Riemannian Wave-field Extrapolation Thesis Proposal

Hector Roman Quiceno E.
Director
Doctor Jairo Alberto Villegas G. Ph.D Mathematical Engineering Universidad EAFIT
Instituto Tecnológico Metropolitano

November, 2016

Outline

Outline

1. Introduction

RWE

Outline

1. Introduction
2. Wave propagation in Continuum media

Outline

1. Introduction
2. Wave propagation in Continuum media
3. The Problem

Outline

1. Introduction
2. Wave propagation in Continuum media
3. The Problem
4. Some methods used

Outline

1. Introduction
2. Wave propagation in Continuum media
3. The Problem
4. Some methods used
5. Objectives

Introduction

Introduction

- The earth is at least a visco elastic medium, in which absorption losses give rise to attenuation and dispersion effects.

Introduction

- The earth is at least a visco elastic medium, in which absorption losses give rise to attenuation and dispersion effects.
- The elastic wave equation is framed in terms of tensor operators acting on vector quantities.

Introduction

- The earth is at least a visco elastic medium, in which absorption losses give rise to attenuation and dispersion effects.
- The elastic wave equation is framed in terms of tensor operators acting on vector quantities.
- ...it is also true that a proper treatment of anisotropy fundamentally demands an elastic viewpoint, even when only P-waves (quasi-P waves) are contemplated.

Introduction

- The earth is at least a visco elastic medium, in which absorption losses give rise to attenuation and dispersion effects.
- The elastic wave equation is framed in terms of tensor operators acting on vector quantities.
- ...it is also true that a proper treatment of anisotropy fundamentally demands an elastic viewpoint, even when only P-waves (quasi-P waves) are contemplated.
-different representations for the same physical law can lead to different computational techniques in solving the same problem, which can produce different and new numerical results, so this new but accurate representation should lead us to new results and descriptions of the phenomena.

Wave Propagation in Continuum Media

- Hook's law
-

RWE

Wave Propagation in Continuum Media

- Hook's law
- Cauchy's equations of motion
-

RWE

- Hook's law

$$
\sigma_{i j}=\sum_{k, l} \mathcal{C}_{i j k l} \epsilon_{k l}
$$

where
$\sigma_{i j}: \quad$ is the strain tensor,
$\mathcal{C}_{i j k l}$: is the stiffnes tensor,
$\epsilon_{k l} \quad$: is the stress tensor.

- Cauchy's equations of motion

Wave Propagation in Continuum Media

- Hook's law
- Cauchy's equations of motion

RWE

- Hook's law
- Cauchy's equations of motion

From the balance of momentum one gets

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}_{i}}{\partial t^{2}}=\sum_{j} \frac{\partial}{\partial x_{j}} \sigma_{i j}
$$

- Hook's law
- Cauchy's equations of motion

From the balance of momentum one gets

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}_{i}}{\partial t^{2}}=\sum_{j} \frac{\partial}{\partial x_{j}} \sigma_{i j}
$$

For an Isotropic media

$$
\sigma_{i j}=\lambda \delta_{i j} \sum_{k} \epsilon_{k k}+2 \mu \epsilon_{i j}
$$

- Hook's law
- Cauchy's equations of motion

From the balance of momentum one gets

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}_{i}}{\partial t^{2}}=\sum_{j} \frac{\partial}{\partial x_{j}} \sigma_{i j}
$$

then

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}}{\partial t^{2}}=(\lambda+\mu)[\nabla(\nabla \cdot \vec{u})]+\mu \nabla^{2} \vec{u}
$$

Wave Propagation in Continuum Media

- Hook's law
- Cauchy's equations of motion

From the balance of momentum one gets

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}_{i}}{\partial t^{2}}=\sum_{j} \frac{\partial}{\partial x_{j}} \sigma_{i j}
$$

In general curvilinear coordinates

$$
\nabla^{2} \vec{u}=\nabla(\nabla \cdot \vec{u})-\nabla \times(\nabla \times \vec{u})
$$

and defining

$$
\begin{aligned}
\varphi & =\nabla \cdot \vec{u} \\
\psi & =\nabla \times \vec{u}
\end{aligned}
$$

- Wave equation for P-waves in homogeneous and isotropic media $-$
- Hook's law
- Cauchy's equations of motion From the balance of momentum one gets

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}_{i}}{\partial t^{2}}=\sum_{j} \frac{\partial}{\partial x_{j}} \sigma_{i j}
$$

we get

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}}{\partial t^{2}}=(\lambda+2 \mu) \nabla \varphi-\mu \nabla \times \psi
$$

- Wave equation for P-waves in homogeneous and isotropic media
- Hook's law
- Cauchy's equations of motion
- Wave equation for P -waves in homogeneous and isotropic media
- Wave equation for S-waves in homogeneous and isotropic media
- Hook's law
- Cauchy's equations of motion
- Wave equation for P -waves in homogeneous and isotropic media

$$
\nabla^{2} \varphi-\frac{1}{v_{p}^{2}} \frac{\partial^{2} \varphi}{\partial t^{2}}=0
$$

where

$$
v_{p}=\left(\frac{\lambda+2 \mu}{\rho}\right)^{\frac{1}{2}}
$$

- Wave equation for S-waves in homogeneous and isotropic media
- Hook's law
- Cauchy's equations of motion
- Wave equation for P-waves in homogeneous and isotropic media
- Wave equation for S -waves in homogeneous and isotropic media
- Hook's law
- Cauchy's equations of motion
- Wave equation for P -waves in homogeneous and isotropic media
- Wave equation for S-waves in homogeneous and isotropic media

$$
\nabla^{2} \psi-\frac{1}{v_{s}^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0
$$

where

$$
v_{s}=\left(\frac{\mu}{\rho}\right)^{\frac{1}{2}}
$$

On Wave equation

On Wave equation

Consider the IVP

$$
\begin{aligned}
\nabla^{2} \vec{u}-\frac{1}{v^{2}} \frac{\partial^{2} \vec{u}}{\partial t^{2}} & =0 \\
\vec{u}(\vec{x}, 0) & =\gamma(\vec{x}) \\
\left.\frac{\partial \vec{u}}{\partial t}\right|_{t=0} & =\eta(\vec{x})
\end{aligned}
$$

On Wave equation

- In one dimension (1-D)

On Wave equation

- In one dimension (1-D)

$$
u(x, t)=\frac{1}{2}\left[\gamma(x+v t)+\gamma(x-v t)+\frac{1}{v} \int_{x-v t}^{x+v t} \eta(s) d s\right]
$$

where

$$
\begin{aligned}
& \gamma(x)=f(x)+g(x) \\
& \eta(x)=v\left[f^{\prime}(x)+g^{\prime}(x)\right]
\end{aligned}
$$

for some $f, g \in \mathcal{C}^{2}(\Omega)$

On Wave equation

- In one dimension (1-D)
- In two dimensions (2-D)

On Wave equation

- In one dimension (1-D)
- In two dimensions (2-D)

$$
\begin{aligned}
\vec{u}(\vec{x}, t) & =\frac{d}{d t}\left[\frac{4 \pi^{2}}{v} \iint_{D(\vec{x}, v t)} \frac{\gamma\left(s_{1}, s_{2}\right)}{\sqrt{(v t)^{2}-\left[\left(s_{1}-x_{1}\right)^{2}+\left(s_{2}-x_{2}\right)^{2}\right]}} d s_{1} d s_{2}\right] \\
& +\frac{4 \pi^{2}}{v} \iint_{D(\vec{x}, v t)} \frac{\eta\left(s_{1}, s_{2}\right)}{\sqrt{(v t)^{2}-\left[\left(s_{1}-x_{1}\right)^{2}+\left(s_{2}-x_{2}\right)^{2}\right]}} d s_{1} d s_{2}
\end{aligned}
$$

Elasticity Theory

RWE

Elasticity Theory

- A configuration on \mathcal{B} is a smooth, orientation preserving and invertible mapping

$$
\Phi: \mathcal{B} \rightarrow \int
$$

The set of all configurations of \mathcal{B} is denoted \mathcal{C}

Elasticity Theory

- A configuration on \mathcal{B} is a smooth, orientation preserving and invertible mapping

$$
\Phi: \mathcal{B} \rightarrow \int
$$

The set of all configurations of \mathcal{B} is denoted \mathcal{C}

- A motion of \mathcal{B} is a curve on \mathcal{C}

$$
t \rightarrow \Phi_{t} \in \mathcal{C}
$$

Elasticity Theory

- A configuration on \mathcal{B} is a smooth, orientation preserving and invertible mapping

$$
\Phi: \mathcal{B} \rightarrow \int
$$

The set of all configurations of \mathcal{B} is denoted \mathcal{C}

- A motion of \mathcal{B} is a curve on \mathcal{C}

$$
t \rightarrow \Phi_{t} \in \mathcal{C}
$$

- We denote motions as $\Phi(X, t)$, where $X \in \mathcal{B}$ and $x=\Phi(X) \in \mathcal{S}$

Elasticity Theory

- A configuration on \mathcal{B} is a smooth, orientation preserving and invertible mapping

$$
\Phi: \mathcal{B} \rightarrow \int
$$

The set of all configurations of \mathcal{B} is denoted \mathcal{C}

- A motion of \mathcal{B} is a curve on \mathcal{C}

$$
t \rightarrow \Phi_{t} \in \mathcal{C}
$$

- We denote motions as $\Phi(X, t)$, where $X \in \mathcal{B}$ and $x=\Phi(X) \in \mathcal{S}$
- The material velocity and acelerations are defined as (for X fixed)

$$
\begin{aligned}
V_{t}(X) & =\frac{\partial}{\partial t} \Phi(X, t) \\
A_{t}(X) & =\frac{\partial}{\partial t} V_{t}(X)
\end{aligned}
$$

Elasticity Theory

- A configuration on \mathcal{B} is a smooth, orientation preserving and invertible mapping

$$
\Phi: \mathcal{B} \rightarrow \int
$$

The set of all configurations of \mathcal{B} is denoted \mathcal{C}

- A motion of \mathcal{B} is a curve on \mathcal{C}

$$
t \rightarrow \Phi_{t} \in \mathcal{C}
$$

- We denote motions as $\Phi(X, t)$, where $X \in \mathcal{B}$ and $x=\Phi(X) \in \mathcal{S}$
- The material velocity and acelerations are defined as (for X fixed)

$$
\begin{aligned}
V_{t}(X) & =\frac{\partial}{\partial t} \Phi(X, t) \\
A_{t}(X) & =\frac{\partial}{\partial t} V_{t}(X)
\end{aligned}
$$

- The spatial velocity and acelerations are defined as (for t fixed)

$$
\begin{aligned}
v_{t} & :=V_{t} \circ \Phi^{-1} \\
a_{t} & :=A_{t} \circ \Phi^{-1}
\end{aligned}
$$

Elasticity Theory

RWE

Elasticity Theory

- The deformation gradient, is given by

$$
\begin{aligned}
F: T \mathcal{B} & \rightarrow T \mathcal{S} \\
F(X, W) & =(\Phi(X), D \Phi(x) \cdot W)
\end{aligned}
$$

Elasticity Theory

- The right Cauchy-Green tensor is given by

$$
\begin{aligned}
C: T_{X} \mathcal{B} & \rightarrow T_{X} \mathcal{B} \\
C(X, W) & =\left(X, D \Phi(X)^{T} D \Phi(X) \cdot W\right) \\
C(X) & =F^{T}(X) F(X)
\end{aligned}
$$

Elasticity Theory

- The right Cauchy-Green tensor is given by

$$
\begin{aligned}
C: T_{X \mathcal{B}} & \rightarrow T_{X \mathcal{B}} \\
C(X, W) & =\left(X, D \Phi(X)^{T} D \Phi(X) \cdot W\right) \\
C(X) & =F^{T}(X) F(X)
\end{aligned}
$$

- some properties of C

1. C is Symmetric
2. C is semi-positive definite
3. If every F is one-to one, then C is positive definite and invertible.

Elasticity Theory

- The right Cauchy-Green tensor is given by

$$
\begin{aligned}
C: T_{X} \mathcal{B} & \rightarrow T_{X} \mathcal{B} \\
C(X, W) & =\left(X, D \Phi(X)^{T} D \Phi(X) \cdot W\right) \\
C(X) & =F^{T}(X) F(X)
\end{aligned}
$$

- The left Cauchy-Green tensor is given by

$$
\begin{aligned}
b: T_{x} \Phi(\mathcal{B}) & \rightarrow T_{x} \Phi(\mathcal{B}) \\
b(x) & =F(X) F^{T}(X)
\end{aligned}
$$

Elasticity Theory

- The right Cauchy-Green tensor is given by

$$
\begin{aligned}
C: T_{X} \mathcal{B} & \rightarrow T_{X} \mathcal{B} \\
C(X, W) & =\left(X, D \Phi(X)^{T} D \Phi(X) \cdot W\right) \\
C(X) & =F^{T}(X) F(X)
\end{aligned}
$$

- The left Cauchy-Green tensor is given by

$$
\begin{aligned}
b: T_{x} \Phi(\mathcal{B}) & \rightarrow T_{x} \Phi(\mathcal{B}) \\
b(x) & =F(X) F^{T}(X)
\end{aligned}
$$

- some properties of b

1. b is Symmetric
2. b is positive definite

Elasticity Theory

RWE

Elasticity Theory

- Consider the symmetric, positive definite, linear transformations U, V such that

$$
\begin{aligned}
U^{2} & =C \\
V^{2} & =b
\end{aligned}
$$

Elasticity Theory

- Consider the symmetric, positive definite, linear transformations U, V such that

$$
\begin{aligned}
U^{2} & =C \\
V^{2} & =b
\end{aligned}
$$

- It can be shown that (polar decomposition of F)

$$
F=R U=V R
$$

for some unique orthogonal transform

$$
R: T_{X} \mathcal{B} \rightarrow T_{x} \mathcal{S}
$$

and

$$
U=R^{T} V R
$$

Elasticity Theory

- Consider the symmetric, positive definite, linear transformations U, V such that

$$
\begin{aligned}
U^{2} & =C \\
V^{2} & =b
\end{aligned}
$$

- It can be shown that (polar decomposition of F)

$$
F=R U=V R
$$

for some unique orthogonal transform

$$
R: T_{X} \mathcal{B} \rightarrow T_{x} \mathcal{S}
$$

and

$$
U=R^{T} V R
$$

- The Strain tensor is given by

$$
\begin{aligned}
E: T \mathcal{B} & \rightarrow T \mathcal{B} \\
E & =\frac{1}{2}[C-I d]
\end{aligned}
$$

The problem

To propose a Riemannian wavefield propagation theory which accounts for general symmetries of the medium and to propose decoupled solutions of the general Riemannian wavefield equation which can be applied in migration algorithms, in particular to one way wave equation (OWWE) algorithms. The existing theory has not reseached a point in which they can describe general continuum, complex zones, and used these theorical descriptions in migration algorithms, the theory needed is a mixture of differential geometry, functional analysis and migration methods.

OWWE. Extrapolation methods

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)

$$
\begin{aligned}
\varphi\left(k_{x}, z_{j}, \omega\right) & =\varphi\left(k_{x}, z_{j-1}, \omega\right) e^{i k_{z} \Delta z} \\
\varphi\left(k_{x}, z, \omega\right) & =\mathcal{F}[\psi(x, z, \omega)] \\
\varphi\left(k_{x}, z_{0}, \omega\right) & :=\text { Data }
\end{aligned}
$$

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)
- Split-Step Fourier Migration (P.L. Stoffa)

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)
- Split-Step Fourier Migration (P.L. Stoffa)

$$
\begin{aligned}
s(\vec{r}, z) & =\frac{2}{v(\vec{r}, z)} \\
\nabla^{2} \varphi+\omega^{2} s^{2} & =0 \\
s(\vec{r}, z) & =s_{0}(z)+\Delta s(\vec{r}, z) \\
\nabla^{2} \varphi+\omega^{2} s_{0}^{2}(z) \varphi & =-S(\vec{r}, z, \omega)
\end{aligned}
$$

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)
- Split-Step Fourier Migration (P.L. Stoffa)

$$
\begin{aligned}
\frac{\partial^{2}}{\partial z^{2}} P\left(k_{r}, z, \omega\right)+K_{z_{0}}^{2} P\left(k_{r}, z, \omega\right) & =-\hat{S}\left(k_{r}, z, \omega\right) \\
P_{-}\left(\vec{r}, z_{n+1}, \omega\right) & =P_{l}\left(\vec{r}, z_{n}, \Delta z, \omega\right) \\
& +i \omega \int_{z_{n}}^{z_{n+1}} \Delta s P_{l}\left(\vec{r}, z^{\prime}, d_{n+1}, \omega\right) d z^{\prime}
\end{aligned}
$$

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)
- Split-Step Fourier Migration (P.L. Stoffa)
- High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)
- Split-Step Fourier Migration (P.L. Stoffa)
- High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

$$
\begin{aligned}
{\left[\frac{\partial}{\partial z}+i \sqrt{A(x, \omega)}\right]\left[\frac{\partial}{\partial z}-i \sqrt{A(x, \omega)}\right] \varphi(x, z, \omega) } & =0 \\
A(x, \omega) & =\frac{\partial^{2}}{\partial x^{2}}+\frac{\omega^{2}}{v^{2}\left(x, z_{j}\right)} \\
s\left(x, z_{j}\right) & =\frac{1}{v\left(x, z_{j}\right)}
\end{aligned}
$$

with the extrapolators

$$
\begin{aligned}
k_{z} & =\sqrt{\omega^{2} s^{2}-k_{x}^{2}} \\
k_{z_{0}} & =\sqrt{\omega^{2} s_{0}^{2}-k_{x}^{2}}
\end{aligned}
$$

we get

$$
\begin{equation*}
k_{z}=k_{z_{0}} \sqrt{1-\frac{\omega^{2}}{k_{z_{0}}^{2}}\left(s_{0}^{2}-s^{2}\right)} \tag{1}
\end{equation*}
$$

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)
- Split-Step Fourier Migration (P.L. Stoffa)
- High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

$$
k_{z}=k_{z_{0}}+k_{z_{0}} \sum_{n=1}^{\infty}(-1)^{n}\binom{\frac{1}{2}}{n}\left[\left(\frac{\omega^{2} s_{0}^{2}}{\omega^{2} s_{0}^{2}-k_{x}^{2}}\right)\left(\frac{s_{0}^{2}-s^{2}}{s_{0}^{2}}\right)\right]^{n}
$$

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)
- Split-Step Fourier Migration (P.L. Stoffa)
- High Order Generalized Screen Propagator (C. Sheng, MA.Zai)

$$
\begin{aligned}
& \psi(x, z+\Delta z, \omega)=\psi(x, z, \omega) e^{i k_{z_{0}} \Delta z} e^{i k_{z_{0}} \Delta z} \sum_{n=1}^{\infty}(-1)^{n}\binom{\frac{1}{2}}{n}\left[\left(\frac{\omega^{2} s_{0}^{2}}{\omega^{2} s_{0}^{2}-k_{x}^{2}}\right)\left(\frac{s_{0}^{2}-s^{2}}{s_{0}^{2}}\right) .\right. \\
& \psi(x, z+\Delta z, \omega)=\psi(x, z, \omega) e^{i k_{z_{0}} \Delta z}\left\{1+\sum_{n=1}^{\infty}(-1)^{n}\binom{\frac{1}{2}}{n}\left[\left(\frac{\omega^{2} s_{0}^{2}}{\omega^{2} s_{0}^{2}-k_{x}^{2}}\right)\left(\frac{s_{0}^{2}-s^{2}}{s_{0}^{2}}\right)\right]\right.
\end{aligned}
$$

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)
- Split-Step Fourier Migration (P.L. Stoffa)
- High Order Generalized Screen Propagator (C. Sheng, MA.Zai)
- Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin)

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)
- Split-Step Fourier Migration (P.L. Stoffa)
- High Order Generalized Screen Propagator (C. Sheng, MA.Zai)
- Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin) For the self-adjoint operator

$$
\mathcal{L}=-\left(\frac{2 \pi \omega}{v(x, z)}\right)^{2}-D_{x x}-D_{y y}
$$

Construct the spectral family (spectral projectors)

$$
\begin{aligned}
\mathcal{P} & =\sum_{\left(k: \lambda_{k} \leq 0\right)} \lambda_{k} P_{k} \\
\mathcal{P} \mathcal{L P} & =\sum_{\left(k: \lambda_{k} \leq 0\right)} \lambda_{k} P_{k}
\end{aligned}
$$

OWWE. Extrapolation methods

- Phase-shift (J.Gazdag)
- Split-Step Fourier Migration (P.L. Stoffa)
- High Order Generalized Screen Propagator (C. Sheng, MA.Zai)
- Full-Wave-Equation depth extrapolation (K.Sandberg, G.Beylkin) reformulate the problem as

$$
\begin{aligned}
\hat{p}_{z z} & =\mathcal{P} \mathcal{L P} \hat{p} \\
\hat{p}\left(x, z_{n}, \omega\right) & =q\left(x, z_{n}, \omega\right) \\
\hat{p}_{z}\left(x, z_{n}, \omega\right) & =q_{z}\left(x, z_{n}, \omega\right)
\end{aligned}
$$

Riemannian wavefield extrapolation, finite difference approach

Riemannian wavefield extrapolation, finite difference approach

- Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge)

Riemannian wavefield extrapolation, finite difference approach

- Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge) Consider the monochromatic wave equation for an acoustic wavefield

$$
\begin{aligned}
\nabla_{\xi}^{2} \mathcal{U} & =-\omega^{2} s_{\xi}^{2} \mathcal{U}, \text { where } \\
\nabla_{\xi}^{2} \mathcal{U} & =\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial \xi_{i}}\left(\sqrt{|g|} g^{i j} \frac{\partial \mathcal{U}}{\partial \xi_{j}}\right)
\end{aligned}
$$

Riemannian wavefield extrapolation, finite difference approach

- Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge) This equation can be written as

$$
n^{j} \frac{\partial \mathcal{U}}{\partial \xi_{j}}+m^{i j} \frac{\partial^{2} \mathcal{U}}{\partial \xi_{i} \partial \xi_{j}}=-\sqrt{|g|} \omega^{2} s_{\xi}^{2} \mathcal{U}
$$

where

$$
n^{j}, m^{i j} \text { depend on the metric. }
$$

Riemannian wavefield extrapolation, finite difference approach

- Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge) Fourier transforming $\xi_{\nu} \leftrightarrow k_{\nu}$

$$
\left(m^{i j} k_{\xi_{i}}-i n^{j}\right) k_{\xi_{j}}=\sqrt{|g|} \omega^{2} s_{\xi}^{2}
$$

Solving for $k_{\xi_{3}}$ leads to
$k_{\xi_{3}}=-a_{1} k_{\xi_{1}}-a_{2} k_{\xi_{2}}+i a_{3} \pm\left[a_{4}^{2} \omega^{2}-a_{5}^{2} k_{\xi_{1}}^{2}-a_{6}^{2} k_{\xi_{2}}^{2}-a_{7} k_{\xi_{1}} k_{\xi_{2}}+i a_{8} k_{\xi_{1}}+i a a_{9} k_{\xi_{2}}-a_{10}^{2}\right]^{1 / 2}$
and then extrapolate

$$
\mathcal{U}\left(\xi_{3}+\Delta \xi_{3}, k_{\xi_{1}}, k_{\xi_{2}}, \omega\right)=\mathcal{U}\left(\xi_{3}, k_{\xi_{1}}, k_{\xi_{2}}, \omega\right) e^{i k_{\xi_{3}} \Delta \xi_{3}}
$$

Some extrapolators

Riemannian wavefield extrapolation, finite difference approach

- Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge) 2D nonorthogonal coordinate system.

$$
k_{\xi_{3}}=-a_{1} k_{\xi_{1}}+i a_{3} \pm\left[a_{4}^{2} \omega^{2}-a_{5}^{2} k_{\xi_{1}}^{2}+i a_{8} k_{\xi_{1}}-a_{10}^{2}\right]^{1 / 2}
$$

Riemannian wavefield extrapolation, finite difference approach

- Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge) 2D orthogonal coordinate system.

$$
k_{\xi_{3}}=i a_{3} \pm\left[a_{4}^{2} \omega^{2}-a_{5}^{2} k_{\xi_{1}}^{2}+i a_{8} k_{\xi_{1}}-a_{10}^{2}\right]^{1 / 2}
$$

Riemannian wavefield extrapolation, finite difference approach

- Riemannian wavefield extrapolation (P.Sava, S.Fomel, J.Shragge) 3D semiorthogonal coordinate system.

$$
k_{\xi_{3}}=i a_{3} \pm\left[a_{4}^{2} \omega^{2}-a_{5}^{2} k_{\xi_{1}}^{2}-a_{6}^{2} k_{\xi_{2}}^{2}-a_{7} k_{\xi_{1}} k_{\xi_{2}}+i a_{8} k_{\xi_{1}}+i a_{9} k_{\xi_{2}}-a_{10}^{2}\right]^{1 / 2}
$$

Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

- Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

- Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

- Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

$$
\begin{aligned}
{\left[\nabla_{\xi}^{2}-\frac{1}{\nu_{\xi}^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] U_{\xi} } & =F_{\xi} \\
\nabla_{\xi}^{2} & =\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial \xi_{i}}\left(g^{i j} \sqrt{|g|}\right) \frac{\partial}{\partial \xi_{j}}+g^{i j} \frac{\partial^{2}}{\partial \xi_{i} \partial \xi_{j}} \\
\nabla_{\xi}^{2} & =\zeta^{i} \frac{\partial}{\partial \xi_{i}}+g^{i j} \frac{\partial^{2}}{\partial \xi_{i} \partial \xi_{j}}
\end{aligned}
$$

Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

- Finite Difference Scheme for the Riemannanian 2D acoustic wave equation Then, we have

$$
\zeta^{i} \frac{\partial U_{\xi}}{\partial \xi_{i}}+g^{i j} \frac{\partial^{2} U_{\xi}}{\partial \xi_{i} \partial \xi_{j}}=\frac{1}{\nu_{\xi}^{2}} \frac{\partial^{2} U_{\xi}}{\partial t^{2}}+F_{\xi}
$$

Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

- Finite Difference Scheme for the Riemannanian 2D acoustic wave equation For a 2D scheme, we have

$$
\frac{\partial^{2} U_{\xi}}{\partial t^{2}}=\nu^{2}\left[\zeta^{1} \frac{\partial U_{\xi}}{\partial \xi_{1}}+\zeta^{2} \frac{\partial U_{\xi}}{\partial \xi_{2}}+g^{11} \frac{\partial^{2} U_{\xi}}{\partial \xi_{1}^{2}}+2 g^{12} \frac{\partial^{2} U_{\xi}}{\partial \xi_{1} \partial \xi_{2}}+g^{22} \frac{\partial^{2} U_{\xi}}{\partial \xi^{2}}\right]
$$

Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

- Finite Difference Scheme for the Riemannanian 2D acoustic wave equation Take the following FD scheme

$$
\begin{aligned}
\frac{\partial^{2} U}{\partial t^{2}} & =\frac{U_{v, k}^{n+1}-2 U_{v, k}^{n}+U_{v, k}^{n-1}}{(\Delta t)^{2}} \\
\frac{\partial U}{\partial \xi_{1}} & =\frac{U_{v+1, k}^{n}-U_{v-1, k}^{n}}{2 \Delta \xi_{1}} \\
\frac{\partial U}{\partial \xi_{1} \partial \xi_{2}} & =\frac{U_{v+1, k+1}^{n}-U_{v-1, k+1}^{n}-U_{v+1, k-1}^{n}+U_{v-1, k-1}^{n}}{2 \Delta \xi_{1} \Delta \xi_{2}} \\
\frac{\partial^{2} U}{\partial \xi_{1}^{2}} & =\frac{U_{v+1, k}^{n}-2 U_{v, k}^{n}+U_{v-1, k}^{n}}{\left(\Delta \xi_{1}^{2}\right)} \\
\frac{\partial^{2} U}{\partial \xi_{2}^{2}} & =\frac{U_{v, k+1}^{n}-2 U_{v, k}^{n}+U_{v, k-1}^{n}}{\left(\Delta \xi_{2}^{2}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
\xi_{1} & =v \Delta \xi_{1} \\
\xi_{2} & =k \Delta \xi_{2} \\
t & =n \Delta t \\
U_{v, k}^{n} & =U\left(\xi_{1}, \xi_{2}, t\right)
\end{aligned}
$$

Finite Difference Scheme for the Riemannanian 2D acoustic wave equation

- Finite Difference Scheme for the Riemannanian 2D acoustic wave equation So we obtain the following discrete equation

$$
\begin{aligned}
U_{v, k}^{n} & =2 U_{v, k}^{n}-U_{v, k}^{n-1}+(\nu \Delta t)^{2}\left[\zeta^{1}\left(\frac{U_{v+1, k}^{n}-U_{v-1, k}^{n}}{2 \Delta \xi_{1}}\right)\right. \\
& +\zeta^{2}\left(\frac{U_{v, k+1}^{n}-U_{v, k-1}^{n}}{2 \Delta \xi_{2}}\right) \\
& +g^{11}\left(\frac{U_{v+1, k}^{n}-2 U_{v, k}^{n}+U_{v-1, k}^{n}}{\left(\Delta \xi_{1}\right)^{2}}\right) \\
& +g^{22}\left(\frac{U_{v, k+1}^{n}-2 U_{v, k}^{n}+U_{v, k-1}^{n}}{\left(\Delta \xi_{2}\right)^{2}}\right) \\
& \left.+g^{12}\left(\frac{U_{v+1, k+1}^{n}-U_{v-1, k+1}^{n}+U_{v+1, k-1}^{n}+U_{v-1, k-1}^{n}}{2 \Delta \xi_{1} \Delta \xi_{2}}\right)\right]
\end{aligned}
$$

On Elastic Wave equation

RWE

On Elastic Wave equation

If we want to have an elastic two-way equation

RWE

On Elastic Wave equation

$$
T_{i k} u_{k, 33}-i \omega\left(R_{i k}+R_{k i}\right)-\omega^{2} Q_{i k} u_{k}+\rho \omega^{2} u_{i}=0,
$$

where

On Elastic Wave equation

$$
\begin{aligned}
T_{i k} & =C_{i 3 k 3} \\
R_{i k} & =C_{i 1 k 3} s_{1}+C_{i 2 k 3} s_{2} \\
Q_{i k} & =C_{i 1 k 1} s_{1}^{2}+\left(C_{i 1 k 2}+C_{i 2 k 1}\right) s_{1} s_{2}+C_{i 2 k 2} s_{2}^{2}
\end{aligned}
$$

On Elastic Wave equation

Note that in matrix notation, we have

$$
T \frac{d^{2} \vec{u}}{d z^{2}}-i \omega\left(R+R^{T}\right) \frac{d \vec{u}}{d z}-\omega^{2}(Q-\rho I) \vec{u}=0
$$

On Elastic Wave equation

- Gluing together the momentum and constitutive equations, we have

$$
\frac{d \vec{b}}{d z}=i \omega A \vec{b}
$$

where

On Elastic Wave equation

$$
\vec{b}=\binom{\vec{u}}{\vec{\tau}} ; \quad \vec{\tau}=-\frac{1}{i \omega}\left(\begin{array}{c}
\sigma_{13} \\
\sigma_{23} \\
\sigma_{33}
\end{array}\right)
$$

and

On Elastic Wave equation

$$
A=-\left(\begin{array}{lr}
T^{-1} R^{T} & T^{-1} \\
R T^{-1} R^{T}-Q+\rho I & R T^{-1}
\end{array}\right) .
$$

On Elastic Wave equation

- Matrix A can be decomposed as

$$
D^{-1} A D=\Lambda=\operatorname{diag}\left(q_{p}^{U} \quad q_{s 1}^{U} 1 q_{s 2}^{U} \quad q_{p}^{D} \quad q_{s 1}^{D} \quad q_{s 2}^{D}\right),
$$

On Elastic Wave equation

- For a vertically homogeneous layer, we have $\vec{b}=D \vec{v}$ and the system reduces to

$$
\frac{d \vec{v}}{d z}=i \omega \Lambda \vec{v}
$$

whose solution has the form

On Elastic Wave equation

$$
\vec{v}(z)=e^{i \omega \Lambda\left(z-z_{0}\right)} \vec{v}\left(z_{0}\right) .
$$

Since $\vec{v}=D^{-1} \vec{b}$, which means that D^{-1} is a decomposition operator, we have

$$
\begin{equation*}
\vec{b}_{i}(z)=D_{i} e^{i \omega \Lambda_{i}\left(z-z_{0}\right)} D_{i}^{-1} \vec{b}_{i}\left(z_{0}\right) \tag{1}
\end{equation*}
$$

An example

RWE

An example

- For small motions of \mathcal{B}, we have

$$
\Phi_{t}^{i}(X)=x^{i}+u^{i}(X, t)
$$

where $u=\sum u^{i}(X, t) \partial_{i}$ is the displacement vector field.

An example

- The strain tensor $\varepsilon_{i j}$ is given by

$$
\varepsilon_{i j} d x^{i} \otimes d x^{j}=\frac{1}{2}\left[* d s(X)^{2}-d s(X)^{2}\right]
$$

, then

$$
\begin{gathered}
\varepsilon_{k l}=\frac{1}{2}\left(g_{k m} \partial_{l} u^{m}+g_{m l} \partial_{k} u^{m}+u^{m} \partial_{m} g_{k l}\right) \\
\varepsilon_{k l}=\frac{1}{2}\left(g_{k m} \nabla_{l} u^{m}+g_{m l} \nabla_{k} u^{m}\right)
\end{gathered}
$$

An example

- Since

$$
\begin{aligned}
\frac{\sigma_{i j}}{\sqrt{|g|}} & =C_{i j k \mid} \varepsilon_{k l} \\
d f^{i} & =\frac{\sigma_{i j}}{\sqrt{|g|}} d S_{j}
\end{aligned}
$$

we have, for an elastic and homogeneous body, the equation of motion given by:

$$
\begin{aligned}
\int_{V} \rho \partial_{t t} u^{i} d V & =-\int_{S} \frac{\sigma_{i j}}{\sqrt{|g|}} d S_{j} \\
& =\int_{V} \nabla_{j}\left(\frac{\sigma_{i j}}{\sqrt{|g|}}\right) d V
\end{aligned}
$$

An example

- Then we have a elastic wave equation as

$$
\begin{aligned}
\rho \partial_{t t} u^{i} & =\frac{1}{2} \nabla_{j} C_{i j k l}\left(g_{k m} \nabla_{l} u^{m}+g_{m l} \nabla_{k} u^{m}\right) \\
& =\frac{1}{2} C_{i j k l}\left(g_{k m} \nabla_{j} \nabla_{l} u^{m}+g_{m l} \nabla_{j} \nabla_{k} u^{m}\right)
\end{aligned}
$$

Objectives

Objectives

To obtain an elastic Riemannian wave equation theory and its solutions, or approximate solutions, which describe the elastic wave propagation in general medium, taking into account the anisotropy parameters, the symmetry of the medium, yielding to a decoupling that can be applied in migration algorithms.

Objectives

- To design Riemannian coordinate systems that conform with the Euclidean ones in which a wavefield is to be extrapolated and propagate an acoustic Riemannian wavefield.
- To design Riemannian coordinate systems that conform with the Euclidean ones in which a wavefield is to be extrapolated and propagate an acoustic Riemannian wavefield.
- To formulate the theory of elastic wave propagation in Riemannian manifolds which include the anisotropy parameters and the simmetries of the media.
- To design Riemannian coordinate systems that conform with the Euclidean ones in which a wavefield is to be extrapolated and propagate an acoustic Riemannian wavefield.
- To formulate the theory of elastic wave propagation in Riemannian manifolds which include the anisotropy parameters and the simmetries of the media.
- To obtain the decoupling of the solutions to the Riemannian wave equation in terms of pseudodifferential operators and/or Fourier integral operators.

Objectives

- To design Riemannian coordinate systems that conform with the Euclidean ones in which a wavefield is to be extrapolated and propagate an acoustic Riemannian wavefield.
- To formulate the theory of elastic wave propagation in Riemannian manifolds which include the anisotropy parameters and the simmetries of the media.
- To obtain the decoupling of the solutions to the Riemannian wave equation in terms of pseudodifferential operators and/or Fourier integral operators.
- To show that the decoupling operators can be reduced to the propagation operators used in one way wave equation extrapolation such as GPSPI, NSPS and GPS.

Some references

1. Sava.P, Fomel.S. 2005.Riemannian Wave Field Extrapolation. Geophysics, 70,T45-T56.
2. Shragge. J. 2008. Riemannian Wave Field Extrapolation: Nonorthogonal Coordinate Systems: Geophysics, 73, T11-T21.
3. Yasutomi Y.2007.Modified Elastic Wave Equations On Riemannian and Kahler Manifolds. Pulb. RIMS, 43,471-504.
4. Shragge. J.2014. Solving the 3D acoustic wave equation on generalized structured meshes: A finite-difference time-domain approach. Geophysics, 79, 1-16.
5. Bale. R. 2006.Elastic wave equation depth migration of seismic data for Isotropic and Azimuthally Anisotropic media. Ph.D Thesis, University of Calgary.
6. Marsden. J, Hughes. T. 1983 Mathematical Foundations of Elasticity. DOVER PUBLICATIONS, INC, New York.
