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What is the Problem...?

◮ Consider an investor who has the possibility of investing in
n different risky assets

X = (X1, X2, . . . , Xn)

◮ The investor has to allocate his budget C to the different
risks. Without loss of generality C = 1

◮ The investor has many alternatives to invest given by

w = (ω1, ω2, . . . , ωn),

n
∑

i=1

ωi = 1, ωi ≥ 0, i = 1, . . . , n,

where ωi is the weight ( budget proportion ) assigned to the
risk Xi.
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What is the Problem...?

◮ The portfolio is the random variable

Pw =

n
∑

i=1

ωiXi

◮ Given
X = (X1, X2, . . . , Xn)

How does the investor find the best portfolio...?

◮ Some answers will be given in this talk
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What is the Problem...?
◮ Assume that an investor cares only about the mean and

variance of portfolio.
◮ A simple case of two risks

X = (X1, X2) such that E(X) = (µ1, µ2) and Σ =

(

σ2
1 σ12

σ12 σ2
2

)

◮ Let w = (ω1, ω2) be the vector of portfolio weights. Clearly
the portfolio is

Pw = ω1X1 + ω2X2 = ωX1 + (1− ω)X2, 0 ≤ ω ≤ 1.

◮ E(P
w
) = ωµ1 + (1− ω)µ2

V AR(P
w
) = ω2σ2

1
+ (1− ω)2σ2

2
+ 2ω(1− ω)σ12
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Let X = (X1, X2) such that
µ1 = 0.5, µ2 = 0.3, σ2

1 = 4, σ2
2 = 1, σ12 = 1. If ω = 1 , then

Pw = ωX1 + (1− ω)X2 = X1

E(Pw) = ωµ1 + (1− ω)µ2 = 0.5

V AR(Pw) = ω2σ2
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What is the Problem...?

Let X = (X1, X2) such that
µ1 = 0.5, µ2 = 0.3, σ2

1 = 4, σ2
2 = 1, σ12 = 1. If ω = 0 , then

Pw = ωX1 + (1− ω)X2 = X2

E(Pw) = ωµ1 + (1− ω)µ2 = 0.3

V AR(Pw) = ω2σ2
1 + (1 − ω)2σ2

2 + 2ω(1− ω)σ12 = 1

E(Pw)

V AR(Pw)

⋆P1
⋆P0
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Introduction a Fast Review

What is the Problem...?

Let X = (X1, X2) such that
µ1 = 0.5, µ2 = 0.3, σ2

1 = 4, σ2
2 = 1, σ12 = 1. If ω = 0.5 , then

Pw = ωX1 + (1− ω)X2 = 0.5X1 + 0.5X2

E(Pw) = ωµ1 + (1− ω)µ2 = 0.75

V AR(Pw) = ω2σ2
1 + (1 − ω)2σ2

2 + 2ω(1− ω)σ12 = 0.87

E(Pw)

V AR(Pw)

⋆P1
⋆P0

⋆P0.5
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The set of couples risk-return that cannot be improved at the same
time is called Efficient Frontier. Markowitz (1952)
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The set of couples risk-return that cannot be improved at the same
time is called Efficient Frontier. Markowitz (1952)
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Portfolio Problem

◮ Consider the random vector X = (X1, X2, . . . , Xn) and the
Portfolio Random Variable

Pw =

n
∑

i=1

ωiXi

◮ Let U be his/her subjective utility function. Assume that
U′ ≥ 0 and U′′ ≤ 0. Increasing and Concave

◮ The portfolio problem in this case is given by

max
w

EU (Pw) s.t.
n
∑

i=1

ωi = 1.
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Minimum- Variance Portfolio

Markowitz (1952)
An investor who cares only about the mean and variance should
hold a portfolio on the efficient frontier .

Given the mean-value the best portfolio is the solution to th e
optimization problem.

min
w

w
′Σw

s.t. E(Pw) = µ

n
∑

i=1

ωi = 1

If you have data you can use estimators for Σ and E(Xi).
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Solution Under Optimization

Maximum-Mean Portfolio

Following Markowitz Model (1952) this portfolio also will b e on
the efficient frontier . Therefore, given the variance, the best
portfolio is the solution to the optimization problem

max
w

E(Pw)

s.t. w
′Σw = σ

n
∑

i=1

ωi = 1

If you have data you can use estimators for Σ and E(Xi).
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max
w

w
′Σw− 1

α
E(Pw)

s.t.
n
∑

ωi = 1. α is the risk-aversion parameter
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α
E(Pw)

s.t.
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∑

ωi = 1. α > 1 is the risk-aversion parameter
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Puerta and Laniado (2010)
Let X = (X1, . . . , Xn) be a risky assets vector.

Pw =
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ωiXi, ωi =

1
ρ(Xi)

∑n
i=1

1
ρ(Xi)

ρ is a univariate positive risk measure.
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Risk Inverse Weighting Analysis PIR

Puerta and Laniado (2010)
Let X = (X1, . . . , Xn) be a risky assets vector.

Pw =

n
∑

i=1

ωiXi, ωi =

1
ρ(Xi)

∑n
i=1

1
ρ(Xi)

ρ is a univariate positive risk measure.

Less Weight to Higher Risk
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Risk Inverse Weighting Analysis

DeMiguel et al. (2009) and Muller and Stoyan (2002) showed th e
advantages of using 1

n
-rule (Naive Portfolio) .

Pw =

n
∑

i=1

ωiXi =

n
∑

i=1

1

n
Xi

◮ if X = (X1, . . . , Xn) is exhangeable, then PIR ≡ 1
n

-rule
◮ if X = (X1, . . . , Xn) is comonotonic and ρ is comonotonic

risk measure, then the risk of PIR is smaller than the risk of
1
n

-rule.
◮ if X = (X1, X2), the variance of PIR is smaller than the

variance of 1
n

-rule.
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Portfolio Problem

◮ Consider the random vector X = (X1, X2, . . . , Xn) and the
Portfolio Random Variable

Pw =
n
∑

i=1

ωiXi

◮ Let U be his/her subjective utility function. Assume that
U′ ≥ 0 and U′′ ≤ 0. Increasing and Concave

◮ The portfolio problem in this case is given by

max
w

EU (Pw) s.t.
n
∑

i=1

ωi = 1.
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Portfolio Problem

max
w

EU (Pw) s.t.
n
∑

i=1

ωi = 1. (1)

Hadar and Russel (1971)
Investigated the problem (1) for iid random variables in the
bivariate case. They showed that the solution to the problem (1)
is the 1

n
-rule

P∗

w
= P 1

2
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Portfolio Problem

max
w

EU (Pw) s.t.
n
∑

i=1

ωi = 1. (1)

Hadar and Russel (1971)
Investigated the problem (1) for iid random variables in the
bivariate case. They showed that the solution to the problem (1)
is the 1

n
-rule

P∗

w
= P 1

2

Ma (2000)
Showed that if (X1, X2, . . . , Xn) are exchangeable . Then the
solution of (1) is the 1

n
-rule .

P∗

w
= P 1

n
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Portfolio Problem

max
w

EU (Pw) s.t.
n
∑

i=1

ωi = 1. (2)

Pellerey and Semeraro (2005)
They considered X = (X1, X2), S = X1 +X2 and D = X2 −X1.
They showed that if (S,D) is PQD and E(X2) ≤ E(X1), then

EU [(1− α)X1 + αX2]

is decreasing in α ∈ [ 12 , 1].
The solution to the problem (2) is the 1

n
-rule

P∗

w = P 1
2
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Portfolio Problem

Laniado et al. (2012)
Consider X = (X1, X2) and assume that there is a vector
u = (u1, u2) with ‖ u ‖= 1. If
(

u1 u2

−u2 u1

)(

X1

X2

)

is PQD and u1E(X2)− u2E(X1) ≤ 0.

E

[

U

(√
2

2
(u1 + u2 − 2u2α)X1 +

√
2

2
(2u1α− u1 + u2)X2

)]

is decreasing in α ∈ [ 12 , 1].
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Portfolio Problem

Laniado et al. (2012)
Consider X = (X1, X2) and assume that there is a vector
u = (u1, u2) with ‖ u ‖= 1. If
(

u1 u2

−u2 u1

)(

X1

X2

)

is PQD and u1E(X2)− u2E(X1) ≤ 0.

E

[

U

(√
2

2
(u1 + u2 − 2u2α)X1 +

√
2

2
(2u1α− u1 + u2)X2

)]

is decreasing in α ∈ [ 12 , 1].

P∗

w
=

√
2

2
u1X1 +

√
2

2
u2X2
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Elliptical Distributions

Definition
The random vector X = (X1, . . . , Xn)

′ is said to have an elliptical
distribution with parameters µ and Σ if its characteristic function
can be expressed as

E[exp(it′X)] = exp(it′µ)φ (t′Σt) , t = (t1, . . . , tn)
′, (3)

for some function φ, and if Σ is such that Σ = AA
′ for some

matrix A(n×m).
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Property

Laniado et al. (2012)
Let X = (X1, X2) be a random vector elliptically distributed with
parameters µ = 0 and ΣX. Then there exists a rotation matrix
such that RX is exchangeable.
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Solution and Comparison of Portfolios under Stochastic Ord ers

Property

Laniado et al. (2012)
Let X = (X1, X2) be a random vector elliptically distributed with
parameters µ = 0 and ΣX. Then there exists a rotation matrix
such that RX is exchangeable.

R =

√
2

2

(

q11 + q21 q21 − q11
q11 − q21 q11 + q21

)

.

ΣX = QDQ′ and Q = (qij)
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Elliptical Distribution

X
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Rotated Elliptical Distribution

RX
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Solution and Comparison of Portfolios under Stochastic Ord ers

Theorem 3.A.35. Shaked and Shanthikumar (2007)
Let X1, . . . , Xn be exchangeable random variables. Let
a = (a1, . . . , an)

′ and b = (b1, . . . , bn)
′ such that a ≺ b, then

n
∑

i=1

aiXi ≥cv

n
∑

i=1

biXi

Laniado et al. (2012)
Let X = (X1, X2)

′ be elliptically distributed such that EX = 0 and
let a = (a1, a2)

′ and b = (b1, b2)
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with parameters µX = 0 and ΣX is such that it has at least n− 1
equal eigenvalues given by λ1 ≥ λ2 = · · · = λn = λ > 0. Then
there exists a rotation matrix R such that RX has exchangeable
components.

If a = (a1, . . . , an)
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a
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′RX

For any concave function f

EU (a′RX) ≥ EU (b′RX) .

In particular for an utility function U
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X ≤icx Y ⇐⇒ E[φ(X)] ≤ E[φ(Y )],

for all increasing concave function φ for which the expectation
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Therefore, given the portfolios Pω1 and Pω2 such that

Pω1 ≤icv Pω2 ,

then an investor with increasing and concave utility functi on
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Alternative efficient frontiers
Let Θ be a set of k criteria for evaluating the performance of the
portfolio.
In the classical Markowitz model k = 2 and corresponds to mean and
variance of the portfolio. Consider any criterion ci ∈ Θ, i = 1, . . . , k and
denote.

θci =

{

1 if the investor wants a portfolio with a low value of the crite rion ci

−1 if the investor wants a portfolio with a high value of the crit erion ci

For example, if

Θ = {return , risk , Sharpe-ratio , entropy } = {c1, c2, c3, c4},

then

θreturn = θc1 = −1, θrisk = θc2 = 1, θSr = θc3 = −1, θentropy = θc4 = −1.
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Portfolio selection under extremality
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Application to real data

Table: Portfolios notation in this work

Criteria returns and variance returns and Sharpe ratio
Portfolio notation P12 P13

Criteria returns and entropy variance and Sharpe ratio
Portfolio notation P14 P23

Criteria variance and entropy Sharpe ratio and entropy
Portfolio notation P24 P34

Table: Portfolios notation for comparisons

1
n

Equally-weighted Portfolio
MEAN Mean-variance portfolio with shortsales constrained

MEANU Mean-Variance portfolio with shortsales unconstrained
MIN Minimum-Variance portfolio with shortsales constrained

MINU Minimum-Variance portfolio with shortsales unconstrained
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Results
Test proposed by Memmel (2003). 1

n
-rule is a good benchmark DeMiguel et al. (2009b)

Table: Portfolio Sharpe ratios

Strategy 5Spain 6Spain 10Spain 25Spain 40Spain 48Ind 8Indexes

in this work
P12 0.7218

(0.6948)
0.5333
(0.1315)

0.5498
(0.0418)

0.5006
(0.0314)

0.3700
(0.0956)

0.2929
(0.0965)

0.1070
(0.3158)

P13 0.7478
(0.6084)

0.5279
(0.1399)

0.5989
(0.0378)

0.5056
(0.0854)

0.4044
(0.0179)

0.2789
(0.5170)

0.1003
(0.4829)

P14 0.7196
(0.6466)

0.4391
(0.0519)

0.4438
(0.2303)

0.4558
(0.0978)

0.3564
(0.0819)

0.2793
(0.3309)

0.0896
(0.8759)

P23 0.7080
(0.9093)

0.4962
(0.2988)

0.5375
(0.1723)

0.5406
(0.0178)

0.3166
(0.5215)

0.2801
(0.4466)

0.0985
(0.5582)

P24 0.6941
(0.8454)

0.3446
(0.3012)

0.3656
(0.7308)

0.4735
(0.0610)

0.3182
(0.5137)

0.2836
(0.1533)

0.0848
(0.6856)

P34 0.7114
(0.6893)

0.4308
(0.1397)

0.4881
(0.0025)

0.4514
(0.0198)

0.3766
(0.0204)

0.2731
(0.8809)

0.0910
(0.7383)

for comparison
1/n 0.6997 0.3753 0.3815 0.3791 0.2955 0.2719 0.0883

MEAN 0.4132
(0.0750)

0.0804
(0.1902)

0.1075
(0.1999)

0.2213
(0.4145)

−0.1400
(0.0024)

0.2296
(0.4806)

0.0555
(0.7131)

MEANU 0.6632
(0.7598)

0.4750
(0.3314)

0.5354
(0.1060)

0.4201
(0.8452)

0.1960
(0.6209)

0.0921
(0.0519)

−0.0267
(0.4246)

MIN 0.6502
(0.5314)

0.1373
(0.2605)

0.2745
(0.5303)

0.2881
(0.5073)

0.3500
(0.5276)

0.2293
(0.4326)

0.0961
(0.8968)

MINU 0.6199
(0.4932)

0.0871
(0.1989)

0.2577
(0.4981)

−0.1271
(0.0276)

0.0012
(0.0948)

0.1123
(0.0393)

−0.0426
(0.0640)
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◮ A fast review of different approaches to face the portfolio

selection problem
◮ The strategy PIR was introduced as a novel methodology

and easy of implementing which it has advantages on the 1
n
.

◮ If the random variables represents risky assets, we look for
rotations of the distribution such that, the rotated
distribution satisfies conditions already studied in the
literature allowing to find one portfolio that maximizes an
utility function.

◮ For the case of random variables elliptically distributed w ith
mean zero, in n = 2 we showed that always is possible to
find a rotation where the rotated distribution has
exchangeable components so we can find what linear
combinations of the random variables improve an utility
function.

◮ New concept of efficient frontier was introduced, taking int o
account different criteria considered in Markowitz Model
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◮ Find good estimation for the variance and covariance matrix
◮ Consider the the result of the PIR strategy for high

dimensions
◮ Study conditions under which some other distributions can
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