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Wave Propagation in Continuum Media

◮ Hook‘s law

σij =
∑

k,l

Cijkl ǫkl

where

σij : is the strain tensor,

Cijkl : is the stiffnes tensor,

ǫkl : is the stress tensor.

◮ Cauchy’s equations of motion
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◮ Cauchy’s equations of motion
From the balance of momentum one gets

ρ(~x)
∂2~ui

∂t2
=

∑

j

∂

∂xj
σij

For an Isotropic media

σij = λδij
∑

k

ǫkk + 2µǫij
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Wave Propagation in Continuum Media

◮ Hook‘s law

◮ Cauchy’s equations of motion
From the balance of momentum one gets

ρ(~x)
∂2~ui

∂t2
=

∑

j

∂

∂xj
σij

then

ρ(~x)
∂2~u

∂t2
= (λ+ µ)[▽(▽ · ~u)] + µ▽2 ~u

◮ Wave equation for P-waves in homogeneous and isotropic media
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Wave Propagation in Continuum Media

◮ Hook‘s law

◮ Cauchy’s equations of motion
From the balance of momentum one gets

ρ(~x)
∂2~ui

∂t2
=

∑

j

∂

∂xj
σij

In general curvilinear coordinates

▽2~u = ▽(▽ · ~u)−▽× (▽× ~u)

and defining

ϕ = ▽ · ~u

ψ = ▽× ~u
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Wave Propagation in Continuum Media

◮ Hook‘s law

◮ Cauchy’s equations of motion
From the balance of momentum one gets

ρ(~x)
∂2~ui

∂t2
=

∑

j

∂

∂xj
σij

we get

ρ(~x)
∂2~u

∂t2
= (λ+ 2µ)▽ ϕ− µ▽×ψ

◮ Wave equation for P-waves in homogeneous and isotropic media
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Wave Propagation in Continuum Media

◮ Hook‘s law

◮ Cauchy’s equations of motion

◮ Wave equation for P-waves in homogeneous and isotropic media

▽2ϕ−
1

v2
p

∂2ϕ

∂t2
= 0

where

vp =

(

λ+ 2µ

ρ

) 1
2

◮ Wave equation for S-waves in homogeneous and isotropic media
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Wave Propagation in Continuum Media

◮ Hook‘s law

◮ Cauchy’s equations of motion

◮ Wave equation for P-waves in homogeneous and isotropic media

◮ Wave equation for S-waves in homogeneous and isotropic media

▽2ψ −
1

v2
s

∂2ψ

∂t2
= 0

where

vs =

(

µ

ρ

) 1
2
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On Wave equation

Consider the IVP

▽2~u −
1

v2

∂2~u

∂t2
= 0

~u(~x , 0) = γ(~x)

∂~u

∂t
|t=0 = η(~x)
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On Wave equation

◮ In one dimension (1-D)
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On Wave equation

◮ In one dimension (1-D)

u(x , t) =
1

2

[

γ(x + vt) + γ(x − vt) +
1

v

∫ x+vt

x−vt
η(s)ds

]

where

γ(x) = f (x) + g(x)

η(x) = v [f ′(x) + g ′(x)]

for some f , g ∈ C2(Ω)
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On Wave equation

◮ In one dimension (1-D)

◮ In two dimensions (2-D)
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On Wave equation

◮ In one dimension (1-D)

◮ In two dimensions (2-D)

~u(~x , t) =
d

dt

[

4π2

v

∫∫

D(~x,vt)

γ(s1, s2)
√

(vt)2 − [(s1 − x1)2 + (s2 − x2)2]
ds1ds2

]

+
4π2

v

∫∫

D(~x,vt)

η(s1, s2)
√

(vt)2 − [(s1 − x1)2 + (s2 − x2)2]
ds1ds2
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From Ph.D Thesis: Elastic wave equation depth migration of seismic data for

isotropic and azimuthally anisotropic media. Bale R.

◮ The earth is at least a visco elastic medium, in which absorption losses give rise
to attenuation and dispersion effects.

◮ The elastic wave equation is framed in terms of tensor operators acting on
vector quantities.

◮ ...it is also true that a proper treatment of anisotropy fundamentally demands an
elastic viewpoint, even when only P-waves (quasi-P waves) are contemplated.
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Elasticity Theory

◮ A configuration on B is a smooth, orientation preserving and invertible mapping

Φ : B → ∫

The set of all configurations of B is denoted C

◮ A motion of B is a curve on C

t → Φt ∈ C

◮ We denote motions as Φ(X , t), where X ∈ B and x = Φ(X ) ∈ S

◮ The material velocity and acelerations are defined as (for X fixed)

Vt(X ) =
∂

∂t
Φ(X , t)

At(X ) =
∂

∂t
Vt(X )

◮ The spatial velocity and acelerations are defined as (for t fixed)

vt := Vt ◦ Φ
−1

at := At ◦ Φ
−1

RWE



Elasticity Theory
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Elasticity Theory

◮ The deformation gradient, is given by

F : TB → TS

F (X ,W ) = (Φ(X ),DΦ(x) ·W )

◮

◮

◮

◮
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Elasticity Theory

◮

◮ The right Cauchy-Green tensor is given by

C : TXB → TXB

C(X ,W ) =
(

X ,DΦ(X )TDΦ(X ) ·W
)

C(X ) = FT (X )F (X )

◮

◮

◮
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Elasticity Theory

◮

◮ The right Cauchy-Green tensor is given by

C : TXB → TXB

C(X ,W ) =
(

X ,DΦ(X )TDΦ(X ) ·W
)

C(X ) = FT (X )F (X )

◮ some properties of C

1. C is Symmetric

2. C is semi-positive definite

3. If every F is one-to one, then C is positive definite and

invertible.
◮

◮
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Elasticity Theory

◮

◮ The right Cauchy-Green tensor is given by

C : TXB → TXB

C(X ,W ) =
(

X ,DΦ(X )TDΦ(X ) ·W
)

C(X ) = FT (X )F (X )

◮
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Elasticity Theory
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Elasticity Theory
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for some unique orthogonal transform
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Elasticity Theory

◮ Consider the symmetric, positive definite, linear transformations U, V such that

U2 = C

V 2 = b

◮ It can be shown that (polar decomposition of F )

F = RU = VR

for some unique orthogonal transform

R : TXB → TxS

and
U = RTVR

◮ The Strain tensor is given by

E : TB → TB

E =
1

2
[C − Id]
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An example. Yasutomi. Y

◮

◮

◮
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An example. Yasutomi. Y

◮ For small motions of B, we have

Φi
t(X ) = x i + ui (X , t)

where u =
∑

ui (X , t)∂i is the displacement vector field.

◮

◮
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An example. Yasutomi. Y

◮

◮ The strain tensor εij is given by

εijdx
i ⊗ dx j =

1

2

[

∗ds(X )2 − ds(X )2
]

, then

εkl =
1

2
(gkm∂lu

m + gml∂ku
m + um∂mgkl )

◮
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An example. Yasutomi. Y

◮

◮

◮ Since

σij
√

|g |
= Cijklεkl

Cijkl = λg ijgkl + µg ikg jl + µg ilg jk

df i =
σij

√

|g |
dSj

we have, for an elastic, homogeneous and isotropic body, the equation:

ρ∂ttu
i = λg ij ▽j ▽ku

k + µg jk ▽j ▽ku
i + µg ik ▽j ▽ju

j
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◮ To stablish the motion equations, derived from conservation principles, for
different configurations which induce the symmetry of the medium.
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Further Works

◮ To stablish the motion equations, derived from conservation principles, for
different configurations which induce the symmetry of the medium.

◮ To decompose the above equations via diagonal operators defined on the body
manifold.

◮ Wave field extrapolation
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