
Reasoning about Functional Programs by Combining
Interactive and Automatic Proofs

Andrés Sicard-Ramírez1

(joint work with Ana Bove2 and Peter Dybjer2)

1EAFIT University, Colombia
2Chalmers University of Technology, Sweden

Seminar of the PhD in Mathematical Engineering
EAFIT University
8 September 2014



Our Goal

To build a computer-assisted framework for reasoning about programs
written in Haskell-like pure and lazy functional languages.
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Some Paradigms of Programming

Imperative: Describe computation in terms of state-transforming
operations such as assignment. Programming is done with statements.

Logic: Predicate calculus as a programming language. Programming is
done with sentences.

Functional: Describe computation in terms of (mathematical) functions.
Programming is done with expressions.

Examples

Imperative
⎧{
⎨{⎩

C
C + +
Java

Logic {CLP(R)
Prolog Functional

⎧{{{
⎨{{{⎩

Standard ML
Erlang

Pure
⎧{
⎨{⎩

Clean
Haskell
Idris
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Haskell: A Pure Functional Programming Language

Side effects
“A side effect introduces a dependency between the global state of the
system and the behaviour of a function ... Side effects are essentially
invisible inputs to, or outputs from, functions.”1

Pure functions
In Haskell all the functions are pure functions, i.e. they “take all their input
as explicit arguments, and produce all their output as explicit results.”2

Referential transparency
Equals can be replaced by equals.

1O’Sullivan, Bryan, John Goerzen and Don Stewart (2008). Real World Haskell, p. 27.
2Hutton, Graham (2007). Programming in Haskell, p. 87.
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Haskell: A Pure Functional Programming Language

“The first program to write is the
same for all languages: Print the
words hello, world.” (1978, §1.1)
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Haskell: A Pure Functional Programming Language

Example
The following C program prints ”hello, world” twice.

#include <stdio.h>

int
main (void)
{

printf ("hello, world");
printf ("hello, world");

return 0;
}
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Haskell: A Pure Functional Programming Language

Example
The following C program prints ”hello, world” once.

#include <stdio.h>

int
main (void)
{

int x;

x = printf ("hello, world");
x; x;

return 0;
}
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Haskell: A Pure Functional Programming Language

Example (Lists)
Haskell has built-in syntax for lists, where a list is either:

the empty list, written [], or
a first element x and a list xs, written length (x : xs).

Example (Pattern matching on lists)
length ∷ [Int] → Int
length [] = 0
length (x : xs) = 1 + length xs
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Haskell: A Pure Functional Programming Language

Example (Parametric polymorphism)
length ∷ [a] → Int
length [] = 0
length (x : xs) = 1 + length xs
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Haskell: A Pure Functional Programming Language

Lazy evaluation
Nothing is evaluated until necessary.

Example
take ∷ [Int] → [a] → [a]

squares ∷ [Int]
squares = [x ^ 2 | x ← [1..]]

Which is the value of take 5 squares? [1,4,9,16,25]
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Question

What if we have written a Haskell-like program and we want to
verify it?

How to deal with the possible use of general recursion?
(non-structural recursive, nested recursive, and higher-order recursive
functions, and guarded and unguarded co-recursive functions)
Remark: Most of the proof assistants lack a direct treatment for general
recursive functions.3

3Bove, Ana, Alexander Krauss and Mattieu Sozeau (2012). Partiality and Recursion
in Interactive Theorem Provers. An Overview.
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Programming Logics

Programming logic
A logic in which programs and specifications can be expressed and in which
it can be proved or disproved that a certain program meets a certain
specification.
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Proof Assistants

Proof assistant
An interactive computer system which helps with the development of
formal proofs.

Examples (incomplete list)
Name Version Language Logic Dependent

types
Agda 2.4.2 (Aug. 2014) Haskell Type theory Yes

Coq 8.4pl4 (May 2014) OCaml Type theory Yes

Isabelle Isabelle2014 (Aug.) Standard ML Higher-order
logic

No
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Automatising First-Order Logic Proofs

Automatic theorem provers for first-order logic (ATPs)
TPTP: a language understood by many off-the-shelf ATPs
The TPTP world: http://www.cs.miami.edu/~tptp/

The CADE ATP System Competition
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Our Main Contributions

1. What programming logic should we use?

We defined and formalised the First-Order Theory of Combinators:
Programs: Type-free extended versions of Plotkin’s PCF language
Specification language: First-order logic and predicates representing
the property of being a finite or a potentially infinite value
Inference rules: Conversion and discrimination rules for the term
language, introduction and elimination for the (co)-inductive
predicates
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Our Main Contributions

2. What proof assistant should we use?

We formalise our programming logic and our examples of verification of
functional programs in the Agda proof assistant:

we use Agda as a logical framework (meta-logical system for
formalising other logics) and
we use Agda’s proof engine:

i) support for inductively defined types including inductive families,
and function definitions using pattern matching on such types,

ii) normalisation during type-checking,
iii) commands for refining proof terms,
iv) coverage checker and
v) termination checker.
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Our Main Contributions

3. Can (part of) the job be automatic?

Yes! We can combine Agda interactive proofs and ATPs:
we provide a translation of our Agda representation of first-order
formulae into TPTP so we can use them when proving the properties
of our programs,
we extended Agda with an ATP-pragma, which instructs Agda to
interact with the ATPs, and
we wrote the Apia program, a Haskell program which uses Agda as a
Haskell library, performs the above translation and calls the ATPs.
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Source Codes

The programs and examples described are available as Git repositories at
GitHub:

The extended version of Agda: https://github.com/asr/eagda.
The Apia program: https://github.com/asr/apia.
The Agda implementation of our programming logics, some first-order
theories and examples of verification of functional programs:
https://github.com/asr/fotc.
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Thanks!


