Towards a general framework for the Repositioning Problem in Bicycle-sharing Systems

Juan David Palacio Domínguez

PhD Student in Mathematical Engineering

Juan Carlos Rivera Agudelo

Thesis Advisor

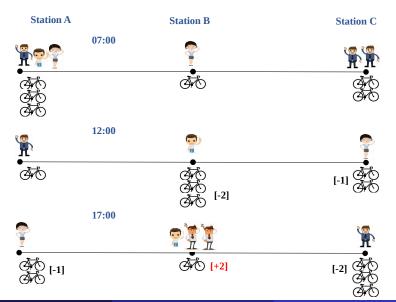
Doctoral Seminar in Mathematical Engineering

October 20, 2017

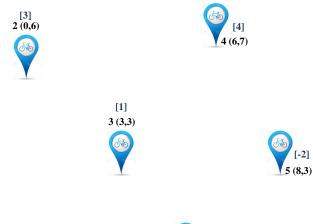
1 The Repositioning Problem (RP) - Description

- 2 A General Framework for the RP
- 3 Solution Strategies
 - Single Vehicle Case
 - Multi-vehicle Case
- Preliminary Results
- 5 Current and Future Work

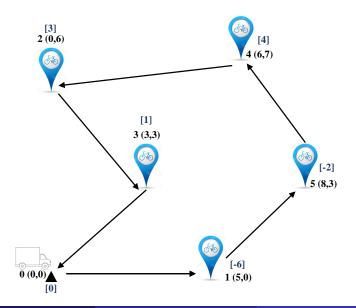
Balancing a BSS



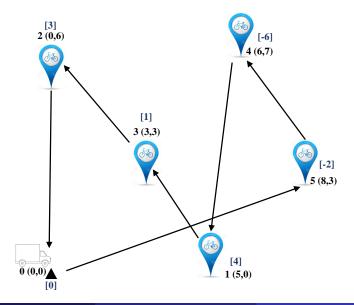
Pick up and Delivery TSP



Pick up and Delivery TSP

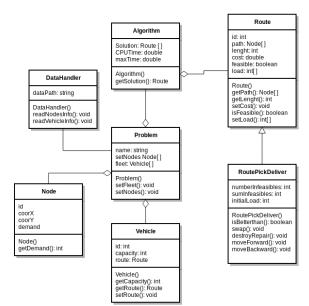


Pick up and Delivery TSP



Palacio J.D., Rivera J.C.

General Framework for the RP

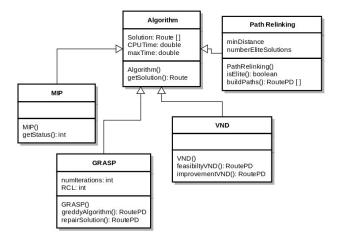


Palacio J.D., Rivera J.C.

Repositioning Problem in BSSs

October 20, 2017 7 / 44

General Framework for the RP



Palacio J.D., Rivera J.C.

1 The Repositioning Problem (RP) - Description

- 2 A General Framework for the RP
- Solution StrategiesSingle Vehicle Case
 - Multi-vehicle Case
 - Preliminary Results
 - 5 Current and Future Work

- Mathematical Formulations
 - Traveling Salesman Problem (TSP)
 - Pick up and Delivery TSP (PDTSP)
 - PDTSP with Split Demand (PDTSPSD)
- Heuristic Algorithms
 - Nearest Neighbor (TSP)
 - Extensions of Nearest Neighbor for PDTSP and PDTSPSD
- Metaheuristic Algorithms
 - Greedy Randomized Adaptive Search Procedure (GRASP)
 - Path Relinking
 - Variable Neighborhood Descent (VND)

GRASP Algorithm

$$f^* \leftarrow \infty;$$

for $i = 1$ to *GRASPIterations* do
 $S \leftarrow GreedyRandomAlgorithm();$
 $S \leftarrow LocalSearch(S);$
if $f(S) < f^*$ then
 $S^* \leftarrow S;$
 $f^* \leftarrow f(S);$
end if
end for
return $S^*;$

```
\mathsf{GRASP} + \mathsf{VND}
```

 $f^* \leftarrow \infty;$ for i = 1 to *GRASPIterations* do $S \leftarrow GreedyRandomAlgorithm();$ $S \leftarrow VND(S);$ if $f(S) < f^*$ then $S^* \leftarrow S;$ $f^* \leftarrow f(S);$ end if end for return $S^*;$

GRASP + VND + Post-Optimization

```
f^* \leftarrow \infty;
for i = 1 to GRASPIterations do
S \leftarrow \text{GreedyRandomAlgorithm}();
S \leftarrow \text{VND}(S);
if f(S) < f^* then
S^* \leftarrow S;
f^* \leftarrow f(S);
end if
end for
S^* \leftarrow \text{VND}'(S^*);
return S^*;
```

GRASP + VND + Post-Optimization with Path Relinking

```
f^* \leftarrow \infty:
\xi \leftarrow \emptyset;
for i = 1 to GRASPIterations do
    S \leftarrow \text{GreedyRandomAlgorithm}();
    S \leftarrow VND(S);
   if f(S) < f^* then
       S^* \leftarrow S:
       f^* \leftarrow f(S);
    end if
    if isElite(S)=true then
       \xi \leftarrow \xi \cup S;
    end if
end for
S^* \leftarrow \mathsf{PathRelinking}(\xi);
return S*:
```

• Distance between solutions i and j: $\Delta(S_i, S_j)$

Solutions									
Si	0	3	4	7	1	2	6	5	0
S_j	0	1	2	3	4	5	6	7	0

$$\Delta(S_i,S_j)=6$$

• Distance between solution *i* and the elite solutions set: $\Delta(S_i, \xi)$

$$\Delta(S_i,\xi) = \min_{S_k \in \xi} \{\Delta(S_i,S_k)\}$$

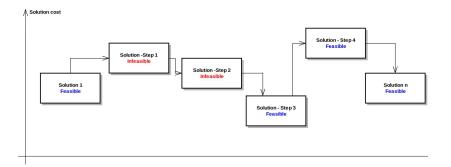


Table: Path Relinking - Forward Strategy Paths Distance to S_f $\frac{S_0}{S_1} \\
\frac{S_2}{S_3} \\
\frac{S_3}{S_f}$

	Table: Path Relinking - Backward Strategy										
			Distance to S_f								
S_0	0	1	2	3	4	5	6	7	0	6	
S_1	0	3	4	1	2	5	6	7	0	5	
S_2	0	3	4	7	1	2	5	6	0	3	
S_3	0	3	4	7	1	2	6	5	0	0	
S_f	0	3	4	7	1	2	6	5	0		

Five neighborhoods (so far) within a VND method

- Forward insertion
- Backward insertion
- Swap
- 2-Opt
- Destroy and Repair
- A network-based neighborhood (an idea...)

• Destroy and Repair

Route	0	5	3	2	1	4	0	n	s
q	0	-2	1	3	-6	4			
Load	0	2	1	-2	4	0		1	2

- n: number of infeasible loads
- s: sum of infeasible loads

• Randomly delete *m* stations from the path

Route	0	5	3	2	¥	4	0	n	ĺ.	s
q	0	-2	1/	3	-/Ø	4				
Load	0	2	1	-2	4	0		1		2

- n: number of infeasible loads
- s: sum of infeasible loads

• Compute the new incomplete tour and its load

Removed stations: 1 and 3 where $q_1 = -6$ and $q_3 = 1$

Route	0	5	2	4	0	n	S
q	0	-2	3	4			
Load	0	2	-1	-5		2	6

- n: number of infeasible loads
- s: sum of infeasible loads

• Insert the removed stations trying to avoid infeasibility Removed stations: 1 and 3 where $q_1 = -6$ and $q_3 = 1$

> Route 0 5 2 4 0 1 n S 0 -2 -6 3 4 q 5 Load 0 2 8 1 0 0

- n: number of infeasible loads
- s: sum of infeasible loads

• Insert the removed stations trying to avoid infeasibility

Removed stations: 3 where $q_3 = 1$

Route	0	5	1	2	4	3	0	n	s
q	0	-2	-6	3	4	1			
Load	0	2	8	5	1	0		0	0

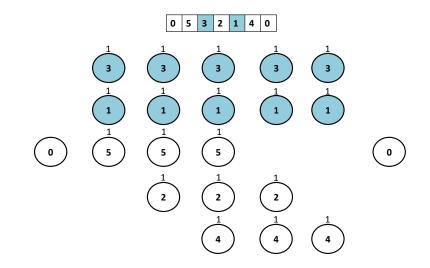
- n: number of infeasible loads
- s: sum of infeasible loads

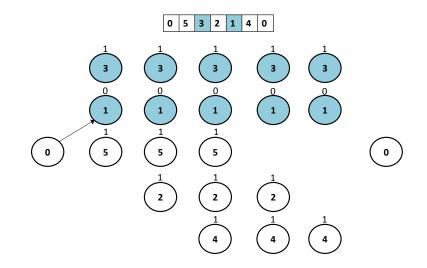
Route	0	5	3	2	1	4	0	n	S
q	0	-2	1	3	-6	4			
Load	0	2	1	-2	4	0		1	2

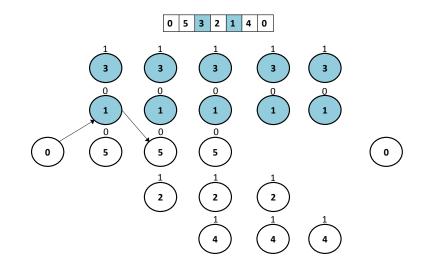
- n: number of infeasible loads
- s: sum of infeasible loads
 - Remove *m* nodes from the solution
 - Is it possible to find the best position to insert them again?

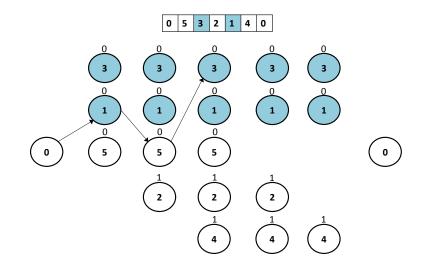
Route	0	5	3	2	1	4	0	n	S
q	0	-2	1	3	-6	4			
Load	0	2	1	-2	4	0		1	2

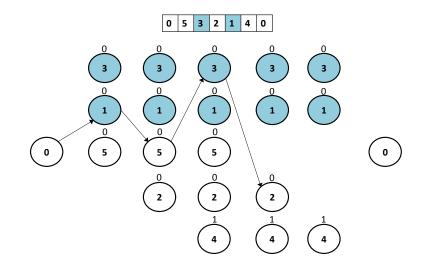
- n: number of infeasible loads
- s: sum of infeasible loads
 - Remove *m* nodes from the solution
 - Is it possible to find the **best** position to insert them again?

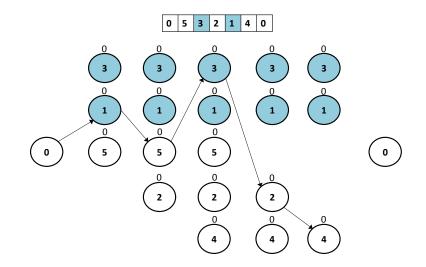




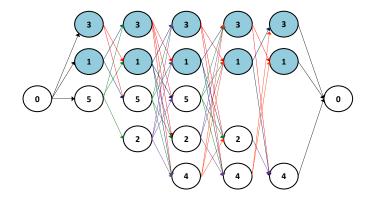












How to solve it?

- Constrained Shortest Path algorithms
- Nearest Neighbor with lower bounds computation

1 The Repositioning Problem (RP) - Description

2 A General Framework for the RP

Solution Strategies Single Vehicle Case

- Multi-vehicle Case
- Preliminary Results

5 Current and Future Work

- Sets
 - \mathcal{N} : Set of stations
 - $\mathcal{V}:$ Set of vehicles
- Parameters
 - c_{ij} : Traveling cost from station *i* to station *j*
 - q_i : Demand or slack of bicycles in station i
 - Q^{v} : Capacity of vehicle v
- Decision Variables

• $w_i^v = \begin{cases} 1 & \text{if station } i \text{ is visited by vehicle } v \\ 0 & \text{otherwise} \end{cases}$ • $y_{ij}^v = \begin{cases} 1 & \text{if arc } (i,j) \text{ is transversed by vehicle } v \\ 0 & \text{otherwise} \end{cases}$ • $x_{ij}^v \text{ : Load of vehicle } v \text{ when traveling from } i \text{ to } j \text{ is } z_{ij}^v \text{ : Position of arc } (i,j) \text{ in the route of vehicle } v \text{ when travelet of$

Mathematical Formulation for the HFPDVRP

$$\min f = \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} c_{ij} \cdot \sum_{v \in \mathcal{V}} y_{ij}^{v}$$

subject to,

$$\sum_{j\in\mathcal{N},i
eq j}y_{ij}^{
u}=w_i^{
u}$$
 $\sum_{j\in\mathcal{N},j
eq 0}y_{0j}^{
u}=1$
 $\sum_{i\in\mathcal{N}}y_{ij}^{
u}=\sum_{i\in\mathcal{N}}y_{ji}^{
u}$
 $x_{ij}^{
u}\leq Q^{
u}\cdot y_{ij}^{
u}$

$$orall i \in \mathcal{N} \setminus \{0\}, v \in \mathcal{V}$$

 $orall v \in \mathcal{V}$
 $orall j \in \mathcal{N}, v \in \mathcal{V}$
 $orall i \in \mathcal{N}, j \in \mathcal{N}, v \in \mathcal{V}$

Mathematical Formulation for the HFPDVRP

$$\begin{split} \sum_{k \in \mathcal{N}} x_{ki}^{v} &- \sum_{j \in \mathcal{N}} x_{ij}^{v} = q_{i} \cdot w_{i}^{v} \\ \sum_{k \in \mathcal{N}} z_{ki}^{v} &- \sum_{j \in \mathcal{N}} z_{ij}^{v} = w_{i}^{v} \\ z_{ij}^{v} &\leq |\mathcal{N}| \cdot y_{ij}^{v} \\ w_{i}^{v} &\in \{0, 1\} \\ y_{ij}^{v} &\in \{0, 1\} \\ z_{ij}^{v} &\in \mathcal{Z}^{+} \cup \{0\} \\ x_{ij}^{v} &\geq 0 \end{split}$$

$$\forall i \in \mathcal{N}, v \in \mathcal{V}$$
$$\forall i \in \mathcal{N} \setminus \{0\}, v \in \mathcal{V}$$
$$\forall i \in \mathcal{N}, j \in \mathcal{N}, v \in \mathcal{V}$$
$$\forall i \in \mathcal{N}, j \in \mathcal{N}, v \in \mathcal{V}$$
$$\forall i \in \mathcal{N}, j \in \mathcal{N}, v \in \mathcal{V}$$
$$\forall i \in \mathcal{N}, j \in \mathcal{N}, v \in \mathcal{V}$$
$$\forall i \in \mathcal{N}, j \in \mathcal{N}, v \in \mathcal{V}$$

Dataset

- Instances adapted from TSPLib Library
 - (elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html)
- Instances with 9, 14, 16, 22, 29, 42 nodes were tested

Software

- $\bullet\,$ All the algorithms were implemented on C++
- Mathematical models were solved using Gurobi Optimizer 7.1
- Computer features
 - Intel Core i7, 64Gb RAM.
 - OS: Linux Debian 8 (x86-64)

• $\max_{i \in \mathcal{N}} \{ |q_i| \} = 10$

	V	=1	V	= 2	V	= 3
N	Distance	CPU	Distance	CPU	Distance	CPU
		time (s)		time (s)		time (s)
9	26	0.19	21	0.16	-	-
14	24	0.07	21	1.05	20	2.52
16	61	0.39	53	0.95	51	2.09
22	36	0.68	30	10.83	26	49.01
29	10 957	223.73	9 932	2 348.11	9 022	1488.22

Preliminary Results - Heterogeneous Fleet

- $Q_1 = 10$
- Q₂ = 8
- *Q*₃ = 8
- $\max_{i \in \mathcal{N}} \{ |q_i| \} = 10$

	V	= 2	V	= 3
<i>N</i>	Distance	CPU	Distance	CPU
		time (s)		time (s)
9	21	0.21	-	-
14	21	0.52	20	2.80
16	53	0.84	51	1.96
22	32	11.92	32	72.39
29	10 331	365.98	10 052	534.93

Preliminary Results - Heterogeneous Fleet

- $Q_1 = 12$
- $Q_2 = 10$
- *Q*₃ = 8
- $\max_{i \in \mathcal{N}} \{ |q_i| \} = 10$

	V	= 2	V	= 3
N	Distance	CPU	Distance	CPU
		time (s)		time (s)
9	21	0.11	-	-
14	21	0.54	20	2.27
16	53	0.84	51	9.57
22	23	10.62	23	29.59
29	8 620	144.705	8 846	347.38

- Design new network-based neighborhoods able to improve solution quality.
- Design a real-world instance for the RP using data provided by Encicla program.
- Design exact and heuristic strategies able to include synchronization features in several routes.

Towards a general framework for the Repositioning Problem in Bicycle-sharing Systems

Juan David Palacio Domínguez

jpalac26@eafit.edu.co

Juan Carlos Rivera Agudelo

jrivera6@eafit.edu.co