Some Basic Aspects of Elastic Wave Equation in General Media

Hector Roman Quiceno E.
Asesor
Jairo Alberto Villegas
Instituto Tecnológico Metropolitano

September, 2015

Outline

Outline

1. Introduction

RWE

Outline

1. Introduction
2. Wave propagation in Continuum media

Outline

1. Introduction
2. Wave propagation in Continuum media
3. Basic notions on Elasticity theory (Marsden.J)
4. Introduction
5. Wave propagation in Continuum media
6. Basic notions on Elasticity theory (Marsden.J)
7. An example and further works

Wave Propagation in Continuum Media

- Hook's law
$-$

RWE

Wave Propagation in Continuum Media

- Hook's law
- Cauchy's equations of motion
-

RWE

- Hook's law

$$
\sigma_{i j}=\sum_{k, l} \mathcal{C}_{i j k l} \epsilon_{k l}
$$

where
$\sigma_{i j}: \quad$ is the strain tensor,
$\mathcal{C}_{i j k l}$: is the stiffnes tensor,
$\epsilon_{k l} \quad: \quad$ is the stress tensor.

- Cauchy's equations of motion

RWE

Wave Propagation in Continuum Media

- Hook's law
- Cauchy's equations of motion
- Hook's law
- Cauchy's equations of motion

From the balance of momentum one gets

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}_{i}}{\partial t^{2}}=\sum_{j} \frac{\partial}{\partial x_{j}} \sigma_{i j}
$$

- Hook's law
- Cauchy's equations of motion

From the balance of momentum one gets

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}_{i}}{\partial t^{2}}=\sum_{j} \frac{\partial}{\partial x_{j}} \sigma_{i j}
$$

For an Isotropic media

$$
\sigma_{i j}=\lambda \delta_{i j} \sum_{k} \epsilon_{k k}+2 \mu \epsilon_{i j}
$$

- Hook's law
- Cauchy's equations of motion

From the balance of momentum one gets

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}_{i}}{\partial t^{2}}=\sum_{j} \frac{\partial}{\partial x_{j}} \sigma_{i j}
$$

then

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}}{\partial t^{2}}=(\lambda+\mu)[\nabla(\nabla \cdot \vec{u})]+\mu \nabla^{2} \vec{u}
$$

Wave Propagation in Continuum Media

- Hook's law
- Cauchy's equations of motion

From the balance of momentum one gets

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}_{i}}{\partial t^{2}}=\sum_{j} \frac{\partial}{\partial x_{j}} \sigma_{i j}
$$

In general curvilinear coordinates

$$
\nabla^{2} \vec{u}=\nabla(\nabla \cdot \vec{u})-\nabla \times(\nabla \times \vec{u})
$$

and defining

$$
\begin{aligned}
\varphi & =\nabla \cdot \vec{u} \\
\psi & =\nabla \times \vec{u}
\end{aligned}
$$

- Wave equation for P-waves in homogeneous and isotropic media

RWE

- Hook's law
- Cauchy's equations of motion From the balance of momentum one gets

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}_{i}}{\partial t^{2}}=\sum_{j} \frac{\partial}{\partial x_{j}} \sigma_{i j}
$$

we get

$$
\rho(\vec{x}) \frac{\partial^{2} \vec{u}}{\partial t^{2}}=(\lambda+2 \mu) \nabla \varphi-\mu \nabla \times \psi
$$

- Hook's law
- Cauchy's equations of motion
- Wave equation for P -waves in homogeneous and isotropic media
- Wave equation for S-waves in homogeneous and isotropic media
- Hook's law
- Cauchy's equations of motion
- Wave equation for P -waves in homogeneous and isotropic media

$$
\nabla^{2} \varphi-\frac{1}{v_{p}^{2}} \frac{\partial^{2} \varphi}{\partial t^{2}}=0
$$

where

$$
v_{p}=\left(\frac{\lambda+2 \mu}{\rho}\right)^{\frac{1}{2}}
$$

- Wave equation for S-waves in homogeneous and isotropic media
- Hook's law
- Cauchy's equations of motion
- Wave equation for P-waves in homogeneous and isotropic media
- Wave equation for S -waves in homogeneous and isotropic media
- Hook's law
- Cauchy's equations of motion
- Wave equation for P -waves in homogeneous and isotropic media
- Wave equation for S-waves in homogeneous and isotropic media

$$
\nabla^{2} \psi-\frac{1}{v_{s}^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0
$$

where

$$
v_{s}=\left(\frac{\mu}{\rho}\right)^{\frac{1}{2}}
$$

On Wave equation

On Wave equation

Consider the IVP

$$
\begin{aligned}
\nabla^{2} \vec{u}-\frac{1}{v^{2}} \frac{\partial^{2} \vec{u}}{\partial t^{2}} & =0 \\
\vec{u}(\vec{x}, 0) & =\gamma(\vec{x}) \\
\left.\frac{\partial \vec{u}}{\partial t}\right|_{t=0} & =\eta(\vec{x})
\end{aligned}
$$

On Wave equation

- In one dimension (1-D)

On Wave equation

- In one dimension (1-D)

$$
u(x, t)=\frac{1}{2}\left[\gamma(x+v t)+\gamma(x-v t)+\frac{1}{v} \int_{x-v t}^{x+v t} \eta(s) d s\right]
$$

where

$$
\begin{aligned}
\gamma(x) & =f(x)+g(x) \\
\eta(x) & =v\left[f^{\prime}(x)+g^{\prime}(x)\right]
\end{aligned}
$$

for some $f, g \in \mathcal{C}^{2}(\Omega)$

On Wave equation

- In one dimension (1-D)
- In two dimensions (2-D)

On Wave equation

- In one dimension (1-D)
- In two dimensions (2-D)

$$
\begin{aligned}
\vec{u}(\vec{x}, t) & =\frac{d}{d t}\left[\frac{4 \pi^{2}}{v} \iint_{D(\vec{x}, v t)} \frac{\gamma\left(s_{1}, s_{2}\right)}{\sqrt{(v t)^{2}-\left[\left(s_{1}-x_{1}\right)^{2}+\left(s_{2}-x_{2}\right)^{2}\right]}} d s_{1} d s_{2}\right] \\
& +\frac{4 \pi^{2}}{v} \iint_{D(\vec{x}, v t)} \frac{\eta\left(s_{1}, s_{2}\right)}{\sqrt{(v t)^{2}-\left[\left(s_{1}-x_{1}\right)^{2}+\left(s_{2}-x_{2}\right)^{2}\right]}} d s_{1} d s_{2}
\end{aligned}
$$

From Ph.D Thesis: Elastic wave equation depth migration of seismic data for isotropic and azimuthally anisotropic media. Bale R.

From Ph.D Thesis: Elastic wave equation depth migration of seismic data for isotropic and azimuthally anisotropic media. Bale R.

- The earth is at least a visco elastic medium, in which absorption losses give rise to attenuation and dispersion effects.

From Ph.D Thesis: Elastic wave equation depth migration of seismic data for isotropic and azimuthally anisotropic media. Bale R.

- The earth is at least a visco elastic medium, in which absorption losses give rise to attenuation and dispersion effects.
- The elastic wave equation is framed in terms of tensor operators acting on vector quantities.

From Ph.D Thesis: Elastic wave equation depth migration of seismic data for isotropic and azimuthally anisotropic media. Bale R.

- The earth is at least a visco elastic medium, in which absorption losses give rise to attenuation and dispersion effects.
- The elastic wave equation is framed in terms of tensor operators acting on vector quantities.
- ...it is also true that a proper treatment of anisotropy fundamentally demands an elastic viewpoint, even when only P-waves (quasi-P waves) are contemplated.

Elasticity Theory

RWE

Elasticity Theory

- A configuration on \mathcal{B} is a smooth, orientation preserving and invertible mapping

$$
\Phi: \mathcal{B} \rightarrow \int
$$

The set of all configurations of \mathcal{B} is denoted \mathcal{C}

Elasticity Theory

- A configuration on \mathcal{B} is a smooth, orientation preserving and invertible mapping

$$
\Phi: \mathcal{B} \rightarrow \int
$$

The set of all configurations of \mathcal{B} is denoted \mathcal{C}

- A motion of \mathcal{B} is a curve on \mathcal{C}

$$
t \rightarrow \Phi_{t} \in \mathcal{C}
$$

Elasticity Theory

- A configuration on \mathcal{B} is a smooth, orientation preserving and invertible mapping

$$
\Phi: \mathcal{B} \rightarrow \int
$$

The set of all configurations of \mathcal{B} is denoted \mathcal{C}

- A motion of \mathcal{B} is a curve on \mathcal{C}

$$
t \rightarrow \Phi_{t} \in \mathcal{C}
$$

- We denote motions as $\Phi(X, t)$, where $X \in \mathcal{B}$ and $x=\Phi(X) \in \mathcal{S}$

RWE

Elasticity Theory

- A configuration on \mathcal{B} is a smooth, orientation preserving and invertible mapping

$$
\Phi: \mathcal{B} \rightarrow \int
$$

The set of all configurations of \mathcal{B} is denoted \mathcal{C}

- A motion of \mathcal{B} is a curve on \mathcal{C}

$$
t \rightarrow \Phi_{t} \in \mathcal{C}
$$

- We denote motions as $\Phi(X, t)$, where $X \in \mathcal{B}$ and $x=\Phi(X) \in \mathcal{S}$
- The material velocity and acelerations are defined as (for X fixed)

$$
\begin{aligned}
V_{t}(X) & =\frac{\partial}{\partial t} \Phi(X, t) \\
A_{t}(X) & =\frac{\partial}{\partial t} V_{t}(X)
\end{aligned}
$$

Elasticity Theory

- A configuration on \mathcal{B} is a smooth, orientation preserving and invertible mapping

$$
\Phi: \mathcal{B} \rightarrow \int
$$

The set of all configurations of \mathcal{B} is denoted \mathcal{C}

- A motion of \mathcal{B} is a curve on \mathcal{C}

$$
t \rightarrow \Phi_{t} \in \mathcal{C}
$$

- We denote motions as $\Phi(X, t)$, where $X \in \mathcal{B}$ and $x=\Phi(X) \in \mathcal{S}$
- The material velocity and acelerations are defined as (for X fixed)

$$
\begin{aligned}
V_{t}(X) & =\frac{\partial}{\partial t} \Phi(X, t) \\
A_{t}(X) & =\frac{\partial}{\partial t} V_{t}(X)
\end{aligned}
$$

- The spatial velocity and acelerations are defined as (for t fixed)

$$
\begin{aligned}
v_{t} & :=V_{t} \circ \Phi^{-1} \\
a_{t} & :=A_{t} \circ \Phi^{-1}
\end{aligned}
$$

Elasticity Theory

RWE

Elasticity Theory

- The deformation gradient, is given by

$$
\begin{aligned}
F: T \mathcal{B} & \rightarrow T \mathcal{S} \\
F(X, W) & =(\Phi(X), D \Phi(x) \cdot W)
\end{aligned}
$$

Elasticity Theory

- The right Cauchy-Green tensor is given by

$$
\begin{aligned}
C: T_{X} \mathcal{B} & \rightarrow T_{X} \mathcal{B} \\
C(X, W) & =\left(X, D \Phi(X)^{T} D \Phi(X) \cdot W\right) \\
C(X) & =F^{T}(X) F(X)
\end{aligned}
$$

Elasticity Theory

- The right Cauchy-Green tensor is given by

$$
\begin{aligned}
C: T_{X} \mathcal{B} & \rightarrow T_{X} \mathcal{B} \\
C(X, W) & =\left(X, D \Phi(X)^{T} D \Phi(X) \cdot W\right) \\
C(X) & =F^{T}(X) F(X)
\end{aligned}
$$

- some properties of C

1. C is Symmetric
2. C is semi-positive definite
3. If every F is one-to one, then C is positive definite and invertible.

Elasticity Theory

- The right Cauchy-Green tensor is given by

$$
\begin{aligned}
C: T_{X} \mathcal{B} & \rightarrow T_{X} \mathcal{B} \\
C(X, W) & =\left(X, D \Phi(X)^{T} D \Phi(X) \cdot W\right) \\
C(X) & =F^{T}(X) F(X)
\end{aligned}
$$

- The left Cauchy-Green tensor is given by

$$
\begin{aligned}
b: T_{x} \Phi(\mathcal{B}) & \rightarrow T_{x} \Phi(\mathcal{B}) \\
b(x) & =F(X) F^{T}(X)
\end{aligned}
$$

Elasticity Theory

- The right Cauchy-Green tensor is given by

$$
\begin{aligned}
C: T_{X} \mathcal{B} & \rightarrow T_{X} \mathcal{B} \\
C(X, W) & =\left(X, D \Phi(X)^{T} D \Phi(X) \cdot W\right) \\
C(X) & =F^{T}(X) F(X)
\end{aligned}
$$

- The left Cauchy-Green tensor is given by

$$
\begin{aligned}
b: T_{x} \Phi(\mathcal{B}) & \rightarrow T_{x} \Phi(\mathcal{B}) \\
b(x) & =F(X) F^{T}(X)
\end{aligned}
$$

- some properties of b

1. b is Symmetric
2. b is positive definite

Elasticity Theory

RWE

Elasticity Theory

- Consider the symmetric, positive definite, linear transformations U, V such that

$$
\begin{aligned}
U^{2} & =C \\
V^{2} & =b
\end{aligned}
$$

Elasticity Theory

- Consider the symmetric, positive definite, linear transformations U, V such that

$$
\begin{aligned}
U^{2} & =C \\
V^{2} & =b
\end{aligned}
$$

- It can be shown that (polar decomposition of F)

$$
F=R U=V R
$$

for some unique orthogonal transform

$$
R: T_{X} \mathcal{B} \rightarrow T_{x} \mathcal{S}
$$

and

$$
U=R^{T} V R
$$

Elasticity Theory

- Consider the symmetric, positive definite, linear transformations U, V such that

$$
\begin{aligned}
U^{2} & =C \\
V^{2} & =b
\end{aligned}
$$

- It can be shown that (polar decomposition of F)

$$
F=R U=V R
$$

for some unique orthogonal transform

$$
R: T_{X} \mathcal{B} \rightarrow T_{x} \mathcal{S}
$$

and

$$
U=R^{T} V R
$$

- The Strain tensor is given by

$$
\begin{aligned}
E: T \mathcal{B} & \rightarrow T \mathcal{B} \\
E & =\frac{1}{2}[C-I d]
\end{aligned}
$$

RWE

An example. Yasutomi. Y

RWE

An example. Yasutomi. Y

- For small motions of \mathcal{B}, we have

$$
\Phi_{t}^{i}(X)=x^{i}+u^{i}(X, t)
$$

where $u=\sum u^{i}(X, t) \partial_{i}$ is the displacement vector field.

An example. Yasutomi. Y

- The strain tensor $\varepsilon_{i j}$ is given by

$$
\varepsilon_{i j} d x^{i} \otimes d x^{j}=\frac{1}{2}\left[* d s(X)^{2}-d s(X)^{2}\right]
$$

, then

$$
\varepsilon_{k l}=\frac{1}{2}\left(g_{k m} \partial_{l} u^{m}+g_{m l} \partial_{k} u^{m}+u^{m} \partial_{m} g_{k l}\right)
$$

An example. Yasutomi. Y

- Since

$$
\begin{aligned}
\frac{\sigma_{i j}}{\sqrt{|g|}} & =C_{i j k \varepsilon} \varepsilon_{k l} \\
C_{i j k l} & =\lambda g^{i j} g^{k l}+\mu g^{i k} g^{j l}+\mu g^{i l} g^{j k} \\
d f^{i} & =\frac{\sigma_{i j}}{\sqrt{|g|}} d S_{j}
\end{aligned}
$$

we have, for an elastic, homogeneous and isotropic body, the equation:

$$
\rho \partial_{t t} u^{i}=\lambda g^{i j} \nabla_{j} \nabla_{k} u^{k}+\mu g^{j k} \nabla_{j} \nabla_{k} u^{i}+\mu g^{i k} \nabla_{j} \nabla_{j} u^{j}
$$

Further Works

Further Works

- To stablish the motion equations, derived from conservation principles, for different configurations which induce the symmetry of the medium.

Further Works

- To stablish the motion equations, derived from conservation principles, for different configurations which induce the symmetry of the medium.
- To decompose the above equations via diagonal operators defined on the body manifold.

Further Works

- To stablish the motion equations, derived from conservation principles, for different configurations which induce the symmetry of the medium.
- To decompose the above equations via diagonal operators defined on the body manifold.
- Wave field extrapolation

Some references

1. Sava.P, Fomel.S. 2005.Riemannian Wave Field Extrapolation. Geophysics, 70,T45-T56.
2. Shragge. J. 2008. Riemannian Wave Field Extrapolation: Nonorthogonal Coordinate Systems: Geophysics, 73, T11-T21.
3. Yasutomi Y.2007.Modified Elastic Wave Equations On Riemannian and Kahler Manifolds. Pulb. RIMS, 43,471-504.
4. Shragge. J.2014. Solving the 3D acoustic wave equation on generalized structured meshes: A finite-difference time-domain approach. Geophysics, 79, 1-16.
5. Bale. R. 2006.Elastic wave equation depth migration of seismic data for Isotropic and Azimuthally Anisotropic media. Ph.D Thesis, University of Calgary.
6. Marsden. J, Hughes. T. 1983 Mathematical Foundations of Elasticity. DOVER PUBLICATIONS, INC, New York.
