and their applications*, CRC press, 2010.

- [12] R. Fletcher, P. Fowler, and P. Kitchenside, *Suppressing artifacts in prestack reverse time migration*, 75th International Annual Meeting, SEG, Expanded abstracts (2005), 2049–2051.
- [13] C. Fleury, Increasing illumination and sensitivity of reverse-time migration with internal multiples, Geophysical Prospecting 61 (2013), no. 5, 891–906.
- [14] I. Freund and V Freilikher, *Parameterization of anisotropic vortices*, Journal of the Optical Society of America A 14 (1997), no. 8, 1902–1910.

- [15] C. Gou, Y. Han, and J. Xu, Radial Hilbert transform with Laguerre-Gaussian spatial filters, Optics Letters 31 (2006), no. 10, 1394–1396.
- [16] A. Guitton, B. Kaelin, and B. Biondi, *Least-square attenuation of reverse time migration*, 76th International Annual Meeting, SEG, Expanded abstracts (2006), 2348–2352.
- [17] A. Guitton, A. Valenciano, D. Bevc, and J. Claerbout, Smoothing imaging condition for shot-profile migration, Geophysics 72 (2007), no. 3, 149–154.

- [18] M. Haney, L. Bartel, D. Aldridge, and N. Symons, *Insight into the output of reverse time migration: What do the amplitudes mean?*, 75th International Annual Meeting, SEG, Expanded abstracts (2005), 1950–1953.
- [19] L. Hu and G. McMechan, Wave-field transformations of vertical seismic profiles, Geophysics 52 (1987), 307–321.
- [20] B. Kaelin and A. Guitton, *Imaging condition for reverse time migration*, 76th International Annual Meeting and exposition, SEG, Expanded abstracts (2006), 2594–2598.
- [21] D. Kosloff and E. Baysal, *Migration with the full wave equation*, Geophysics **48** (1983), 677–687.

- [22] F. Liu, G. Zhang, S. Morton, and J. Leveille, An effective imaging condition for reverse time migration using wavefield decomposition, Geophysics 76 (2011), no. 10, 29.
- [23] G. C. Liu, X. H. Chen, J. Y. Song, and Z. H. Rui, A stabilized least-squares imaging condition with structure constratints, Applied Geophysics 9 (2012), no. 4, 459–467.
- [24] D. Loewenthal and Mufti I. , *Reverse time migration in spatial frequency domain*, Geophysics 48 (1983), no. 5, 627–635.
- [25] D. Loewenthal, P. Stoffa, and E. Faria, *Suppressing the unwanted reflections of the full wave equation*, Geophysics 52 (1987), no. 7, 1007–1012.

- [26] J. R. Macdonald and M. K. Brachman, *Linear-system integral transform relations*, Reviews of modern physics 28 (1956), no. 4, 393–422.
- [27] G. A. McMechan, Migration by extrapolation of time depend boundary values, Geophysics Prospecting 31 (1983), 413–420.
- [28] B Nguyen and G. McMechan, *Excitation amplitude imaging condition for prestack reverse time migration*, Geophysics **78** (2013), no. 1, 37–46.

- [29] J. G. Paniagua and D. Sierra-Sosa, Laguerre Gaussian filters in Reverse Time Migration image reconstruction, VII Simpósio Brasileiro de Geofísica, expanded abstract accepted (2016).
- [30] R. Pestana, A. Dos Santos, and E. Araujo, *RTM imaging condition using impedance sensitivity kernel combinated with the Poynting vector*, SEG Technical Program Expanded Abstracts (2014), 3763–3768.
- [31] W. K. Pratt, *Digital image processing*, Wiley Interscience, 2001.

- [32] Y. Qin and R. McGarry, *True-amplitude common-shot* acoustuc reverse time migration, SEG Annual meeting Society of Exploration Geophysicists (2013).
- [33] J. Schleicher, J Costa, and A. Novais, A comparison of imaging for wave-equation shot-profile migration, Geophysics 73 (2007), no. 6, S219–S227.
- [34] J. Shragge, *Reverse time migration from topography*, Geophysics **79** (2014), no. 4, 1–12.
- [35] C. Stolk, M. De Hoop, and T. Root, *Linearized inverse scattering based on seismic Reverse Time Migration*, Proceedings of the Project Review, Geo-Mathematical imaging group 1 (2009), 91–108.

- [36] S. Y. Suh and J. Cai, Reverse-time migration by fan filtering plus wavefield decomposition, SEG 2009 International Exposition and Annual Meeting (2009), 2804–2808.
- [37] A. Valenciano and B. Biondi, *Deconvolution imaging condition for shot profile migration*, 73th International Annual Meeting and exposition, SEG, Expanded abstracts (2003), 1059–1062.
- [38] F. Vivas and R. Pestana, Imaging condition to true amplitude shot-profile migration: A comparison of stabilization techniques, 10th International congress ofnthe Barazilian Geophysical Society (2007), 1668–1672.

- [39] W. Wang, T. Yokozeki, R. Ishijima, M. Takeda, and S. G. Hanson, Optical vortex metrology based on the core structures of phase singularities in Laguerre-Gauss transform of a speckle pattern, Optics Express 14 (2006), no. 22, 10195–10206.
- [40] Z. Wang, H. Ding, G. Lu, and X. Bi, *Reverse-tiome migration based optical imaging*, IEEE Transactions on medical imaging **35** (2016), no. 1, 273–281.
- [41] N. Whitmore and S. Crawley, Applications of RTM inverse scattering imaging conditions, 82nd Annual International Meeting, SEG, Expanded abstracts (2012), 779–784.

- [42] K. Yoon and K. Marfurt, *Reverse time migration using the Poynting vector*, Exploration Geophysics **37** (2006), 102–107.
- [43] O. Youn and H. Zhou, *Depth imaging with multiples*, Geophysics **66** (2001), no. 11, 246–255.
- [44] M. S. Zhdanov, *Geophysical inverse theory and regularization problems*, Elseiver, 2002.