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Support Vector Machine - SVM

Mathematically, a support vector machine builds a hyperplane that can
be used to do classification, regression, or other tasks. Intuitively, a good
separation is achieved by the hyperplane that has the greatest distance
to the closest training data points of any class (called functional margin),
since in general, the larger the margin, the less generalization error of the
classifier. (Cárdenas, 2015; Scikit Learn, 2017).
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What is Kernel in mathematics?

Let X be non-empty set. A symmetric function K : X × X → R is called
positive definite Kernel in X if

n∑

i=1

m∑

j=1

cicjK (xi , xj) ≥ 0

is verified for any n,m ∈ N, each xi ∈ X and ci ∈ R
+. Examples of

Kernels are

1 Linear: K (x , y) = xT y , where x , y ∈ R
d .

2 Polynomial: K (x , y) =
(
xT y + r

)n
, where x , y ∈ R

d and r > 0.

3 Gaussian (RBF): K (x , y) = exp
(
− ‖x−y‖2

2σ2

)
.

4 Sigmoid: K (x , y) = tanh
(
αxT y + r

)
where α and r are constant.
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Figure 1: Ideas about the operation of SVM
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Riemannian manifold

Let M be a topological space. A chart in M consists of a pair (U , φ),
where U is an open set in M and φ is a bijection of U to some open set A
of Rn. Given a set of indexes I , a collection of charts on M

A = {(Ui , φi ) : i ∈ I}

where φi : Ui → Ai is called a C p-atlas with p ≥ 0, when the following
conditions are verified

1 the family F = {Ui : i ∈ I} is a covering of M,

2 for all i , j ∈ I , φi (Ui

⋂
Uj) is an open set,

3 for all i , j ∈ I , with Ui

⋂
Uj 6= ∅, the mapping (called transition

function)

φj ◦ φ−1
i : φi (Ui ∩ Uj) → φj(Ui ∩ Uj) ,

is an isomorphism of class C p. If the transition function are
differentiable then the manifold is differentiable (Loaiza and
Quiceno, 2013)
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Figure 2: Topological Manifold
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Riemannian Metric

A Riemannian metric on a differentiable manifold M is a mapping that
assigns each point p of the variety M an inner product gp on the tangent
space TpM ; thus, for every two vector fields Xp , Yp en M , the function
gp(Xp ,Yp) = 〈Xp ,Yp〉p is smooth. A M variety provided with a Rieman-
nian metric is called Riemannian Manifold. The metric does not depend
on the choice of the local coordinates, in addition it can be expressed

gp(Xp ,Yp) =

n∑

i ,j

viwj 〈∂i |p, ∂j|p〉︸ ︷︷ ︸
gij

with ∂i =
∂

∂xi

where vi y wj are the coefficients in the representation of Xp y Yp in the
canonical basis of the tangent space Tp(M) given by {∂1|p, . . . , ∂n|p}. The
terms gij(p) represent the entries of the matrix g(p) which is symmetric
and definite positive.
The existence (always exists at least one) of a metric allows defining the
length of vectors (of curves) . The curve for which the shortest distance
is presented is called geodesic (Burns and Gidea, 2005).
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Example of a Riemannian manifold: spherical surface
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Figure 3: Space tangent and geodesic in a sphere
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Laplacian Operator

Let (M , g) a Riemannian manifold. For any smooth function f over M ,
the gradient is defined as the vector field grad(f ) in T (M) that satisfies
〈grad(f ),X 〉g = X (f ) for all X ∈ T (M), in local coordinates, the gradient
is written as (grad(f ))i =

∑
j

g ij ∂f
∂xj

where g ij are the components of the

inverse of the matrix g = [gij ], then

graf (f ) =
n∑

i ,j=1

(
g ij ∂f

∂xj

)

︸ ︷︷ ︸
(graf (f ))i

∂i .

In these same local coordinates, the divergent of X is written

div(X ) =
1√
det g

∑

i

∂

∂xi

(√
detgXi

)
.

The Laplacian or Laplace-Beltrami operator on (M , g) of a smooth func-
tion1 f : M → R is defined as

∆g f = div(grad(f )) =
1√
det g

∑

j

∂

∂xj

(∑

i

g ij
√
detg

∂f

∂xi

)
.
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Heat Equation

The heat equation on (M , g) is the partial differential equation ∂f
∂t = ∆g f .

A solution to the problem with initial condition

{
∂f
∂t = ∆g f

f (·, 0) = f0 ∈ L2(M)
(1)

is a continuous function f : M × [0,∞) → R denoted f (x , t) which de-
scribes the temperature at a point x at time t beginning with an initial
heat distribution described by the initial condition f (x , 0). This solution
is such that for each fixed t > 0, f (·, t) is a function C 2, and for each
x ∈ M , f (x , ·) is C 1 (Cadavid and Vélez, 2014).
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Heat Kernel

The Heat Kernel Kt(x , y) is the solution to the initial condition heat equa-
tion given by the Dirac delta function δx . This Heat Kernel allows to
describe the other solutions of the heat equation by means of convolution
as

f (x , t) =

∫

M

Kt(x , y)f0(y)dy .

It also satisfies the following properties

1 Kt(x , y) = Kt(y , x) (Symmetric)

2
(
∆− ∂

∂t

)
Kt(x , y) = 0 (Solution of the Heat Equation)

3 Kt(x , y) =
∫
M
Kt−s(x , z)Ks(z , y)dz for any s > 0 (Definite positive)

According to these properties, the Heat Kernel is also a Mercer Kernel.
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In the case of a n-dimensional flat Euclidean space, the Heat Kernel has
the form

Kt(x , y) =
1

(4πt)n/2
exp

(
−‖x − y‖2

4t

)

︸ ︷︷ ︸
exp

(

− ‖x−y‖2

2σ2

)

=
1

(4πt)n/2
exp

(
−d2(x , y)

4t

)

where ‖x − y‖2 is the square of the Euclidean distance between points x

and y . The parametrix expansion approximates the heat kernel locally as
a correction to this Euclidean heat Kernel, is written

Pm
t (x , y) =

1

(4πt)n/2
exp

(
−d2(x , y)

4t

)
(Ψ0(x , y) + . . .+Ψm(x , y)t

m)

for currently unspecified functions Ψk(x , y), where d2(x , y) denote the
square of the geodesic distance on the manifold.
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Interpretation of the Heat Equation using the Dirac Delta
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Figure 4: Heat Kernel
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Particular cases

1 Multinomial Simplex.

2 Normal Distribution.
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Fisher Information Metric

Let F = {p(·|θ) : θ ∈ Θ} a statistical family n -dimensional on a certain
set X , where Θ is an open set in R

n, θ = (θ1, . . . , θn) and there is σ-
measure µ in X such that for each θ ∈ Θ, p(·|θ) is a probability density
with respect to µ. Is denoted ∂i =

∂
∂θi

and ℓθ(x) = log p(x | θ). The
Fisher information metric is defined in terms of the matrix g(θ) where its
components are given by

gij(θ) = Eθ[∂iℓθ∂jℓθ] =

∫

X

p(x |θ)∂i ℓθ(x)∂jℓθ(x)dµ(x) .

Other equivalences of this Fisher information matrix are

gij(θ) = 4

∫

X

∂i
√
p(x |θ)∂j

√
p(x |θ)dµ(x) = −

∫

X

p(x |θ)∂j∂iℓθ(x)dµ(x) .
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Multinomial Simplex

The multinomial simplex, or simplex, is the set of all nonnegative vectors
θ = (θ1, . . . , θn) such that 0 ≤ θi ≤ 1 and their sum is one, we write

M = Pn =

{
θ ∈ Θ :

n+1∑

i=1

θi = 1

}
.

Through the transformation, zi = F (θi ) = 2
√
θi (isometry), each point in

the n-multinomial is applied at a point of the n-sphere of radius 2, hence
the multinomial information geometry is the geometry of the sphere in the
first octant of the Euclidean space, where the geodesic distance between
two points θ y θ′ is given by

d(θ, θ′) = 2 arccos

(
n+1∑

i=1

√
θiθ

′
i

)
.

The solution to the heat equation through the parametrix is expressed as

Kt(θ, θ
′) ≈ (4πt)−n/2 exp

(
−1

t
arccos2

(
n+1∑

i=1

√
θiθ

′
i

))
.
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If n = 2, the 2-simplex is of the form θ1 + θ2 + θ3 = 1 (trinomial distribu-
tion), is a 2-dimensional manifold (a triangle) as shown in the graph. The
mapping zi = 2

√
θi is the sphere of radio 2 which is also 2-dimensional.

θ2

θ3

θ1

b

b

z2
1 + z2

2 + z2
3 = 4(θ1 + θ2 + θ3)

z2
1 + z2

2 + z2
3 = 4

Figure 5: Simplex 2-dimensional
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Trinomial distribution
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Trinomial distribution

Juan Carlos Arango Parra Diffussion Kernels on Statistical Manifold



Trinomial distribution
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Trinomial distribution

Figure 6: Kernel Gaussian vs Diffusion Kernel
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Normal Distribution

In this case the family of normal distributions N (µ, σIn−1) = {p(· | θ) :
θ = (µ, σ)} where µ ∈ R

n−1 is the mean and σ is the variance. In this
space it is possible to show that the coefficients of the Fisher information

matrix are written in the form gij =
√

2
σ2 δij ; this metric confers to this

manifold the structure of the superior plane in a hyperbolic space H
n,

where the heat kernel takes the form

Kt(x , x
′) =





(−1)m

(2π)m
1√
4πt

(
1

sinh ρ
∂
∂ρ

)m
exp

(
−m2t − ρ2

4t

)
Si n = 2m+ 1

(−1)m

(2π)m

√
2√

4πt
3

(
1

sinh ρ
∂
∂ρ

)m ∫∞
ρ

s exp
(

− (2m+1)2t
4 − s2

4t

)

√
cosh s−cosh ρ

ds Si n = 2m+ 2

where ρ = d(x , x ′) is the geodesic distance between the two points in the
plane H

n.
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In the case where n = 1, that is, m = 0 then Kt(x , x
′) = 1√

4πt
exp

(
− d2(x,x′)

4t

)

which is the Gaussian Kernel in R. The following graph shows how the
decision boundaries would be in the hyperbolic space for these normal
distributions.
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2
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What follows after this conceptual review of the article?

1 To delve into the mathematical problem of Text Classification with
SVM.

2 Make an implementation in Python or MatLab of SVM that shows
the advantages of diffusion kernels.

3 Find other diffusion kernels for different distribution families of
probability (Poisson, Beta, Hypergeometric, etc.)

Juan Carlos Arango Parra Diffussion Kernels on Statistical Manifold



Burns; Keith and Gidea; Marian. Differential Geometry and

Topology. With a View to Dynamic System. Studies in advance
mathematics. Chapman & Hall / CRC, 2005.

Cadavid; Carlos and Vélez; Juan Diego. A Remark on the Heat

Equation and Minimal Morse Functions on Tori and Spheres.
Ingeniería y Ciencia, Vol. 09, No. 17, Enero-Junio 2013. EAFIT.

Cardenas Montes; Miguel. Support Vector Machine. Graphs,

Statistics and Data Mining with Python. Presentation, November of
2015.
http://wwwae.ciemat.es/~cardenas/docs/curso_MD/svm.pdf

Loaiza; Gabriel and Quiceno; Héctor. A q-exponential statistical

Banach manifold. Journal of Mathematical Analysis and
Applications, 398, 2013.

Laferty; John and Lebanon; Guy. Difussion Kernels on Statistical

Manifolds. Journal of Machine Learning Research, 6 (2005), pp.
129-163.

1.4. Support Vector Machines. Scikit Learn.
http://scikit-learn.org/stable/modules/svm.html. September 23/
2017.

Juan Carlos Arango Parra Diffussion Kernels on Statistical Manifold

http://wwwae.ciemat.es/~cardenas/docs/curso_MD/svm.pdf

