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Objective

Performance a simple analysis of model parameters which could be
influenced by control strategies. Also we want to establish a
framework to formulate the inverse problem associated to estimate
interval-valued parameters by considering the uncertainty to obtain
robust solutions for epidemiological models.



Method of sum of squares

Equilibrium 
 Points 

 
 
 

Nonlinear System 
 
 

ẋ = f(x)

Express the Lyapunov function 
and its orbital derivative 

as a quadratic form 

Define the degree of 
 Lyapunov function (even) 

Define the vector of  
monomials z 

Solve the SDP 



Sum of squares

Theorem (Parrilo, 2000, 2003)

A multivariate polynomial p(x) in n variables and of degree 2d is a
sum of squares if and only if there exists a positive semidefinite
matrix Q such that

p(x) = zTQz ,

where z is the vector of monomials of degree up to d

zT = [1, x1, x2, · · · , xn, x1x2, · · · , xdn ]



Normalized sir model

ds

dt
= µ− βsi − µs

di

dt
= βsi − (γ + µ)i

dr

dt
= γi − µr

ds

dt
= µ− βsi − µs

di

dt
= βsi − (γ + µ)i

(1)

Basic Reproductive Number
R0

R0 =
β

γ + µ

Equilibrium Points

Disease-free point,
E0 = (1, 0)

Endemic equilibrium point,
E1 = (s∗, i∗), where
s∗ = 1

R0
, and i∗ = µ

β (R0 − 1)



In general, for sir model we found V (s, i) = q11(s − 1)2 + q22i
2

where q11 = ε and q22 = ε(µ+γ)
(γ+1)

Figure: µ = 0.2, β = 0.5, γ = 0.8, R0 = 0.5, q11 = 1.201× 10−4, and
q22 = 5.666× 10−5



Dengue transmission model

dme

dt
= bβmhi (1−me −mi )− (θm + µm)me

dmi

dt
= θmme − µmmi

dhs
dt

= µh − bβhmihs − µhhs
dhe
dt

= bβhmihs − (θh + µh)he

dhi
dt

= θhhe − (γh + µh)hi

The disease-free point, P0 = (0, 0, 1, 0, 0).



In general, we found
V (me ,mi , hs , he , hi ) = q11m

2
e +q22m

2
i +q33(hs−1)2 +q44h

2
e +q55h

2
i

where

q11 = ε

q22 =
λ√

(θm + µm)
+ ε

q33 ≤
4µhµm
b2β2

h

(q22 − ε) + ε

q44 ≤
4µm(θh + µh)

b2β2
h

(q22 − ε) + ε

q55 ≤
4(θh + µh)(γh + µh)

θ2
h

(q44 − ε) + ε

with ε > 0



Theorem
(Peet and Papachristodoulou, 2012) Suppose that f is a
polynomial of degree q and that system

ẋ(t) = f (x(t)), x(0) = x0 (2)

is exponentially stable on M with

||x(t)|| ≤ K ||x0||e−λt

where M is a bounded nonempty region of radius r . Then, there
exist a α, β, γ > 0 and a sum of squares polynomial V (x) such
that for any x ∈ M,

α||x ||2 ≤ V (x)≤ β||x ||2

∇V (x)T f (x)≤ −γ||x ||2
(3)



Further, the degree of V will be less than 2q(Nk−1), where
k(L, λ,K ) is any integer such that c(k) < K and

c(k)2 +
log2K 2

2λ
K

(TL)k

T
(1 + c(k))(K + c(k)) <

1

2
. (4)

c(k)2 >
λ

KL log 2K 2
(1− (2K 2)−

L
λ ) (5)

where c(k) is defined as

c(k) =
N−1∑
i=0

(eTL + K (TL)k)iK 2(TL)k (6)

and N(L, λ,K ) is any integer such that NT > (log 2K 2/2λ) and
T < (1/2L) for some T and where L is a Lipschitz bound on f on
B4Kr .



Result: Lyapunov function for sir model

Moving the disease-free point E0 = (1, 0) to the origin, the system
(1) becomes:

ẋ1= µ− β(1 + x1)x2 − µ(1 + x1)

ẋ2= β(1 + x1)x2 − (µ+ γ)x2
(7)

where x1 = s − 1, and x2 = i .

The Lipschitz bound for this system is given by:

L = sup
x∈Br

{β + µ, β + 1, β, β + (µ+ γ)(1− R0)}



To find the converse Lyapunov function we construct the Picard
iteration:

(Pz)(t, x) = x +

t∫
0

f (0)ds = x

(P2z)(t, x) = x +

t∫
0

f ((Pz)(s, x))ds = x

= x +

t∫
0

f (x)ds = x + f (x)t



The converse Lyapunov function is

V (x) =

δ∫
0

(P2z(s, x))T (P2z(s, x))ds

=

δ∫
0

(x + f (x)s)T (x + f (x)s)ds

=

δ∫
0

[
x

f (x)

]T [
I
sI

] [
I sI

] [ x
f (x)

]
ds

=

[
x

f (x)

]T [
δI δ2/2I

δ2/2I δ3/3I

] [
x

f (x)

]



If δ = 1
2L , for the sir model, we get the SOS Lyapunov function

24L3V (x) =


x1

x2

f1(x1, x2)
f2(x1, x2)


T 

12L2 0 3L 0
0 12L2 0 3L

3L 0 1 0
0 3L 0 1




x1

x2

f1(x1, x2)
f2(x1, x2)


= ZT Q Z

In this case,

Q = LTL, where L =


2
√

3L 0 3
2
√

3
0

0 2
√

3L 0 3
2
√

3

0 0 1
2 0

0 0 0 1
2





And therefore we have the sum of squares decomposition:

24L3V (x1, x2) =

((
2
√

3L− 3

2
√

3
µ

)
x1 −

3

2
√

3
βx2 −

3

2
√

3
βx1x2

)2

+

((
2
√

3L− 3

2
√

3
(µ+ γ)(1− R0)

)
x2 +

3

2
√

3
βx1x2

)2

+
1

4
(−µx1 − βx2 − βx1x2)2

+
1

4
(βx1x2 − (µ+ γ)(1− R0)x2)2



Figure: µ = 0.2, β = 0.5, γ = 0.8, R0 = 0.5, L = β + 1 = 1.5



Threshold theorem (basic reproductive number, R0)

If the average number of secondary infections caused by an average
infective is less than one, a disease will die out, while if it exceeds
one there will be an epidemic (Brauer and Castillo-Chavez, 2001).

Figure: Basic reproductive number for some infectious disease. Image
taken from https://goo.gl/vDc70u

https://goo.gl/vDc70u
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Figure: In (a) µ = 0.2, β = 0.5, γ = 0.8, R0 = 0.5, in (b) µ = 0.08,
β = 0.9, γ = 0.5, R0 = 1.55



Figure: µ = 0.06, β = 1, γ = 0.5, R0 = 1.8, s∗ = 0.42, and i∗ = 0.028



For sir model (1), the control parameters are: µ, mortality rate.

Figure: µ = 0.06, β = 1, γ = 0.3, µc = 0, 0.15, 0.25 respectively



For sir model (1), the control parameters are: β, transmission
probability:

Figure: µ = 0.06, β = 1, γ = 0.3, βc = 1, 0.55, 0.36,
R0 = 2.78, 1.54, 0.9 respectively



Example: Dengue model, Bello’s case

dA

dt
= δ

(
1− A

C

)
M − (γm + µa)A

dMs

dt
= f γmA− bβm

Hi

H
Ms − (µm + µc)Ms

dMe

dt
= bβm

Hi

H
Ms − (θm + µm + µc)Me

dMi

dt
= θmMe − (µm + µc)Mi

dHs

dt
= µhH − bβh

Mi

M
Hs − µhHs

dHe

dt
= bβh

Mi

M
Hs − (θh + µh)He

dHi

dt
= θhHe − (γh + µh)Hi

dHr

dt
= γhHi − µhHr



Example: Dengue model, Bello’s case

R0 =
b2βmβhθhθm

(θm + µm)(γh + µh)(θh + µh)µmM
· f γm
µm

δMC

(δM + C (γm + µa))

=
b2βmβhθhθm

(θm + µm)(γh + µh)(θh + µh)µm
· M

∗
s

M

Control Parameters

Param. Meaning

b Biting rate

µa Mortality rate in the aquatic phase

µm Mortality rate in the adult phase

C Carrying capacity of the environment



Figure: µc = 0, 0.05, 0.1, δ = 65, γm = 1.4, µa = 0.12, b = 4,
µm = 0.12, θm = 0.58, f = 0.5, θh = 0.7, C = 10000, γh = 1.2,
βm = 0.75, βh = 0.15, and µh = 0.0004, and the initial conditions
A(0) = 9000, Ms(0) = 1199976, Me(0) = 18, Mi (0) = 6,
Hs(0) = 321710, He(0) = 18, Hi (0) = 6, and Hr (0) = 81501.



Forward Problem

Estimates of  
model parameters 

 
 
 
 

µ = c1

� = c2

� = c3

Quantitative model 
 
  
 
 
 
 

dS

dt
= µN � �SI � µS

dI

dt
= �SI � (� + µ)I

dR

dt
= �I � µR

Predictions of data 
 
 
 
 
 
 

 
 

Susceptible 
Infected 
Recovered 



Inverse Problem

Estimates of  
model parameters 

 
 
 
 

Quantitative model 
 
  
 
 
 
 

dS

dt
= µN � �SI � µS

dI

dt
= �SI � (� + µ)I

dR

dt
= �I � µR

Observations of data 
 
 
 
 
 
 

 
 

µ = ?

� = ?

� = ?



Strategies to Solve Inverse Problem

Strategies

Least squares

Heuristic and Metaheuristic
algorithms

Monte Carlo

Least-Squares Gradient and
Hessian

Assumptions

Independence in database

Normal distribution

All initial uncertainties in
the problem can be modeled
using Gaussian distributions
(Tarantola, 2005)



Uncertainty



Uncertainty in the dengue cases reported



Uncertainty in experimental data



Probability approximation

Has been widely studied and applied to practical engineering
problems.

This method is based on probability distributions of the
parameters with uncertainty.

Sufficient information on the uncertainty is not always
available or sometimes expensive for many practical problems.

There are researches indicating that even a small deviation of
the probability distribution is likely to cause a large error of
the reliability analysis (Ben-Haim and Elishakoff, 2013).



Interval-valued approximation

In the last two decades, the interval method in which interval
is employed to model the uncertainty has been attracting
more and more attentions (Moore, 1979; Braems et al., 2005).

We only have to establish a bounds of the uncertainty of a
parameter

This approximation can make the uncertainty analysis more
convenient and economical

Interval method has been successfully applied to uncertainty
optimization problems (Jiang et al., 2008; Gallego-Posada and
Puerta-Yepes, 2017)



Figure: Inverse analysis process for uncertainty inverse problems. Image
taken from (Jiang et al., 2008)



Goal

Without Uncertainty

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

where,

S(0) = S0

I (0) = I0

R(0) = R0

With Uncertainty

dS

dt
= −[β1, β2]SI

dI

dt
= [β1, β2] SI − [γ1, γ2] I

dR

dt
= [γ1, γ2] I

where,

S(0) = [S01 ,S02 ]

I (0) = [I01 , I02 ]

R(0) = [R01 ,R02 ]



Example: Dengue model, Bello’s case

dA

dt
= [δ1, δ2]

(
1− A

[C1,C2]

)
M − ([γm1 , γm2 ] + [µa1 , µa2 ])A

dMs

dt
= [f1, f2][γm1 , γm2 ]A− [b1, b2][βm1 , βm2 ]

Hi

H
Ms − [µm1 , µm2 ]Ms

dMe

dt
= [b1, b2][βm1 , βm2 ]

Hi

H
Ms − ([θm1 , θm2 ] + [µm1 , µm2 ])Me

dMi

dt
= [θm1 , θm2 ]Me − [µm1 , µm2 ]Mi

dHs

dt
= [µh1 , µh2 ]H − [b1, b2][βh1 , βh2 ]

Mi

M
Hs − [µh1 , µh2 ]Hs

dHe

dt
= [b1, b2][βh1 , βh2 ]

Mi

M
Hs − ([θh1 , θh2 ] + [µh1 , µh2 ])He

dHi

dt
= [θh1 , θh2 ]He − ([γh1 , γh2 ] + [µh1 , µh2 ])Hi

dHr

dt
= [γh1 , γh2 ]Hi − [µh1 , µh2 ]Hr



Example: Dengue model, Bello’s case

Initial Conditions

A(0) = [A0,A
′
0]

Ms(0) = [Ms0 ,M
′
s0

]

Me(0) = [Me0 ,M
′
e0

]

Mi (0) = [Mi0 ,M
′
i0 ]

Hs(0) = [Hs0 ,H
′
s0

]

He(0) = [He0 ,H
′
e0

]

Hi (0) = [Hi0 ,H
′
i0 ]

Hr (0) = [Hr0 ,H
′
r0

]



Figure: On the right, interval-valued plot of the estimated Fourier series
model, and on the left, Real data vs Model output. Images taken from
(Gallego-Posada and Puerta-Yepes, 2017)



Results

We found robust Lyapunov functions to test the asymptotic
stability of disease-free equilibrium points in some models
simulating the transmission of mosquito-borne infectious diseases.

From the basic reproductive number R0 it is possible determined
how much should change the parameters of the model to satisfy
the condition R0 ≤ 1
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