On The Portfolio Selection Problem
 Henry Laniado
 hlaniado@gmail.com

Medellín, Abril 2015

Outline

1. Introduction a Fast Review
2. Solution Under Optimization, Mean-Variance
3. Solution Under Stochastic Order, Utility Function
4. Solution Under Simulation, Extremality
5. Conclusions and open problems
6. References

Indice

Introduction a Fast Review

Solution Under Optimization

Solution and Comparison of Portfolios under Stochastic Orders
Solution under Simulation
Conclusions
Futurer Research Lines
References

What is the Problem...?

What is the Problem...?

- Consider an investor who has the possibility of investing in n different risky assets

$$
\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

What is the Problem...?

- Consider an investor who has the possibility of investing in n different risky assets

$$
\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

- The investor has to allocate his budget C to the different risks. Without loss of generality $C=1$

What is the Problem...?

- Consider an investor who has the possibility of investing in n different risky assets

$$
\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

- The investor has to allocate his budget C to the different risks. Without loss of generality $C=1$
- The investor has many alternatives to invest given by

$$
\mathbf{w}=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right), \quad \sum_{i=1}^{n} \omega_{i}=1, \omega_{i} \geq 0, i=1, \ldots, n,
$$

where ω_{i} is the weight (budget proportion) assigned to the risk X_{i}.

What is the Problem...?

- The portfolio is the random variable

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}
$$

What is the Problem...?

- The portfolio is the random variable

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}
$$

- Given

$$
\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

How does the investor find the best portfolio...?

What is the Problem...?

- The portfolio is the random variable

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}
$$

- Given

$$
\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

How does the investor find the best portfolio...?
-
Some answers will be given in this talk

What is the Problem...?

- Assume that an investor cares only about the mean and variance of portfolio.
- A simple case of two risks
$\mathbf{X}=\left(X_{1}, X_{2}\right)$ such that $E(\mathbf{X})=\left(\mu_{1}, \mu_{2}\right)$ and $\Sigma=\left(\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2}\end{array}\right)$

What is the Problem...?

- Assume that an investor cares only about the mean and variance of portfolio.
- A simple case of two risks
$\mathbf{X}=\left(X_{1}, X_{2}\right)$ such that $E(\mathbf{X})=\left(\mu_{1}, \mu_{2}\right)$ and $\Sigma=\left(\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2}\end{array}\right)$
- Let $\mathbf{w}=\left(\omega_{1}, \omega_{2}\right)$ be the vector of portfolio weights. Clearly the portfolio is

$$
\mathcal{P}_{\mathbf{w}}=\omega_{1} X_{1}+\omega_{2} X_{2}=\omega X_{1}+(1-\omega) X_{2}, \quad 0 \leq \omega \leq 1 .
$$

What is the Problem...?

- Assume that an investor cares only about the mean and variance of portfolio.
- A simple case of two risks
$\mathbf{X}=\left(X_{1}, X_{2}\right)$ such that $E(\mathbf{X})=\left(\mu_{1}, \mu_{2}\right)$ and $\Sigma=\left(\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2}\end{array}\right)$
- Let $\mathbf{w}=\left(\omega_{1}, \omega_{2}\right)$ be the vector of portfolio weights. Clearly the portfolio is

$$
\mathcal{P}_{\mathbf{w}}=\omega_{1} X_{1}+\omega_{2} X_{2}=\omega X_{1}+(1-\omega) X_{2}, \quad 0 \leq \omega \leq 1 .
$$

- $E\left(\mathcal{P}_{\mathbf{w}}\right)=\omega \mu_{1}+(1-\omega) \mu_{2}$

$$
V A R\left(\mathcal{P}_{\mathbf{w}}\right)=\omega^{2} \sigma_{1}^{2}+(1-\omega)^{2} \sigma_{2}^{2}+2 \omega(1-\omega) \sigma_{12}
$$

What is the Problem...?

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)$ such that
$\mu_{1}=0.5, \quad \mu_{2}=0.3, \quad \sigma_{1}^{2}=4, \sigma_{2}^{2}=1, \quad \sigma_{12}=1$. If $\omega=1$, then

$$
\begin{aligned}
& \mathcal{P}_{\mathbf{w}}=\omega X_{1}+(1-\omega) X_{2}=X_{1} \\
& E\left(\mathcal{P}_{\mathbf{w}}\right)=\omega \mu_{1}+(1-\omega) \mu_{2}=0.5 \\
& \operatorname{VAR}\left(\mathcal{P}_{\mathbf{w}}\right)=\omega^{2} \sigma_{1}^{2}+(1-\omega)^{2} \sigma_{2}^{2}+2 \omega(1-\omega) \sigma_{12}=4 \\
& \\
& \qquad \begin{array}{l}
\mathrm{p}) \\
V A R\left(\mathcal{P}_{\mathbf{w}}\right)
\end{array}
\end{aligned}
$$

What is the Problem...?

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)$ such that
$\mu_{1}=0.5, \quad \mu_{2}=0.3, \quad \sigma_{1}^{2}=4, \sigma_{2}^{2}=1, \quad \sigma_{12}=1$. If $\omega=1$, then

$$
\begin{aligned}
& \mathcal{P}_{\mathbf{w}}=\omega X_{1}+(1-\omega) X_{2}=X_{1} \\
& E\left(\mathcal{P}_{\mathbf{w}}\right)=\omega \mu_{1}+(1-\omega) \mu_{2}=0.5 \\
& \operatorname{VAR}\left(\mathcal{P}_{\mathbf{w}}\right)=\omega^{2} \sigma_{1}^{2}+(1-\omega)^{2} \sigma_{2}^{2}+2 \omega(1-\omega) \sigma_{12}=4 \\
& \left.\boldsymbol{\star}_{\mathbf{w}}\right) \\
& \operatorname{VAR(\mathcal {P}_{\mathbf {w}})}
\end{aligned}
$$

What is the Problem...?

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)$ such that
$\mu_{1}=0.5, \quad \mu_{2}=0.3, \quad \sigma_{1}^{2}=4, \quad \sigma_{2}^{2}=1, \quad \sigma_{12}=1$. If $\omega=0$, then

$$
\begin{aligned}
& \mathcal{P}_{\mathbf{w}}=\omega X_{1}+(1-\omega) X_{2}=X_{2} \\
& E\left(\mathcal{P}_{\mathbf{w}}\right)=\omega \mu_{1}+(1-\omega) \mu_{2}=0.3 \\
& \operatorname{VAR(\mathcal {P}_{\mathbf {w}})=\omega ^{2}\sigma _{1}^{2}+(1-\omega)^{2}\sigma _{2}^{2}+2\omega (1-\omega)\sigma _{12}=1} \\
& \qquad \begin{array}{c}
\left.\star_{\mathbf{w}}\right) \\
\operatorname{V\mathcal {P}_{1}} \\
\end{array}
\end{aligned}
$$

What is the Problem...?

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)$ such that
$\mu_{1}=0.5, \quad \mu_{2}=0.3, \quad \sigma_{1}^{2}=4, \quad \sigma_{2}^{2}=1, \quad \sigma_{12}=1$. If $\omega=0.5$, then

$$
\begin{aligned}
& \mathcal{P}_{\mathbf{w}}=\omega X_{1}+(1-\omega) X_{2}=0.5 X_{1}+0.5 X_{2} \\
& E\left(\mathcal{P}_{\mathbf{w}}\right)=\omega \mu_{1}+(1-\omega) \mu_{2}=0.75 \\
& \operatorname{VAR}\left(\mathcal{P}_{\mathbf{w}}\right)=\omega^{2} \sigma_{1}^{2}+(1-\omega)^{2} \sigma_{2}^{2}+2 \omega(1-\omega) \sigma_{12}=0.87
\end{aligned}
$$

What is the Problem...?

Figure: Mean-Variance for Different ω Values.

What is the Problem...?

Figure: Mean-Variance for Different ω Values.

$$
\mathrm{S}=\frac{E\left(\mathcal{P}_{\omega}\right)}{\operatorname{VAR}\left(\mathcal{P}_{\omega}\right)}
$$

On The Portfolio Selection Problem

LIntroduction a Fast Review

What is the Problem...?

Figure: Mean-Variance for Different ω Values.

$$
\mathbf{S}=\frac{E\left(\mathcal{P}_{\omega}\right)}{\operatorname{VAR}\left(\mathcal{P}_{\omega}\right)}
$$

On The Portfolio Selection Problem

LIntroduction a Fast Review

What is the Problem...?

Figure: Mean-Variance for Different ω Values.

$$
\mathrm{S}=\frac{E\left(\mathcal{P}_{\omega}\right)}{\operatorname{VAR}\left(\mathcal{P}_{\omega}\right)}
$$

On The Portfolio Selection Problem

LIntroduction a Fast Review

What is the Problem...?

Figure: Mean-Variance for Different ω Values.

$$
\mathrm{S}=\frac{E\left(\mathcal{P}_{\omega}\right)}{\operatorname{VAR}\left(\mathcal{P}_{\omega}\right)}
$$

What is the Problem...?

Figure: Mean-Variance for Different ω Values.

$$
\mathrm{S}=\frac{E\left(\mathcal{P}_{\omega}\right)}{\operatorname{VAR}\left(\mathcal{P}_{\omega}\right)}
$$

On The Portfolio Selection Problem

LIntroduction a Fast Review

What is the Problem...?

Figure: Mean-Variance for Different ω Values.

$$
\mathbf{S}=\frac{E\left(\mathcal{P}_{\omega}\right)}{\operatorname{VAR}\left(\mathcal{P}_{\omega}\right)}
$$

Efficient Frontier

Figure: Feasible Portfolios

The set of couples risk-return that cannot be improved at the same time is called Efficient Frontier. Markowitz (1952)

Efficient Frontier

Figure: Efficient Portfolios

The set of couples risk-return that cannot be improved at the same time is called Efficient Frontier. Markowitz (1952)

On The Portfolio Selection Problem

LIntroduction a Fast Review

Efficient Frontier

Figure: Best Portfolio

$$
\mathbf{S}=\frac{E\left(\mathcal{P}_{\omega}\right)}{\operatorname{VAR}\left(\mathcal{P}_{\omega}\right)}
$$

Portfolio Problem

- Consider the random vector $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and the Portfolio Random Variable

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}
$$

Portfolio Problem

- Consider the random vector $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and the Portfolio Random Variable

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}
$$

- Let \mathfrak{U} be his/her subjective utility function. Assume that $\mathfrak{U}^{\prime} \geq 0$ and $\mathfrak{U}^{\prime \prime} \leq 0$. Increasing and Concave

Portfolio Problem

- Consider the random vector $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and the Portfolio Random Variable

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}
$$

- Let \mathfrak{U} be his/her subjective utility function. Assume that $\mathfrak{U}^{\prime} \geq 0$ and $\mathfrak{U}^{\prime \prime} \leq 0$. Increasing and Concave
- The portfolio problem in this case is given by

$$
\max _{\mathbf{w}} E \mathfrak{U}\left(\mathcal{P}_{\mathbf{w}}\right) \quad \text { s.t. } \quad \sum_{i=1}^{n} \omega_{i}=1
$$

Indice

Introduction a Fast Review

Solution Under Optimization

Solution and Comparison of Portfolios under Stochastic Orders

Solution under Simulation

Conclusions

Futurer Research Lines

References

Efficient Frontier

Figure: Best Portfolio

Efficient Frontier

Figure: Best Portfolio

Minimum- Variance Portfolio

Markowitz (1952)
An investor who cares only about the mean and variance should hold a portfolio on the efficient frontier.

Minimum- Variance Portfolio

Markowitz (1952)
An investor who cares only about the mean and variance should hold a portfolio on the efficient frontier.
Given the mean-value the best portfolio is the solution to the optimization problem.

$$
\min _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}
$$

s.t. $E\left(\mathcal{P}_{\mathbf{w}}\right)=\mu$

$$
\sum_{i=1}^{n} \omega_{i}=1
$$

Minimum- Variance Portfolio

Markowitz (1952)
An investor who cares only about the mean and variance should hold a portfolio on the efficient frontier.
Given the mean-value the best portfolio is the solution to the optimization problem.

$$
\begin{array}{ll}
\min _{\mathbf{w}} & \mathbf{w}^{\prime} \Sigma \mathbf{w} \\
\text { s.t. } & E\left(\mathcal{P}_{\mathbf{w}}\right)=\mu \\
& \sum_{i=1}^{n} \omega_{i}=1
\end{array}
$$

If you have data you can use estimators for Σ and $E\left(X_{i}\right)$.

Efficient Frontier

Figure: Best Portfolio

Efficient Frontier

Figure: Best Portfolio

Maximum-Mean Portfolio

Following Markowitz Model (1952) this portfolio also will be on the efficient frontier. Therefore, given the variance, the best portfolio is the solution to the optimization problem

Maximum-Mean Portfolio

Following Markowitz Model (1952) this portfolio also will be on the efficient frontier. Therefore, given the variance, the best portfolio is the solution to the optimization problem

$$
\begin{array}{rl}
\max _{\mathbf{w}} & E\left(\mathcal{P}_{\mathbf{w}}\right) \\
\text { s.t. } & \mathbf{w}^{\prime} \Sigma \mathbf{w}=\sigma \\
& \sum_{i=1}^{n} \omega_{i}=1
\end{array}
$$

If you have data you can use estimators for Σ and $E\left(X_{i}\right)$.

Mean-Variance Portfolio

Figure: Best Portfolio

$$
\max _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}-\frac{1}{\alpha} E\left(\mathcal{P}_{\mathbf{w}}\right)
$$

s.t. $\sum^{n} \omega_{i}=1 . \alpha$ is the risk-aversion parameter

Mean-Variance Portfolio

Figure: Best Portfolio
$\max _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}-\frac{1}{\alpha} E\left(\mathcal{P}_{\mathbf{w}}\right)$
s.t. $\sum^{n} \omega_{i}=1 . \alpha=1$ is the risk-aversion parameter

Mean-Variance Portfolio

Figure: Best Portfolio
$\max _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}-\frac{1}{\alpha} E\left(\mathcal{P}_{\mathbf{w}}\right)$
s.t. $\sum^{n} \omega_{i}=1 . \alpha=1$ is the risk-aversion parameter

Mean-Variance Portfolio

Figure: Best Portfolio
$\max _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}-\frac{1}{\alpha} E\left(\mathcal{P}_{\mathbf{w}}\right)$
s.t. $\sum^{n} \omega_{i}=1 . \alpha=1$ is the risk-aversion parameter

Mean-Variance Portfolio

Figure: Best Portfolio
$\max _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}-\frac{1}{\alpha} E\left(\mathcal{P}_{\mathbf{w}}\right)$
s.t. $\sum^{n} \omega_{i}=1 . \alpha=1$ is the risk-aversion parameter

Mean-Variance Portfolio

Figure: Best Portfolio
$\max _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}-\frac{1}{\alpha} E\left(\mathcal{P}_{\mathbf{w}}\right)$
s.t. $\sum^{n} \omega_{i}=1 . \alpha>1$ is the risk-aversion parameter

Mean-Variance Portfolio

Figure: Best Portfolio
$\max _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}-\frac{1}{\alpha} E\left(\mathcal{P}_{\mathbf{w}}\right)$
s.t. $\sum^{n} \omega_{i}=1 . \alpha>1$ is the risk-aversion parameter

Mean-Variance Portfolio

Figure: Best Portfolio
$\max _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}-\frac{1}{\alpha} E\left(\mathcal{P}_{\mathbf{w}}\right)$
s.t. $\sum^{n} \omega_{i}=1 . \alpha>1$ is the risk-aversion parameter

Mean-Variance Portfolio

Figure: Best Portfolio

$$
\max _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}-\frac{1}{\alpha} E\left(\mathcal{P}_{\mathbf{w}}\right)
$$

s.t. $\sum^{n} \omega_{i}=1 . \quad \alpha \longrightarrow \infty$ is the risk-aversion parameter

Mean-Variance Portfolio

Figure: Best Portfolio

$$
\max _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}-\frac{1}{\alpha} E\left(\mathcal{P}_{\mathbf{w}}\right)
$$

s.t. $\sum^{n} \omega_{i}=1 . \quad \alpha \longrightarrow \infty$ is the risk-aversion parameter

Mean-Variance Portfolio

Figure: Best Portfolio
$\max _{\mathbf{w}} \mathbf{w}^{\prime} \Sigma \mathbf{w}-\frac{1}{\alpha} E\left(\mathcal{P}_{\mathbf{w}}\right)$
s.t. $\sum^{n} \omega_{i}=1 . \quad \alpha \longrightarrow \infty$ is the risk-aversion parameter

Risk Inverse Weighting Analysis PIR

Puerta and Laniado (2010)

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a risky assets vector.

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}, \quad \omega_{i}=\frac{\frac{1}{\rho\left(X_{i}\right)}}{\sum_{i=1}^{n} \frac{1}{\rho\left(X_{i}\right)}}
$$

ρ is a univariate positive risk measure.

Risk Inverse Weighting Analysis PIR

Puerta and Laniado (2010)

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a risky assets vector.

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}, \quad \omega_{i}=\frac{\frac{1}{\rho\left(X_{i}\right)}}{\sum_{i=1}^{n} \frac{1}{\rho\left(X_{i}\right)}}
$$

ρ is a univariate positive risk measure.
Less Weight to Higher Risk

Risk Inverse Weighting Analysis

DeMiguel et al. (2009) and Muller and Stoyan (2002) showed the advantages of using $\frac{1}{n}$-rule (Naive Portfolio).

Risk Inverse Weighting Analysis

DeMiguel et al. (2009) and Muller and Stoyan (2002) showed the advantages of using $\frac{1}{n}$-rule (Naive Portfolio).

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}=\sum_{i=1}^{n} \frac{1}{n} X_{i}
$$

Risk Inverse Weighting Analysis

DeMiguel et al. (2009) and Muller and Stoyan (2002) showed the advantages of using $\frac{1}{n}$-rule (Naive Portfolio).

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}=\sum_{i=1}^{n} \frac{1}{n} X_{i}
$$

- if $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is exhangeable, then $\mathbf{P I R} \equiv \frac{1}{n}$-rule

Risk Inverse Weighting Analysis

DeMiguel et al. (2009) and Muller and Stoyan (2002) showed the advantages of using $\frac{1}{n}$-rule (Naive Portfolio).

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}=\sum_{i=1}^{n} \frac{1}{n} X_{i}
$$

- if $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is exhangeable, then $\mathbf{P I R} \equiv \frac{1}{n}$-rule
- if $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is comonotonic and ρ is comonotonic risk measure, then the risk of PIR is smaller than the risk of $\frac{1}{n}$-rule.

Risk Inverse Weighting Analysis

DeMiguel et al. (2009) and Muller and Stoyan (2002) showed the advantages of using $\frac{1}{n}$-rule (Naive Portfolio).

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}=\sum_{i=1}^{n} \frac{1}{n} X_{i}
$$

- if $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is exhangeable, then $\mathbf{P I R} \equiv \frac{1}{n}$-rule
- if $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is comonotonic and ρ is comonotonic risk measure, then the risk of PIR is smaller than the risk of $\frac{1}{n}$-rule.
- if $\mathbf{X}=\left(X_{1}, X_{2}\right)$, the variance of $\mathbf{P I R}$ is smaller than the variance of $\frac{1}{n}$-rule.

Indice

Introduction a Fast Review Solution Under Optimization

Solution and Comparison of Portfolios under Stochastic Orders
Solution under Simulation

Conclusions
Futurer Research Lines
References

Portfolio Problem

- Consider the random vector $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and the Portfolio Random Variable

$$
\mathcal{P}_{\mathbf{w}}=\sum_{i=1}^{n} \omega_{i} X_{i}
$$

- Let \mathfrak{U} be his/her subjective utility function. Assume that $\mathfrak{U}^{\prime} \geq 0$ and $\mathfrak{U}^{\prime \prime} \leq 0$. Increasing and Concave
- The portfolio problem in this case is given by

$$
\max _{\mathbf{w}} E \mathfrak{U}\left(\mathcal{P}_{\mathbf{w}}\right) \quad \text { s.t. } \quad \sum_{i=1}^{n} \omega_{i}=1
$$

Portfolio Problem

$$
\begin{aligned}
& \max _{\mathbf{w}} E U\left(\mathcal{P}_{\mathbf{w}}\right) \mathrm{s} \\
& \text { Russel (1971) }
\end{aligned}
$$

Hadar and Russel (1971)

Investigated the problem (1) for iid random variables in the bivariate case. They showed that the solution to the problem (1) is the $\frac{1}{n}$-rule

$$
\mathcal{P}_{\mathbf{w}}^{*}=\mathcal{P}_{\frac{1}{2}}
$$

Portfolio Problem

$$
\begin{equation*}
\max _{\mathbf{w}} E U\left(\mathcal{P}_{\mathbf{w}}\right) \quad \text { s.t. } \tag{1}
\end{equation*}
$$

$$
\sum_{i=1}^{n} \omega_{i}=1
$$

Hadar and Russel (1971)

Investigated the problem (1) for iid random variables in the bivariate case. They showed that the solution to the problem (1) is the $\frac{1}{n}$-rule

$$
\mathcal{P}_{\mathbf{w}}^{*}=\mathcal{P}_{\frac{1}{2}}
$$

Ma (2000)
Showed that if $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are exchangeable. Then the solution of (1) is the $\frac{1}{n}$-rule.

$$
\mathcal{P}_{\mathbf{w}}^{*}=\mathcal{P}_{\frac{1}{n}}
$$

Portfolio Problem

$$
\begin{equation*}
\max _{\mathbf{w}} E U\left(\mathcal{P}_{\mathbf{w}}\right) \quad \text { s.t. } \quad \sum_{i=1}^{n} \omega_{i}=1 \tag{2}
\end{equation*}
$$

Pellerey and Semeraro (2005)

They considered $\mathbf{X}=\left(X_{1}, X_{2}\right), S=X_{1}+X_{2}$ and $D=X_{2}-X_{1}$. They showed that if (S, D) is $P Q D$ and $E\left(X_{2}\right) \leq E\left(X_{1}\right)$, then

$$
E U\left[(1-\alpha) X_{1}+\alpha X_{2}\right]
$$

is decreasing in $\alpha \in\left[\frac{1}{2}, 1\right]$.
The solution to the problem (2) is the $\frac{1}{n}$-rule

$$
\mathcal{P}_{\mathbf{w}}^{*}=\mathcal{P}_{\frac{1}{2}}
$$

Portfolio Problem

Laniado et al. (2012)

Consider $\mathbf{X}=\left(X_{1}, X_{2}\right)$ and assume that there is a vector $\mathbf{u}=\left(u_{1}, u_{2}\right)$ with $\|\mathbf{u}\|=1$. If

$$
\begin{aligned}
& \left(\begin{array}{cc}
u_{1} & u_{2} \\
-u_{2} & u_{1}
\end{array}\right)\binom{X_{1}}{X_{2}} \text { is } P Q D \quad \text { and } \quad u_{1} E\left(X_{2}\right)-u_{2} E\left(X_{1}\right) \leq 0 . \\
& E\left[U\left(\frac{\sqrt{2}}{2}\left(u_{1}+u_{2}-2 u_{2} \alpha\right) X_{1}+\frac{\sqrt{2}}{2}\left(2 u_{1} \alpha-u_{1}+u_{2}\right) X_{2}\right)\right]
\end{aligned}
$$

is decreasing in $\alpha \in\left[\frac{1}{2}, 1\right]$.

Portfolio Problem

Laniado et al. (2012)

Consider $\mathbf{X}=\left(X_{1}, X_{2}\right)$ and assume that there is a vector $\mathbf{u}=\left(u_{1}, u_{2}\right)$ with $\|\mathbf{u}\|=1$. If

$$
\begin{aligned}
& \left(\begin{array}{cc}
u_{1} & u_{2} \\
-u_{2} & u_{1}
\end{array}\right)\binom{X_{1}}{X_{2}} \text { is } P Q D \quad \text { and } \quad u_{1} E\left(X_{2}\right)-u_{2} E\left(X_{1}\right) \leq 0 . \\
& E\left[U\left(\frac{\sqrt{2}}{2}\left(u_{1}+u_{2}-2 u_{2} \alpha\right) X_{1}+\frac{\sqrt{2}}{2}\left(2 u_{1} \alpha-u_{1}+u_{2}\right) X_{2}\right)\right]
\end{aligned}
$$

is decreasing in $\alpha \in\left[\frac{1}{2}, 1\right]$.

$$
\mathcal{P}_{\mathbf{w}}^{*}=\frac{\sqrt{2}}{2} u_{1} X 1+\frac{\sqrt{2}}{2} u_{2} X 2
$$

Elliptical Distributions

Definition
The random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ is said to have an elliptical distribution with parameters μ and Σ if its characteristic function can be expressed as

$$
\begin{equation*}
E\left[\exp \left(i \mathbf{t}^{\prime} X\right)\right]=\exp \left(i \mathbf{t}^{\prime} \mu\right) \phi\left(\mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t}\right), \quad \mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)^{\prime} \tag{3}
\end{equation*}
$$

for some function ϕ, and if Σ is such that $\Sigma=\mathbf{A A}^{\prime}$ for some matrix $\mathbf{A}(n \times m)$.

Property

Laniado et al. (2012)

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)$ be a random vector elliptically distributed with parameters $\mu=0$ and $\Sigma_{\mathbf{X}}$. Then there exists a rotation matrix such that $\mathcal{R X}$ is exchangeable.

Property

Laniado et al. (2012)

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)$ be a random vector elliptically distributed with parameters $\mu=0$ and $\Sigma_{\mathbf{X}}$. Then there exists a rotation matrix such that $\mathcal{R X}$ is exchangeable.

$$
\mathcal{R}=\frac{\sqrt{2}}{2}\left(\begin{array}{ll}
q_{11}+q_{21} & q_{21}-q_{11} \\
q_{11}-q_{21} & q_{11}+q_{21}
\end{array}\right)
$$

$$
\boldsymbol{\Sigma}_{\mathbf{X}}=Q D Q^{\prime} \text { and } Q=\left(q_{i j}\right)
$$

Elliptical Distribution

Rotated Elliptical Distribution

Theorem 3.A.35. Shaked and Shanthikumar (2007)

Let X_{1}, \ldots, X_{n} be exchangeable random variables. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{\prime}$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)^{\prime}$ such that $\mathbf{a} \prec \mathbf{b}$, then

$$
\sum_{i=1}^{n} a_{i} X_{i} \geq c v \sum_{i=1}^{n} b_{i} X_{i}
$$

Laniado et al. (2012)

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime}$ be elliptically distributed such that $E \mathbf{X}=\mathbf{0}$ and let $\mathbf{a}=\left(a_{1}, a_{2}\right)^{\prime}$ and $\mathbf{b}=\left(b_{1}, b_{2}\right)^{\prime}$ be two vectors of constants. If $\mathbf{a} \prec \mathrm{b}$, then

$$
\mathbf{a}^{\prime} \mathcal{R} \mathbf{X} \geq_{c v} \mathbf{b}^{\prime} \mathcal{R} \mathbf{X}
$$

Theorem 3.A.35. Shaked and Shanthikumar (2007)

Let X_{1}, \ldots, X_{n} be exchangeable random variables. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{\prime}$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)^{\prime}$ such that $\mathbf{a} \prec \mathbf{b}$, then

$$
\sum_{i=1}^{n} a_{i} X_{i} \geq c v \sum_{i=1}^{n} b_{i} X_{i}
$$

Laniado et al. (2012)

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime}$ be elliptically distributed such that $E \mathbf{X}=\mathbf{0}$ and let $\mathbf{a}=\left(a_{1}, a_{2}\right)^{\prime}$ and $\mathbf{b}=\left(b_{1}, b_{2}\right)^{\prime}$ be two vectors of constants. If $\mathbf{a} \prec \mathrm{b}$, then

$$
\mathbf{a}^{\prime} \mathcal{R} \mathbf{X} \geq_{c v} \mathbf{b}^{\prime} \mathcal{R} \mathbf{X}
$$

For any concave function f

$$
E f\left(\mathbf{a}^{\prime} \mathcal{R} \mathbf{X}\right) \geq E f\left(\mathbf{b}^{\prime} \mathcal{R} \mathbf{X}\right)
$$

Theorem 3.A.35. Shaked and Shanthikumar (2007)

Let X_{1}, \ldots, X_{n} be exchangeable random variables. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{\prime}$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)^{\prime}$ such that $\mathbf{a} \prec \mathbf{b}$, then

$$
\sum_{i=1}^{n} a_{i} X_{i} \geq_{c v} \sum_{i=1}^{n} b_{i} X_{i}
$$

Laniado et al. (2012)

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime}$ be elliptically distributed such that $E \mathbf{X}=\mathbf{0}$ and let $\mathbf{a}=\left(a_{1}, a_{2}\right)^{\prime}$ and $\mathbf{b}=\left(b_{1}, b_{2}\right)^{\prime}$ be two vectors of constants. If $\mathbf{a} \prec \mathrm{b}$, then

$$
\mathbf{a}^{\prime} \mathcal{R} \mathbf{X} \geq_{c v} \mathbf{b}^{\prime} \mathcal{R} \mathbf{X}
$$

For any concave function f

$$
E U\left(\mathbf{a}^{\prime} \mathcal{R} \mathbf{X}\right) \geq E U\left(\mathbf{b}^{\prime} \mathcal{R} \mathbf{X}\right)
$$

In particular for an utility function U

Elliptical Distribution, $n>2$

Property

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ be a random vector elliptically distributed with parameters $\mu_{\mathbf{X}}=0$ and $\boldsymbol{\Sigma}_{\mathbf{X}}$ is such that it has at least $n-1$ equal eigenvalues given by $\lambda_{1} \geq \lambda_{2}=\cdots=\lambda_{n}=\lambda>0$. Then there exists a rotation matrix \mathcal{R} such that $\mathcal{R} \mathrm{X}$ has exchangeable components.

Elliptical Distribution, $n>2$

Property

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ be a random vector elliptically distributed with parameters $\mu_{\mathbf{X}}=0$ and $\boldsymbol{\Sigma}_{\mathbf{X}}$ is such that it has at least $n-1$ equal eigenvalues given by $\lambda_{1} \geq \lambda_{2}=\cdots=\lambda_{n}=\lambda>0$. Then there exists a rotation matrix \mathcal{R} such that $\mathcal{R} \mathrm{X}$ has exchangeable components.

If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{\prime}$ is majorized by $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)^{\prime}$, then

$$
\mathbf{a}^{\prime} \mathcal{R} \mathbf{X} \geq_{c v} \mathbf{b}^{\prime} \mathcal{R} \mathbf{X}
$$

For any concave function f

$$
E U\left(\mathbf{a}^{\prime} \mathcal{R} \mathbf{X}\right) \geq E U\left(\mathbf{b}^{\prime} \mathcal{R} \mathbf{X}\right)
$$

In particular for an utility function U

Portafolio Comparison

Shaked and Shanthikumar (2007)

$$
X \leq_{s t} Y \Longleftrightarrow E[\phi(X)] \leq E[\phi(Y)],
$$

for all increasing function ϕ for which the expectation exist.

Portafolio Comparison

Shaked and Shanthikumar (2007)

$$
X \leq_{s t} Y \Longleftrightarrow E[\phi(X)] \leq E[\phi(Y)],
$$

for all increasing function ϕ for which the expectation exist. Therefore, given the portfolios $\mathcal{P}_{\omega_{1}}$ and $\mathcal{P}_{\omega_{2}}$ such that

$$
\mathcal{P}_{\omega_{1}} \leq_{s t} \mathcal{P}_{\omega_{2}},
$$

then an investor with increasing utility function prefers $\mathcal{P}_{\omega_{2}}$.

Portafolio Comparison

Shaked and Shanthikumar (2007)

$$
X \leq_{i c x} Y \Longleftrightarrow E[\phi(X)] \leq E[\phi(Y)],
$$

for all increasing concave function ϕ for which the expectation exist.

Portafolio Comparison

Shaked and Shanthikumar (2007)

$$
X \leq_{i c x} Y \Longleftrightarrow E[\phi(X)] \leq E[\phi(Y)],
$$

for all increasing concave function ϕ for which the expectation exist.
Therefore, given the portfolios $\mathcal{P}_{\omega_{1}}$ and $\mathcal{P}_{\omega_{2}}$ such that

$$
\mathcal{P}_{\omega_{1}} \leq_{i c v} \mathcal{P}_{\omega_{2}},
$$

then an investor with increasing and concave utility function prefers $\mathcal{P}_{\omega_{2}}$.

Portfolio Problem

$$
\begin{equation*}
\max _{\vec{\omega}} E \mathfrak{U}\left(\mathcal{P}_{\omega}\right) \quad \text { s.t. } \tag{4}
\end{equation*}
$$

$$
\sum_{i=1}^{n} \omega_{i}=1
$$

Portfolio Problem

$$
\begin{equation*}
\max _{\vec{\omega}} E \mathfrak{U}\left(\mathcal{P}_{\omega}\right) \quad \text { s.t. } \quad \sum_{i=1}^{n} \omega_{i}=1 \tag{4}
\end{equation*}
$$

Müller and Stoyan (2002)
If X_{1}, \ldots, X_{n} are independent with

$$
X_{1} \geq_{l r} X_{2} \geq_{l r} \cdots \geq_{l r} X_{n},
$$

and \mathfrak{U} is increasing. Then the optimization problem (4) has an optimal solution with $\omega_{1} \geq \omega_{2} \geq \cdots \geq \omega_{n}$.

Portfolio Problem

$$
\begin{equation*}
\max _{\vec{\omega}} E \mathfrak{U}\left(\mathcal{P}_{\omega}\right) \quad \text { s.t. } \quad \sum_{i=1}^{n} \omega_{i}=1 \tag{4}
\end{equation*}
$$

Müller and Stoyan (2002)
If X_{1}, \ldots, X_{n} are independent with

$$
X_{1} \geq_{l r} X_{2} \geq_{l r} \cdots \geq_{l r} X_{n},
$$

and \mathfrak{U} is increasing. Then the optimization problem (4) has an optimal solution with $\omega_{1} \geq \omega_{2} \geq \cdots \geq \omega_{n}$.
Shaked and Shanthikumar (2007)

$$
X \leq_{l r} Y \Longleftrightarrow \frac{f_{Y}(t)}{f_{X}(t)} \uparrow_{t}
$$

Portfolio Problem

$$
\begin{equation*}
\max _{\vec{\omega}} E \mathfrak{U}\left(\mathcal{P}_{\omega}\right) \quad \text { s.t. } \quad \sum_{i=1}^{n} \omega_{i}=1 \tag{5}
\end{equation*}
$$

Müller and Stoyan (2002)
If X_{1}, \ldots, X_{n} are independent with

$$
X_{1} \geq_{r h} X_{2} \geq_{r h} \cdots \geq_{r h} X_{n}
$$

and \mathfrak{U} is increasing and concave. Then the optimization problem (5) has an optimal solution with. $\omega_{1} \geq \omega_{2} \geq \cdots \geq \omega_{n}$.

Portfolio Problem

$$
\begin{equation*}
\max _{\vec{\omega}} E \mathfrak{U}\left(\mathcal{P}_{\omega}\right) \quad \text { s.t. } \quad \sum_{i=1}^{n} \omega_{i}=1 \tag{5}
\end{equation*}
$$

Müller and Stoyan (2002)
If X_{1}, \ldots, X_{n} are independent with

$$
X_{1} \geq_{r h} X_{2} \geq_{r h} \cdots \geq_{r h} X_{n}
$$

and \mathfrak{U} is increasing and concave. Then the optimization problem (5) has an optimal solution with. $\omega_{1} \geq \omega_{2} \geq \cdots \geq \omega_{n}$.

Shaked and Shanthikumar (2007)

$$
X \leq_{r h} Y \Longleftrightarrow \frac{F_{Y}(t)}{F_{X}(t)} \uparrow_{t}
$$

Indice

Introduction a Fast Review

Solution Under Optimization

Solution and Comparison of Portfolios under Stochastic Orders
Solution under Simulation

Conclusions

Futurer Research Lines

References

Alternative efficient frontiers

Let Θ be a set of k criteria for evaluating the performance of the portfolio.
In the classical Markowitz model $k=2$ and corresponds to mean and variance of the portfolio. Consider any criterion $c_{i} \in \Theta, i=1, \ldots, k$ and denote.

Alternative efficient frontiers

Let Θ be a set of k criteria for evaluating the performance of the portfolio.
In the classical Markowitz model $k=2$ and corresponds to mean and variance of the portfolio. Consider any criterion $c_{i} \in \Theta, i=1, \ldots, k$ and denote.

$$
\theta_{c_{i}}= \begin{cases}1 & \text { if the investor wants a portfolio with a low value of the criterion } c_{i} \\ -1 & \text { if the investor wants a portfolio with a high value of the criterion } c_{i}\end{cases}
$$

Alternative efficient frontiers

Let Θ be a set of k criteria for evaluating the performance of the portfolio.
In the classical Markowitz model $k=2$ and corresponds to mean and variance of the portfolio. Consider any criterion $c_{i} \in \Theta, i=1, \ldots, k$ and denote.

$$
\theta_{c_{i}}= \begin{cases}1 & \text { if the investor wants a portfolio with a low value of the criterion } c_{i} \\ -1 & \text { if the investor wants a portfolio with a high value of the criterion } c_{i}\end{cases}
$$

For example, if

$$
\Theta=\{\text { return, risk, Sharpe-ratio, entropy }\}=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}
$$

then

$$
\theta_{\text {return }}=\theta_{c_{1}}=-1, \quad \theta_{\text {risk }}=\theta_{c_{2}}=1, \quad \theta_{\mathbf{S r}}=\theta_{c_{3}}=-1, \quad \theta_{\text {entropy }}=\theta_{c_{4}}=-1 .
$$

Alternative efficient frontier

Figure: $\mathbf{u}=\frac{1}{\sqrt{2}}[1,-1]^{\prime}\ulcorner$

$$
\mathbf{u}=\frac{1}{\sqrt{2}}[-1,-1]^{\prime}
$$

Criterion 1	Returns	-1
Criterion 2	Variance	1
Criterion 3	Sharpe ratio	-1
Criterion 4	Entropy	-1

Alternative efficient frontier

Figure: $\mathbf{u}=\frac{1}{\sqrt{2}}[-1,-1]^{\prime}$
$\mathbf{u}=\frac{1}{\sqrt{2}}[1,-1]^{\prime}\ulcorner$

Criterion 1	Returns	-1
Criterion 2	Variance	1
Criterion 3	Sharpe ratio	-1
Criterion 4	Entropy	-1

Alternative efficient frontier

Figure: $\mathbf{u}=\frac{1}{\sqrt{2}}[1,-1]^{\prime}\ulcorner$

$\mathbf{u}=\frac{1}{\sqrt{2}}[-1,-1]^{\prime}$

Criterion 1	Returns	-1
Criterion 2	Variance	1
Criterion 3	Sharpe ratio	-1
Criterion 4	Entropy	-1

Alternative efficient frontier

Figure: $\mathbf{u}=\frac{1}{\sqrt{3}}[-1,1,-1]^{\prime}$

Criterion 1	Returns	-1
Criterion 2	Variance	1
Criterion 3	Sharpe ratio	-1
Criterion 4	Entropy	-1

Portfolio selection under extremality

Figure: Feasible Portfolios

Application to real data

Table: Portfolios notation in this work

Criteria	returns and variance	returns and Sharpe ratio
Portfolio notation	P_{12}	P_{13}
Criteria	returns and entropy	variance and Sharpe ratio
Portfolio notation	P_{14}	P_{23}
Criteria	variance and entropy	Sharpe ratio and entropy
Portfolio notation	P_{24}	P_{34}

Table: Portfolios notation for comparisons

$\frac{1}{n}$	Equally-weighted Portfolio
MEAN	Mean-variance portfolio with shortsales constrained
MEANU	Mean-Variance portfolio with shortsales unconstrained
MIN	Minimum-Variance portfolio with shortsales constrained
MINU	Minimum-Variance portfolio with shortsales unconstrained

Results

Test proposed by Memmel (2003). $\frac{1}{n}$-rule is a good benchmark DeMiguel et al. (2009b)

> Table: Portfolio Sharpe ratios

Strategy	5Spain	6Spain	10Spain	25Spain	40Spain	48Ind	8lndexes
in this work							
P_{12}	0.7218	0.5333	0.5498	0.5006	0.3700	0.2929	0.1070
	(0.6948)	(0.1315)	(0.0418)	(0.0314)	(0.0956)	(0.0965)	(0.3158)
P_{13}	0.7478	0.5279	0.5989	0.5056	0.4044	0.2789	0.1003
	(0.6084)	(0.1399)	(0.0378)	(0.0854)	(0.0179)	$(0.51700$	(0.4829)
P_{14}	0.7196	0.4391	0.4438	0.4558	0.3564	0.2793	0.0896
	(0.6466)	(0.0519)	(0.2303)	(0.0978)	(0.0819)	(0.3309)	(0.8759)
P_{23}	0.7080	0.4962	0.5375	0.5406	0.3166	0.2801	0.0985
	(0.9093)	(0.2988)	(0.1723)	(0.0178)	(0.5215)	(0.4466)	(0.5582)
P_{24}	0.6941	0.3446	0.3656	0.4735	0.3182	0.2836	0.0848
	(0.8454)	(0.3012)	(0.7308)	(0.0610)	(0.5137)	(0.1533)	(0.6856)
P_{34}	0.7114	0.4308	0.4881	0.4514	0.3766	0.2731	0.0910
	(0.6893)	(0.1397)	(0.0025)	(0.0198)	(0.0204)	(0.8809)	(0.7383)
for comparison							
$1 / \mathrm{n}$	0.6997	0.3753	0.3815	0.3791	0.2955	0.2719	0.0883
MEAN	0.4132	0.0804	0.1075	0.2213	-0.1400	0.2296	0.0555
	(0.0750)	(0.1902)	(0.1999)	(0.4145)	(0.0024)	(0.4806)	(0.7131)
MEANU	0.6632	0.4750	0.5354	0.4201	0.1960	0.0921	-0.0267
	(0.7598)	(0.3314)	(0.1060)	(0.8452)	(0.6209)	(0.0519)	(0.4246)
MIN	0.6502	0.1373	0.2745	0.2881	0.3500	0.2293	0.0961
	(0.5314)	(0.2605)	(0.5303)	(0.5073)	(0.5276)	(0.4326)	(0.8968)
MINU	0.6199	0.0871	0.2577	-0.1271	0.0012	0.1123	-0.0426
	(0.4932)	(0.1989)	(0.4981)	(0.0276)	(0.0948)	(0.0393)	(0.0640)

Results

Test proposed by Memmel (2003). $\frac{1}{n}$-rule is a good benchmark DeMiguel et al. (2009b)

> Table: Portfolio Sharpe ratios

Strategy	5Spain	6Spain	10Spain	25Spain	40Spain	48Ind	8lndexes
in this work							
P_{12}	0.7218	0.5333	0.5498	0.5006	0.3700	0.2929	0.1070
	(0.6948)	(0.1315)	(0.0418)	(0.0314)	(0.0956)	(0.0965)	(0.3158)
P_{13}	0.7478	0.5279	0.5989	0.5056	0.4044	0.2789	0.1003
	(0.6084)	(0.1399)	(0.0378)	(0.0854)	(0.0179)	(0.5170)	(0.4829)
P_{14}	0.7196	0.4391	0.4438	0.4558	0.3564	0.2793	0.0896
	(0.6466)	(0.0519)	(0.2303)	(0.0978)	(0.0819)	(0.3309)	(0.8759)
P_{23}	0.7080	0.4962	0.5375	0.5406	0.3166	0.2801	0.0985
	(0.9093)	(0.2988)	(0.1723)	(0.0178)	(0.5215)	(0.4466)	(0.5582)
P_{24}	0.6941	0.3446	0.3656	0.4735	0.3182	0.2836	0.0848
	(0.8454)	(0.3012)	(0.7308)	(0.0610)	(0.5137)	(0.1533)	(0.6856)
P_{34}	0.7114	0.4308	0.4881	0.4514	0.3766	0.2731	0.0910
	(0.6893)	(0.1397)	(0.0025)	(0.0198)	(0.0204)	(0.8809)	(0.7383)
for comparison							
$1 / \mathrm{n}$	0.6997	0.3753	0.3815	0.3791	0.2955	0.2719	0.0883
MEAN	0.4132	0.0804	0.1075	0.2213	-0.1400	0.2296	0.0555
	(0.0750)	(0.1902)	(0.1999)	(0.4145)	(0.0024)	(0.4806)	(0.7131)
MEANU	0.6632	0.4750	0.5354	0.4201	0.1960	0.0921	-0.0267
	(0.7598)	(0.3314)	(0.1060)	(0.8452)	(0.6209)	(0.0519)	(0.4246)
MIN	0.6502	0.1373	0.2745	0.2881	0.3500	0.2293	0.0961
	(0.5314)	(0.2605)	(0.5303)	(0.5073)	(0.5276)	(0.4326)	(0.8968)
MINU	0.6199	0.0871	0.2577	-0.1271	0.0012	0.1123	-0.0426
	(0.4932)	(0.1989)	(0.4981)	(0.0276)	(0.0948)	(0.0393)	(0.0640)

Results

Test proposed by Memmel (2003). $\frac{1}{n}$-rule is a good benchmark DeMiguel et al. (2009b)

> Table: Portfolio Sharpe ratios

Strategy	5Spain	6Spain	10Spain	25Spain	40Spain	48Ind	8lndexes
in this work							
P_{12}	$\mathbf{0 . 7 2 1 8}$	$\mathbf{0 . 5 3 3 3}$	$\mathbf{0 . 5 4 9 8}$	$\mathbf{0 . 5 0 0 6}$	$\mathbf{0 . 3 7 0 0}$	$\mathbf{0 . 2 9 2 9}$	$\mathbf{0 . 1 0 7 0}$
	(0.6948)	(0.1315)	(0.0418)	(0.0314)	(0.0956)	(0.0965)	(0.3158)
P_{13}	$\mathbf{0 . 7 4 7 8}$	$\mathbf{0 . 5 2 7 9}$	$\mathbf{0 . 5 9 8 9}$	$\mathbf{0 . 5 0 5 6}$	$\mathbf{0 . 4 0 4 4}$	$\mathbf{0 . 2 7 8 9}$	$\mathbf{0 . 1 0 0 3}$
	(0.6084)	(0.1399)	(0.0378)	(0.0854)	(0.0179)	(0.5170)	(0.4829)
P_{14}	$\mathbf{0 . 7 1 9 6}$	0.4391	0.4438	$\mathbf{0 . 4 5 5 8}$	$\mathbf{0 . 3 5 6 4}$	$\mathbf{0 . 2 7 9 3}$	0.0896
	(0.6466)	(0.0519)	(0.2303)	(0.0978)	(0.0819)	(0.3309)	(0.8759)
P_{23}	$\mathbf{0 . 7 0 8 0}$	$\mathbf{0 . 4 9 6 2}$	$\mathbf{0 . 5 3 7 5}$	$\mathbf{0 . 5 4 0 6}$	0.3166	$\mathbf{0 . 2 8 0 1}$	$\mathbf{0 . 0 9 8 5}$
	(0.9093)	(0.2988)	(0.1723)	(0.0178)	(0.5215)	(0.4466)	(0.5582)
P_{24}	0.6941	0.3446	0.3656	$\mathbf{0 . 4 7 3 5}$	0.3182	$\mathbf{0 . 2 8 3 6}$	0.0848
	(0.8454)	(0.3012)	(0.7308)	(0.0610)	(0.5137)	(0.1533)	(0.6856)
P_{34}	$\mathbf{0 . 7 1 1 4}$	0.4308	0.4881	$\mathbf{0 . 4 5 1 4}$	$\mathbf{0 . 3 7 6 6}$	$\mathbf{0 . 2 7 3 1}$	0.0910
	(0.6893)	(0.1397)	(0.0025)	(0.0198)	(0.0204)	(0.8809)	(0.7383)
for comparisOn							
$1 / \mathrm{n}$	0.6997	0.3753	0.3815	0.3791	0.2955	0.2719	0.0883
MEAN	0.4132	0.0804	0.1075	0.2213	-0.1400	0.2296	0.0555
	(0.0750)	(0.1902)	(0.1999)	(0.4145)	(0.0024)	(0.4806)	(0.7131)
MEANU	0.6632	0.4750	0.5354	0.4201	0.1960	0.0921	-0.0267
	(0.7598)	(0.3314)	(0.1060)	(0.8452)	(0.6209)	(0.0519)	(0.4246)
MIN	0.6502	0.1373	0.2745	0.2881	0.3500	0.2293	0.0961
	(0.5314)	(0.2605)	(0.5303)	(0.5073)	(0.5276)	(0.4326)	(0.8968)
MINU	0.6199	0.0871	0.2577	-0.1271	0.0012	0.1123	-0.0426
	(0.4932)	(0.1989)	(0.4981)	(0.0276)	(0.0948)	(0.0393)	(0.0640)

Indice

Introduction a Fast Review

Solution Under Optimization

Solution and Comparison of Portfolios under Stochastic Orders

Solution under Simulation
Conclusions
Futurer Research Lines
References

Conclusions

- A fast review of different approaches to face the portfolio selection problem

Conclusions

- A fast review of different approaches to face the portfolio selection problem
- The strategy PIR was introduced as a novel methodology and easy of implementing which it has advantages on the $\frac{1}{n}$.

Conclusions

- A fast review of different approaches to face the portfolio selection problem
- The strategy PIR was introduced as a novel methodology and easy of implementing which it has advantages on the $\frac{1}{n}$.
- If the random variables represents risky assets, we look for rotations of the distribution such that, the rotated distribution satisfies conditions already studied in the literature allowing to find one portfolio that maximizes an utility function.

Conclusions

- A fast review of different approaches to face the portfolio selection problem
- The strategy PIR was introduced as a novel methodology and easy of implementing which it has advantages on the $\frac{1}{n}$.
- If the random variables represents risky assets, we look for rotations of the distribution such that, the rotated distribution satisfies conditions already studied in the literature allowing to find one portfolio that maximizes an utility function.
- For the case of random variables elliptically distributed with mean zero, in $n=2$ we showed that always is possible to find a rotation where the rotated distribution has exchangeable components so we can find what linear combinations of the random variables improve an utility function.

Conclusions

- A fast review of different approaches to face the portfolio selection problem
- The strategy PIR was introduced as a novel methodology and easy of implementing which it has advantages on the $\frac{1}{n}$.
- If the random variables represents risky assets, we look for rotations of the distribution such that, the rotated distribution satisfies conditions already studied in the literature allowing to find one portfolio that maximizes an utility function.
- For the case of random variables elliptically distributed with mean zero, in $n=2$ we showed that always is possible to find a rotation where the rotated distribution has exchangeable components so we can find what linear combinations of the random variables improve an utility function.
- New concept of efficient frontier was introduced, taking into account different criteria considered in Markowitz Model

Indice

Introduction a Fast Review

Solution Under Optimization

Solution and Comparison of Portfolios under Stochastic Orders
Solution under Simulation

Conclusions

Futurer Research Lines
References

Conclusions

- Find good estimation for the variance and covariance matrix

Conclusions

- Find good estimation for the variance and covariance matrix
- Consider the the result of the PIR strategy for high dimensions

Conclusions

- Find good estimation for the variance and covariance matrix
- Consider the the result of the PIR strategy for high dimensions
- Study conditions under which some other distributions can be exchangeable through rotations.

Conclusions

- Find good estimation for the variance and covariance matrix
- Consider the the result of the PIR strategy for high dimensions
- Study conditions under which some other distributions can be exchangeable through rotations.
- To face the portfolio problem considering other interesting measure risk.

On The Portfolio Selection Problem

LReferences

Indice

Introduction a Fast Review

Solution Under Optimization

Solution and Comparison of Portfolios under Stochastic Orders
Solution under Simulation
Conclusions
Futurer Research Lines
References

On The Portfolio Selection Problem
 LReferences

Hadar, J., Russel, W.R., 1971. Stochastic dominance and diversification. Journal of Economic Theory 3, 288-305.
Ma, C., 2000. Convex order for linear combinations of random variables. Journal of Statistical Planning and Inference 84, 11-25.
Laniado, H., Puerta, M. 2010. Diseno de estrategias óptimas para portfolios, un análisis de la ponderación inversa al riesgo. Lecturas de Economía 73, 243-273.

Laniado, H., Lillo, R.E., Pellerey, F., Romo, J. 2012. Portfolio selection through an extremality stochastic order. Insurance: Mathematics and Economics 51, 1-9.

Markowitz, H. M., 1952. Mean-variance analysis in portfolio choice and capital markets. Journal of Finance 7, 77-91.
Müller, A., Stoyan, D., 2002. Comparison methods for stochastic models and risk. Wiley, New York.
Pellerey, F., Semeraro, P., 2005. A note on the portfolio selection problem. Theory and Decision 59, 295-306.

Shaked, M., Shanthikumar, J.G., 2007. Stochastic orders. Springer, New York.

