Towards a general framework for the Repositioning Problem in Bicycle-sharing Systems

Juan David Palacio Domínguez
PhD Student in Mathematical Engineering

Juan Carlos Rivera Agudelo
Thesis Advisor

Doctoral Seminar in Mathematical Engineering

October 20, 2017

Outline

(1) The Repositioning Problem (RP) - Description
(2) A General Framework for the RP
(3) Solution Strategies

- Single Vehicle Case
- Multi-vehicle Case
(4) Preliminary Results
(5) Current and Future Work

Balancing a BSS

Station A Station B Station C

17:00

Pick up and Delivery TSP

Pick up and Delivery TSP

Pick up and Delivery TSP

General Framework for the RP

General Framework for the RP

Outline

(1) The Repositioning Problem (RP) - Description

(2) A General Framework for the RP
(3) Solution Strategies

- Single Vehicle Case
- Multi-vehicle Case

4. Preliminary Results
(5) Current and Future Work

Solution Strategies - Single Vehicle Case

- Mathematical Formulations
- Traveling Salesman Problem (TSP)
- Pick up and Delivery TSP (PDTSP)
- PDTSP with Split Demand (PDTSPSD)
- Heuristic Algorithms
- Nearest Neighbor (TSP)
- Extensions of Nearest Neighbor for PDTSP and PDTSPSD
- Metaheuristic Algorithms
- Greedy Randomized Adaptive Search Procedure (GRASP)
- Path Relinking
- Variable Neighborhood Descent (VND)

Metaheuristic Algorithms

GRASP Algorithm

```
\(f^{*} \leftarrow \infty\);
for \(i=1\) to GRASPIterations do
    \(S \leftarrow\) GreedyRandomAlgorithm();
    \(S \leftarrow\) LocalSearch(S);
    if \(f(S)<f^{*}\) then
        \(S^{*} \leftarrow S\);
        \(f^{*} \leftarrow f(S)\);
    end if
end for
return \(S^{*}\);
```


Metaheuristic Algorithms

GRASP + VND

```
\(f^{*} \leftarrow \infty\);
for \(i=1\) to GRASPIterations do
    \(S \leftarrow\) GreedyRandomAlgorithm();
    \(S \leftarrow \mathrm{VND}(\mathrm{S})\);
    if \(f(S)<f^{*}\) then
        \(S^{*} \leftarrow S\);
        \(f^{*} \leftarrow f(S)\);
        end if
end for
return S*; \(^{*}\)
```


Metaheuristic Algorithms

GRASP + VND + Post-Optimization

```
\(f^{*} \leftarrow \infty\);
for \(i=1\) to GRASPIterations do
    \(S \leftarrow\) GreedyRandomAlgorithm();
        \(S \leftarrow \mathrm{VND}(S)\);
        if \(f(S)<f^{*}\) then
        \(S^{*} \leftarrow S\);
        \(f^{*} \leftarrow f(S)\);
        end if
    end for
    \(S^{*} \leftarrow \mathrm{VND}^{\prime}\left(S^{*}\right)\);
    return \(S^{*}\);
```


Metaheuristic Algorithms

GRASP + VND + Post-Optimization with Path Relinking

$$
\begin{aligned}
& f^{*} \leftarrow \infty ; \\
& \xi \leftarrow \emptyset ; \\
& \text { for } i=1 \text { to GRASPIterations do } \\
& \quad S \leftarrow \text { GreedyRandomAlgorithm }() ; \\
& S \leftarrow V N D(S) ; \\
& \text { if } f(S)<f^{*} \text { then } \\
& \quad S^{*} \leftarrow S ; \\
& \quad f^{*} \leftarrow f(S) ; \\
& \text { end if } \\
& \text { if isElite }(S)=\text { true then } \\
& \quad \xi \leftarrow \xi \cup S ; \\
& \text { end if } \\
& \text { end for } \\
& S^{*} \leftarrow \text { PathRelinking }(\xi) ; \\
& \text { return } S^{*} ;
\end{aligned}
$$

Path Relinking

- Distance between solutions i and $j: \Delta\left(S_{i}, S_{j}\right)$

Solutions									
S_{i}	0	3	4	7	1	2	6	5	0
S_{j}	0	1	2	3	4	5	6	7	0

$$
\Delta\left(S_{i}, S_{j}\right)=6
$$

- Distance between solution i and the elite solutions set: $\Delta\left(S_{i}, \xi\right)$

$$
\Delta\left(S_{i}, \xi\right)=\min _{S_{k} \in \xi}\left\{\Delta\left(S_{i}, S_{k}\right)\right\}
$$

Path Relinking

Path Relinking

Table: Path Relinking - Forward Strategy

Paths									Distance to S_{f}	
S_{0}	0	3	4	7	1	2	6	5	0	6
S_{1}	0	1	2	3	4	7	6	5	0	4
S_{2}	0	1	2	3	4	5	7	6	0	3
S_{3}	0	1	2	3	4	5	6	7	0	0
S_{f}	0	1	2	3	4	5	6	7	0	

Path Relinking

Table: Path Relinking - Backward Strategy

Path									Distance to S_{f}	
S_{0}	0	1	2	3	4	5	6	7	0	6
S_{1}	0	3	4	1	2	5	6	7	0	5
S_{2}	0	3	4	7	1	2	5	6	0	3
S_{3}	0	3	4	7	1	2	6	5	0	0
S_{f}	0	3	4	7	1	2	6	5	0	

VND Structure

Five neighborhoods (so far) within a VND method

- Forward insertion
- Backward insertion
- Swap
- 2-Opt
- Destroy and Repair
- A network-based neighborhood (an idea...)

VND - Destroy and Repair

- Destroy and Repair

Route	0	5	3	2	1	4	0	n	5
q	0	-2	1	3	-6	4			
Load	0	2	1	-2	4	0		1	2

n : number of infeasible loads
s: sum of infeasible loads

VND - Destroy and Repair

- Randomly delete m stations from the path

Route	0	5	3	2	7	4	0	n	s
q	0	-2	7	3	-6	4			
Load	0	2	1	-2	4	0		1	2

n : number of infeasible loads
s: sum of infeasible loads

VND - Destroy and Repair

- Compute the new incomplete tour and its load Removed stations: 1 and 3 where $q_{1}=-6$ and $q_{3}=1$

Route	0	5	2	4	0			n
s	s							
q	0	-2	3	4				
Load	0	2	-1	-5			2	6

n : number of infeasible loads
s: sum of infeasible loads

VND - Destroy and Repair

- Insert the removed stations trying to avoid infeasibility Removed stations: 1 and 3 where $q_{1}=-6$ and $q_{3}=1$

Route	0	5	1	2	4	0			n
s	s								
q	0	-2	-6	3	4				
Load	0	2	8	5	1			0	0

n : number of infeasible loads
s: sum of infeasible loads

VND - Destroy and Repair

- Insert the removed stations trying to avoid infeasibility Removed stations: 3 where $q_{3}=1$

Route	0	5	1	2	4	3	0			n	s
q	0	-2	-6	3	4	1					
Load	0	2	8	5	1	0			0	0	

n : number of infeasible loads
s: sum of infeasible loads

VND - A network-based neighborhood

Route	0	5	3	2	1	4	0		n	n
q	0	-2	1	3	-6	4				
Load	0	2	1	-2	4	0			1	2

n : number of infeasible loads
s : sum of infeasible loads

- Remove m nodes from the solution
- Is it possible to find the best position to insert them again?

VND - A network-based neighborhood

Route	0	5	3	2	1	4	0		n	n
q	0	-2	1	3	-6	4				
Load	0	2	1	-2	4	0			1	2

n : number of infeasible loads
s : sum of infeasible loads

- Remove m nodes from the solution
- Is it possible to find the best position to insert them again?

VND - A network-based neighborhood

VND - A network-based neighborhood

0	5	3	2	1	4	0

VND - A network-based neighborhood

How to solve it?

- Constrained Shortest Path algorithms
- Nearest Neighbor with lower bounds computation

Outline

(1) The Repositioning Problem (RP) - Description

(2) A General Framework for the RP

(3) Solution Strategies

- Single Vehicle Case
- Multi-vehicle Case

4 Preliminary Results
(5) Current and Future Work

Mathematical Formulation for the HFPDVRP

- Sets
- \mathcal{N} : Set of stations
- \mathcal{V} : Set of vehicles
- Parameters
- $c_{i j}$: Traveling cost from station i to station j
- q_{i} : Demand or slack of bicycles in station i
- Q^{\vee} : Capacity of vehicle v
- Decision Variables
- $w_{i}^{v}=\left\{\begin{array}{lc}1 & \text { if station } i \text { is visited by vehicle } v \\ 0 & \text { otherwise }\end{array}\right.$
- $y_{i j}^{v}=\left\{\begin{array}{lc}1 & \text { if arc }(i, j) \\ 0 & \text { is transversed by vehicle } v \\ \text { otherwise }\end{array}\right.$
- $x_{i j}^{v}$: Load of vehicle v when traveling from i to j
- $z_{i j}^{k}$: Position of arc (i, j) in the route of vehicle v

Mathematical Formulation for the HFPDVRP

$$
\min f=\sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} c_{i j} \cdot \sum_{v \in \mathcal{V}} y_{i j}^{v}
$$

subject to,

$$
\begin{array}{lr}
\sum_{j \in \mathcal{N}, i \neq j} y_{i j}^{v}=w_{i}^{v} & \forall i \in \mathcal{N} \backslash\{0\}, v \in \mathcal{V} \\
\sum_{j \in \mathcal{N}, j \neq 0} y_{0 j}^{v}=1 & \forall v \in \mathcal{V} \\
\sum_{i \in \mathcal{N}} y_{i j}^{v}=\sum_{i \in \mathcal{N}} y_{j i}^{v} & \forall j \in \mathcal{N}, v \in \mathcal{V} \\
x_{i j}^{v} \leq Q^{v} \cdot y_{i j}^{v} & \forall i \in \mathcal{N}, j \in \mathcal{N}, v \in \mathcal{V}
\end{array}
$$

Mathematical Formulation for the HFPDVRP

$$
\begin{array}{lr}
\sum_{k \in \mathcal{N}} x_{k i}^{v}-\sum_{j \in \mathcal{N}} x_{i j}^{v}=q_{i} \cdot w_{i}^{v} & \forall i \in \mathcal{N}, v \in \mathcal{V} \\
\sum_{k \in \mathcal{N}} z_{k i}^{v}-\sum_{j \in \mathcal{N}} z_{i j}^{v}=w_{i}^{v} & \forall i \in \mathcal{N} \backslash\{0\}, v \in \mathcal{V} \\
z_{i j}^{v} \leq|\mathcal{N}| \cdot y_{i j}^{v} & \forall i \in \mathcal{N}, j \in \mathcal{N}, v \in \mathcal{V} \\
w_{i}^{v} \in\{0,1\} & \forall i \in \mathcal{N}, v \in \mathcal{V} \\
y_{i j}^{v} \in\{0,1\} & \forall i \in \mathcal{N}, j \in \mathcal{N}, v \in \mathcal{V} \\
z_{j i}^{v} \in \mathcal{Z}^{+} \cup\{0\} & \forall i \in \mathcal{N}, j \in \mathcal{N}, v \in \mathcal{V} \\
x_{i j}^{v} \geq 0 & \forall i \in \mathcal{N}, j \in \mathcal{N}, v \in \mathcal{V}
\end{array}
$$

Preliminary Results

Data Sets and Software

- Dataset
- Instances adapted from TSPLib Library
(elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html)
- Instances with 9, 14, 16, 22, 29, 42 nodes were tested
- Software
- All the algorithms were implemented on $\mathrm{C}++$
- Mathematical models were solved using Gurobi Optimizer 7.1
- Computer features
- Intel Core i7, 64Gb RAM.
- OS: Linux - Debian 8 (x86-64)

Preliminary Results - Homogeneous Fleet

- $Q=10$
- $\max _{i \in \mathcal{N}}\left\{\left|q_{i}\right|\right\}=10$

	$\|V\|=1$		$\|V\|=2$		$\|V\|=3$	
$\|N\|$	Distance	CPU time (s)	Distance	CPU time (s)	Distance	$C P U$ time (s)
9	26	0.19	21	0.16	-	-
14	24	0.07	21	1.05	20	2.52
16	61	0.39	53	0.95	51	2.09
22	36	0.68	30	10.83	26	49.01
29	10957	223.73	9932	2348.11	9022	1488.22

Preliminary Results - Heterogeneous Fleet

- $Q_{1}=10$
- $Q_{2}=8$
- $Q_{3}=8$
- $\max _{i \in \mathcal{N}}\left\{\left|q_{i}\right|\right\}=10$

	$\|V\|=2$		$\|V\|=3$	
$\|N\|$	Distance	CPU time (s)	Distance	CPU time (s)
9	21	0.21	-	-
14	21	0.52	20	2.80
16	53	0.84	51	1.96
22	32	11.92	32	72.39
29	10331	365.98	10052	534.93

Preliminary Results - Heterogeneous Fleet

- $Q_{1}=12$
- $Q_{2}=10$
- $Q_{3}=8$
- $\max _{i \in \mathcal{N}}\left\{\left|q_{i}\right|\right\}=10$

	$\|V\|=2$		$\|V\|=3$	
$\|N\|$	Distance	CPU time (s)	Distance	CPU time (s)
9	21	0.11	-	-
14	21	0.54	20	2.27
16	53	0.84	51	9.57
22	23	10.62	23	29.59
29	8620	144.705	8846	347.38

Current and Future Work

- Design new network-based neighborhoods able to improve solution quality.
- Design a real-world instance for the RP using data provided by Encicla program.
- Design exact and heuristic strategies able to include synchronization features in several routes.

Towards a general framework for the Repositioning Problem in Bicycle-sharing Systems

Juan David Palacio Domínguez jpalac26@eafit.edu.co
Juan Carlos Rivera Agudelo jrivera6@eafit.edu.co

