Apportionments with minimum Gini index of disproportionality

Daniele Pretolani

DISMI, Università di Modena e Reggio Emilia e-mail: daniele.pretolani@unimore.it

Medellín, March 7, 2017
Seminar of the PhD in Mathematical Engineering

Contents

(1) A glimpse of apportionment

The problem
Fairness, Concentration, and Welfare

Contents

(1) A glimpse of apportionment

The problem
Fairness, Concentration, and Welfare
(2) A quotient method with minimum G

Overview
Quotient Methods
Apportionments and Welfare
Decomposition Approach
The underlying IP problem, and results

Contents

(1) A glimpse of apportionment

The problem
Fairness, Concentration, and Welfare
(2) A quotient method with minimum G

Overview
Quotient Methods
Apportionments and Welfare
Decomposition Approach
The underlying IP problem, and results
(3) Ongoing research, and open problems

The general case
Degressive Proportionality
Open Problems

Contents

(1) A glimpse of apportionment

The problem
Fairness, Concentration, and Welfare
(2) A quotient method with minimum G

Overview
Quotient Methods
Apportionments and Welfare
Decomposition Approach
The underlying IP problem, and results
(3) Ongoing research, and open problems

The general case
Degressive Proportionality
Open Problems

Proportional Apportionment

Goal

Distribute parliamentary seats among parties, proportionally to the votes cast for each party
... but actual electoral systems almost never do that!

- district based plurality or mixed systems (France, GB)
- multi-level systems (Switzerland, Germany)

Distribute seats among the states of a federal system, proportionally to the population of each state

- EU Parliament, US House of Representatives
- the latter is the "pure" version of the problem [Balinski and Young (1981)]

Some history

Very first use of the Presidential Veto in US history

Some history

Very first use of the Presidential Veto in US history

- George Washington after 1790 census
- turned back to the method by Thomas Jefferson

Some history

Very first use of the Presidential Veto in US history

- George Washington after 1790 census
- turned back to the method by Thomas Jefferson
- discarding the method by Alexander Hamilton

Some history

Very first use of the Presidential Veto in US history

- George Washington after 1790 census
- turned back to the method by Thomas Jefferson
- discarding the method by Alexander Hamilton

Some history

Very first use of the Presidential Veto in US history

- George Washington after 1790 census
- turned back to the method by Thomas Jefferson
- discarding the method by Alexander Hamilton

Several methods adopted since then, with several court cases, and a still ongoing debate

The Apportionment Problem

Requires to map large numbers (votes, population) into small numbers (seats)

- distortion is unavoidable

A sort of vector scaling problem: scale a set of integers so that their sum is a given value

Prototype example of fair allocation of a discrete finite resource

The Apportionment Problem

Requires to map large numbers (votes, population) into small numbers (seats)

- distortion is unavoidable

A sort of vector scaling problem: scale a set of integers so that their sum is a given value

Prototype example of fair allocation of a discrete finite resource

What is fair?

Fair Apportionment

What is Fair?

- no unique answer, several (often conflicting) answers
- several methods developed in the last couple of centuries
- two main classes of methods (or combinations of them)
- quotient methods
- divisor methods
- the stress is on choosing a method, not on choosing an apportionment

Two streams of research

- the axiomatic approach
- the optimization approach

Fair Apportionment

What is Fair?

- no unique answer, several (often conflicting) answers
- several methods developed in the last couple of centuries
- two main classes of methods (or combinations of them)
- quotient methods
- divisor methods
- the stress is on choosing a method, not on choosing an apportionment

Two streams of research

- the axiomatic approach
- the optimization approach

The Optimization Approach

Characterize a method based on the inequality index it minimizes

- an inequality (or disproportionality) index is a (mathematically sound) measure of the "unfairness" introduced by an apportionment
- several (classes of) inequality indexes have been proposed
- for most indexes we know the corresponding "minimizing" method
- move from choosing a method to choosing an index

A strong characterization [Simeone et al. 1999]
A proportional method is a procedure solving an underlying integer optimization (IP) problem, where the objective function (the "hidden criterion") is an inequality index

Most classic methods are greedy procedures minimizing a convex separable inequality index

The Optimization Approach (2)

Beyond characterization, new proportional methods can be defined following the optimization approach

- choose an inequality index as objective function
- possibly insert constraints enforcing specific properties (quota property, "degressive proportionality",...)

Among others, the Gini Index is suggested as a possible choice
"Electoral formulas minimizing entropy, the Gini concentration index, standard deviation, and other common indexes of inequality could be just as good as other consolidated methods" [Simeone et al. (1999), Ch. 6.4]

We pursue this suggestion in this work

Contents

(1) A glimpse of apportionment

The problem
Fairness, Concentration, and Welfare
(2) A quotient method with minimum G

Overview
Quotient Methods
Apportionments and Welfare
Decomposition Approach
The underlying IP problem, and results
(3) Ongoing research, and open problems

The general case
Degressive Proportionality
Open Problems

The Gini Index

A measure of statistical dispersion due to Corrado Gini (≈ 1912)
An index of concentration, i.e., unequal distribution of income or wealth among a population

- commonly adopted in welfare economics, social sciences, and many other disciplines
- often used to compare disproportionality of apportionments
- ranges between zero (perfect egalitarianism) and one (perfect concentration)

Two standard definitions

- algebraic: normalized average of the wealth differences (to be used later)
- geometric: given in terms of Lorenz curves

Lorenz Curves

One of the first historical attempts (≈ 1905) to represent and compare wealth distributions

- plot of cumulative wealth, normalized within a unit square
- individuals sorted left to right in non-decreasing order of wealth

The Lorenz curve L is convex and lies below diagonal D

Lorenz Curves (2)

The more L is far from D, the more the distribution is unequal (concentrated)

- L^{\prime} is "more unequal" than L
- for a perfectly egalitarian distribution the Lorenz curve is D

The Gini Index: Geometric Definition

Consider a wealth distribution with corresponding Lorenz curve L

- A is the area between D and L
- B is the area below L

The corresponding Gini index is

$$
G=\frac{A}{A+B}=2 A=1-2 B
$$

Contents

(1) A glimpse of apportionment

The problem
Fairness, Concentration, and Welfare
(2) A quotient method with minimum G

Overview
Quotient Methods
Apportionments and Welfare
Decomposition Approach
The underlying IP problem, and results
(3) Ongoing research, and open problems

The general case
Degressive Proportionalitity
Open Problems

Overview

- restrict analysis to apportionments satisfying quota - an apportionment violating quota may give a lower G
- a new quotient method, exploiting the optimization approach
- the underlying IP problem has a binary knapsack structure
- geometric approach: maximize area B
- express B as a quadratic function of the knapsack variables
- use an efficient solver (or tight ILP formulations) for the resulting (supermodular, binary) quadratic knapsack instance

Contents

(1) A glimpse of apportionment

The problem
Fairness, Concentration, and Welfare
(2) A quotient method with minimum G

Overview
Quotient Methods
Apportionments and Welfare
Decomposition Approach
The underlying IP problem, and results
(3) Ongoing research, and open problems

The general case
Degressive Proportionality
Open Problems

Scenario

- A set of n states $\{1,2, \ldots, n\}$
- The population vector $v=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$
- The total population $V=\sum_{i=1}^{n} v_{i}$
- The number of seats S
- The output apportionment $s=\left[s_{1}, s_{2}, \ldots, s_{n}\right] \quad\left(S=\sum_{i=1}^{n} s_{i}\right)$

Examples

- EU Parliament (2011): $n=27, S=751, V=501,103,425$ (...before brexit. ..)
- US House of Representatives (2010): $n=50, S=435$, $V=309,183,463$

A generic quotient method

Define the natural fractional quota q_{i} of state i :

$$
q_{i}=\frac{S \cdot v_{i}}{V}=\left\lfloor q_{i}\right\rfloor+r_{i}=u_{i}+r_{i}
$$

where r_{i} is the remainder of state $i\left(0 \leq r_{i}<1\right)$

A generic quotient method

Define the natural fractional quota q_{i} of state i :

$$
q_{i}=\frac{S \cdot v_{i}}{V}=\left\lfloor q_{i}\right\rfloor+r_{i}=u_{i}+r_{i}
$$

where r_{i} is the remainder of state $i\left(0 \leq r_{i}<1\right)$

Quotient Method

(i) assign to each state i the "minimum quota" u_{i}
(ii) assign one seat more to K different states

$$
K=S-\sum_{i=1}^{n} u_{i}=\sum_{i=1}^{n} r_{i}
$$

A generic quotient method

Define the natural fractional quota q_{i} of state i :

$$
q_{i}=\frac{S \cdot v_{i}}{V}=\left\lfloor q_{i}\right\rfloor+r_{i}=u_{i}+r_{i}
$$

where r_{i} is the remainder of state $i\left(0 \leq r_{i}<1\right)$

Quotient Method

(i) assign to each state i the "minimum quota" u_{i}
(ii) assign one seat more to K different states

$$
K=S-\sum_{i=1}^{n} u_{i}=\sum_{i=1}^{n} r_{i}
$$

Hamilton's Method ("largest remainders"): assign the additional seats to the states with the K largest remainders

Quotient methods: remarks

- the case of null remainders can be ignored: $0<r_{i}<1$
- we have $0<K<n$ and we can expect $K \approx n / 2$
- EU (2011): $n=27, K=14$
- US (2010): $n=50, K=23$
- US (2000,1990): $n=50, K=26$

Quotient methods: remarks

- the case of null remainders can be ignored: $0<r_{i}<1$
- we have $0<K<n$ and we can expect $K \approx n / 2$
- EU (2011): $n=27, K=14$
- US (2010): $n=50, K=23$
- US (2000,1990): $n=50, K=26$

Quota Property: apportionment s satisfies quota iff. for each i

$$
q_{i}-1<s_{i}<q_{i}+1
$$

Theorem [Balinski and Young (1982)] quotient methods are the only ones guaranteed to satisfy quota

Quotient method: knapsack structure

Let us introduce a vector of binary variables $x \in\{0,1\}^{n}$
In a quotient method $s=u+x$ with the knapsack-like constraint

$$
\sum_{i=1}^{n} x_{i}=K
$$

(a pretty easy case of knapsack, solvable in $O(n)$ for a linear O.F.)
We shall need a quadratic objective function

$$
x^{\mathrm{T}} Q x=\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j}
$$

with Q an $n \times n$ matrix (with nonnegative entries)

Contents

(1) A glimpse of apportionment

The problem
Fairness, Concentration, and Welfare
(2) A quotient method with minimum G

Overview
Quotient Methods
Apportionments and Welfare
Decomposition Approach
The underlying IP problem, and results
(3) Ongoing research, and open problems

The general case
Degressive Proportionalitit
Open Problems

Apportionment and Welfare

Apportionments as wealth distributions

- S is the total wealth shared by a population of V individuals
- Each state i owns a total wealth s_{i}
- Each citizen of state i owns the same wealth $w_{i}=s_{i} / v_{i}$

Remarks

- the "wealth" w_{i} is often referred to as the voting power
- the reciprocal $1 / w_{i}=v_{i} / s_{i}$ is often referred to as the district size ("how many citizens it takes to gain one seat")

Apportionment and Welfare (2)

In the Lorenz curve a state i is represented by a single linear piece P_{i}

- horizontally spanning v_{i} / V (the population share)
- vertically spanning s_{i} / S (the share of seats)

Pieces appear in L, left to right, in increasing order of voting power w

Apportionment and Welfare (3)

The Gini index G is used as a measure of unequal distribution of voting power

In our quotient method L, B and G depend on x
We choose x to maximize B, that is, to minimize G

Goal: express the area B as a function of x

Apportionment and Welfare (3)

The Gini index G is used as a measure of unequal distribution of voting power

In our quotient method L, B and G depend on x
We choose x to maximize B, that is, to minimize G

Goal: express the area B as a function of x

Unfortunately, x acts on L (and $B)$ in a rather subtle and criptic way

Apportionment and Welfare (4)

$\ldots x$ acts on L (and B) in a rather subtle and criptic way
Example: $V=9, S=4, v=[5,3,1] ; u=[2,1,0], K=1$

(states listed on the horizontal axis in increasing w order)

Apportionment and Welfare (4)

$\ldots x$ acts on L (and B) in a rather subtle and criptic way
Example: $V=9, S=4, v=[5,3,1] ; \quad u=[2,1,0], K=1$

(states listed on the horizontal axis in increasing w order)

Try a successive decomposition approach

Contents

(1) A glimpse of apportionment

The problem
Fairness, Concentration, and Welfare
(2) A quotient method with minimum G

Overview
Quotient Methods
Apportionments and Welfare
Decomposition Approach
The underlying IP problem, and results
(3) Ongoing research, and open problems

The general case
Degressive Proportionalitit
Open Problems

Decomposition: B as a function of x

Step 1: cut B into n vertical "slices", one for each state i

Slice B_{i} lies under linear piece P_{i}

$$
B=\sum_{i=1}^{n} B_{i}
$$

Decomposition: B as a function of $x(2)$

Step 2: decompose each slice B_{i}

Decomposition: B as a function of $x(2)$

Step 2: decompose each slice B_{i}

$$
\begin{aligned}
T_{i}^{0} & =\frac{v_{i} \cdot u_{i}}{2 S V}: \text { constant, independent of } x \\
T_{i} & =\frac{v_{i} \cdot x_{i}}{2 S V}: \text { linear in } x \\
R_{i} & =? \text { depends on "poorer" states! }
\end{aligned}
$$

$$
B=\sum_{i=1}^{n} B_{i}=\sum_{i=1}^{n}\left(T_{i}^{0}+T_{i} \cdot x_{i}\right)+\sum_{i=1}^{n} R_{i}
$$

Next step: decompose the sum of the R_{i} (not each R_{i})

Decomposition: terminology

Notation

- assume w.l.o.g. $i<j \Longleftrightarrow \frac{u_{i}}{v_{i}}<\frac{u_{j}}{v_{j}}$
- given $s=u+x$, if i appears in L on the left of j denote

$$
i \triangleleft^{x} j \quad \Longleftrightarrow \frac{s_{i}}{v_{i}}<\frac{s_{j}}{v_{j}} \Longleftrightarrow w_{i}<w_{j}
$$

"i precedes j (given x)"

- the following holds for each each i

$$
\frac{u_{i}}{v_{i}}<\frac{q_{i}}{v_{i}}=\frac{S}{V}<\frac{u_{i}+1}{v_{i}}
$$

Decomposition: R_{i} as a function of x

Given two states, $i<j$, two mutually exclusive cases can occurr

- $i \triangleleft^{x} j$: i induces a slice of R_{j} with area $R_{i j}=\frac{v_{j} \cdot s_{i}}{S V}$
- $j \triangleleft^{\times} i$: j induces a slice of R_{i} with area $R_{i j}=\frac{v_{i} \cdot S_{j}}{S V}$

The picture shows the case $i \triangleleft^{x} j$

$$
\sum_{i=1}^{n} R_{i}=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} R_{i j}
$$

Decomposition: $R_{i j}$ as a function of x

Given two states $i<j$ we have by assumption $\frac{u_{i}}{v_{i}}<\frac{u_{j}}{v_{j}}<\frac{S}{V}$
We need the relation between $\frac{u_{i}+1}{v_{i}}$ and $\frac{u_{j}+1}{v_{j}}$
Again, two mutually exclusive cases can occurr:
Case $1 \frac{S}{V}<\frac{u_{i}+1}{v_{i}}<\frac{u_{j}+1}{v_{j}}$
Case $2 \frac{S}{V}<\frac{u_{j}+1}{v_{j}}<\frac{u_{i}+1}{v_{i}}$
(implies $v_{i}<v_{j}$)

For each pair $i<j$ we know which case arises
For each value of x_{i} and x_{j} we deduce \triangleleft^{x} and compute $R_{i j}$

$R_{i j}$ as a function of x : Case 1

x_{i}	x_{j}	w_{i}	w_{j}	\triangleleft^{x}	$R_{i j}$
0	0	u_{i} / v_{i}	u_{j} / v_{j}	$i \triangleleft^{x} j$	$u_{i} \cdot v_{j} / S V$
0	1	u_{i} / v_{i}	$\left(u_{j}+1\right) / v_{j}$	$i \triangleleft^{x} j$	$u_{i} \cdot v_{j} / S V$
1	0	$\left(u_{i}+1\right) / v_{i}$	u_{j} / v_{j}	$j \triangleleft^{x} i$	$u_{j} \cdot v_{i} / S V$
1	1	$\left(u_{i}+1\right) / v_{i}$	$\left(u_{j}+1\right) / v_{j}$	$i \triangleleft^{x} j$	$\left(u_{i}+1\right) \cdot v_{j} / S V$

By setting $a_{i j}=u_{j} \cdot v_{i}-u_{i} \cdot v_{j}$ we obtain

$$
R_{i j}=u_{i} \cdot v_{j} / S V+\left(a_{i j} / S V\right) x_{i}+\left(\left(v_{j}-a_{i j}\right) / S V\right) x_{i} x_{j}
$$

it is easy to check that $a_{i j} \geq 0$ and $\left(v_{j}-a_{i j}\right) \geq 0$

$R_{i j}$ as a function of x : Case 2

x_{i}	x_{j}	w_{i}	w_{j}	\triangleleft^{x}	$R_{i j}$
0	0	u_{i} / v_{i}	u_{j} / v_{j}	$i \triangleleft^{x} j$	$u_{i} \cdot v_{j} / S V$
0	1	u_{i} / v_{i}	$\left(u_{j}+1\right) / v_{j}$	$i \triangleleft^{x} j$	$u_{i} \cdot v_{j} / S V$
1	0	$\left(u_{i}+1\right) / v_{i}$	u_{j} / v_{j}	$j \triangleleft^{x} i$	$u_{j} \cdot v_{i} / S V$
1	1	$\left(u_{i}+1\right) / v_{i}$	$\left(u_{j}+1\right) / v_{j}$	$j \triangleleft^{x} i$	$\left(u_{j}+1\right) \cdot v_{i} / S V$

Again, with $a_{i j}=u_{j} \cdot v_{i}-u_{i} \cdot v_{j}$ we obtain

$$
R_{i j}=u_{i} \cdot v_{j} / S V+\left(a_{i j} / S V\right) x_{i}+\left(v_{i} / S V\right) x_{i} x_{j}
$$

also in this case $a_{i j} \geq 0$

Putting everything together...

$$
\begin{aligned}
B & =\sum_{i=1}^{n} B_{i} \\
& =\sum_{i=1}^{n}\left(T_{i}^{0}+T_{i} \cdot x_{i}\right)+\sum_{i=1}^{n} R_{i} \\
& =\sum_{i=1}^{n}\left(T_{i}^{0}+T_{i} \cdot x_{i}\right)+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} R_{i j} \\
& =\sum_{i=1}^{n}\left(T_{i}^{0}+T_{i} \cdot x_{i}+\frac{1}{S V} \sum_{j=i+1}^{n} u_{i} \cdot v_{j}+a_{i j} \cdot x_{i}+\delta_{i j} \cdot x_{i} \cdot x_{j}\right) \\
& =C+x^{\mathrm{T}} Q x
\end{aligned}
$$

$\delta_{i j}=\left(v_{j}-a_{i j}\right)$ for Case 1, $\delta_{i j}=v_{i}$ for Case 2

Contents

(1) A glimpse of apportionment

The problem
Fairness, Concentration, and Welfare
(2) A quotient method with minimum G

Overview
Quotient Methods
Apportionments and Welfare
Decomposition Approach
The underlying IP problem, and results
(3) Ongoing research, and open problems

The general case
Degressive Proportionality
Open Problems

The Underlying IP Problem

Quadratic Knapsack Problem (QKP)

$$
(P)=\left\{\begin{array}{l}
\max x^{\mathrm{T}} Q x \\
\sum_{i=1}^{n} x_{i}=K \\
x \in\{0,1\}^{n}
\end{array}\right.
$$

Q has non-negative entries, which complies with the original definition of (QKP) ("supermodular" quadratic knapsack) [Simeone (1979), Gallo, Hammer and Simeone (1980)]

Quite particular case, with a "cardinality" constraint " p-dispersion" problem [Pisinger (2006)]

Quadratic Knapsack

The general case is much harder than its linear counterpart Instances derived from real apportionment problems are small the largest we tried (US 2000) has $n=50$ and $K=26$

We tried two solution methods, based on the same approach [Caprara, Pisinger and Toth (1999)]

- C language implementation of procedure quadknap available from http://www.diku.dk/~pisinger/
- Enhanced ILP formulation (via Xpress-Mosel) (≈ 0.5 seconds: about ten times slower than "quadknap")

Quadratic Knapsack

The general case is much harder than its linear counterpart Instances derived from real apportionment problems are small the largest we tried (US 2000) has $n=50$ and $K=26$

We tried two solution methods, based on the same approach [Caprara, Pisinger and Toth (1999)]

- C language implementation of procedure quadknap available from http://www.diku.dk/~pisinger/
- Enhanced ILP formulation (via Xpress-Mosel) (≈ 0.5 seconds: about ten times slower than "quadknap")

Note: for each instance we solved $K+1$ QKPs, applying a trivial branching method to test uniqueness of the optimum; CPU times are those of "quadknap"

Results

Results for US House of Representatives ($n=50, S=435$)

Year	Tot. Pop.	K	$\min G$	current G	cpu sec.
1990	$249,022,783$	26	0.021594	0.021812	1.33
2000	$281,424,177$	26	0.020298	0.020308	1.30
2010	$309,183,463$	23	0.020862	0.020862	1.29

Very small differences: $<1 \%$!

- 2000: one seat from the larger to a small state
- 1990: three seats from smaller to larger states

Results

Results for the EU Parliament ($n=27, S=751$)

Year	Tot. Pop.	K	$\min G$	current G	cpu sec.
2011	$501,103,425$	14	0.0055851	0.128271	0.14

The big difference (current solution about 20 times larger!) is due to the "degressive proportionality" rules in current EU treaties

Index is about four times smaller than US House (half the states, twice the seats)

Contents

(1) A glimpse of apportionment The problem Fairness, Concentration, and Welfare
(2) A quotient method with minimum G Overview Quotient Methods Apportionments and Welfare Decomposition Approach The underlying IP problem, and results
(3) Ongoing research, and open problems

The general case
Degressive Proportionality
Open Problems

The General Case

For an apportionment s, we can write G as follows:

$$
G=\frac{1}{S V} \sum_{i=1}^{n} \sum_{j=i+1}^{n}\left|v_{j} \cdot s_{i}-v_{i} \cdot s_{j}\right|
$$

- can be obtained rather easily from the algebraic definition
- can be obtained generalizing the geometric approach, but some more algebra is involved

We have standard LP techniques to deal with the absolute value

General Case: the IP Problem

$$
(I P)=\left\{\begin{aligned}
& \min \sum_{i=1}^{n} \sum_{j=i+1}^{n} d_{i j}^{+}+d_{i j}^{-} \\
& \sum_{i=1}^{n} s_{i}=S \\
& v_{j} \cdot s_{i}-v_{i} \cdot s_{j}=d_{i j}^{+}-d_{i j}^{-} 1 \leq i<j \leq n \\
& d^{+}, d^{-}, s \text { integer }
\end{aligned}\right.
$$

However, IP is not directly solvable in reasonable time (rapidly running out of memory for the US instances)

Possible directions

- find tight lower and upper bounds for each s_{i}
- try a binary formulation: Multiple Choice Knapsack

A possible approach: Multiple Choice Knapsack

Rewrite each variable s_{i} as a weighted sum of binary variables

$$
s_{i}=\sum_{j \in J(i)} j \cdot x_{i j}
$$

Then the knapsack constraint breaks into $n+1$ constraints

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j \in J(i)} j \cdot x_{i j} & =S \\
\sum_{j \in J(i)} x_{i j} & =1 \quad 1 \leq i \leq n
\end{aligned}
$$

Needs a smart linearization for the absolute value $\left|v_{j} \cdot s_{i}-v_{i} \cdot s_{j}\right|$

Contents

(1) A glimpse of apportionment The problem Fairness, Concentration, and Welfare
(2) A quotient method with minimum G Overview Quotient Methods Apportionments and Welfare Decomposition Approach The underlying IP problem, and results
(3) Ongoing research, and open problems The general case
Degressive Proportionality
Open Problems

Degressive Proportionality

The Treaty of Lisbon sets a "degressive proportionality" condition (DP) consistently favouring smaller states

Degressive Proportionality

(1) if $v_{i}>v_{j}$ then $w_{i}=s_{i} / v_{i} \leq s_{j} / v_{j}=w_{j}$ larger states have less voting power
(2) if $v_{i}>v_{j}$ then $s_{i} \geq s_{j}$
a larger state has at least the seats of a smaller state
Boundary Conditions: $S \leq 751,6 \leq s_{i} \leq 96$

See definitions and debate in the special issue "Around the Cambridge Compromise" [Mathematical Social Science 63(2)]

Degressive Proportionality (2)

We can include DP into the underlying IP problem
Assume states sorted in decreasing order of population:
$i<j \Longleftrightarrow v_{i}>v_{j}$

$$
\left(I P_{D P}\right)=\left\{\begin{aligned}
\min \sum_{i=1}^{n} \sum_{j=i+1}^{n} d_{i j} & \\
\sum_{i=1}^{n} s_{i} & =s \\
v_{i} \cdot s_{j}-v_{j} \cdot s_{i} & =d_{i j} \\
s_{1} & =96 \\
s_{n} & =6 \\
d, s \text { integer } &
\end{aligned}\right.
$$

Degressive Proportionality (3)

The model $I P_{D P}$ is quite easily solvable (a few seconds)
The reason is that degressive proportionalty is a strong requirement

- any s_{i} induces a lower bound on s_{i+1}, and so on...

Example: should DP (without boundary conditions) be adopted in the US, California seats would move from 53 to 28

Degressive Proportionality (3)

The model $I P_{D P}$ is quite easily solvable (a few seconds)
The reason is that degressive proportionalty is a strong requirement

- any s_{i} induces a lower bound on s_{i+1}, and so on...

Example: should DP (without boundary conditions) be adopted in the US, California seats would move from 53 to 28
(luckily, Arnold Schwarzenegger is no longer the Governor...)

Degressive Proportionality (4)

We can now evaluate the apportionment found via the currently adopted method, the so-called "Cambridge Compromise"
Plot of Lorentz curves (horizontally stretched)

D minimum G current

Degressive Proportionality (4)

We can now evaluate the apportionment found via the currently adopted method, the so-called "Cambridge Compromise"
Plot of Lorentz curves (horizontally stretched)

D minimum G current
... people at Cambridge did a reasonably good job

Contents

(1) A glimpse of apportionment The problem Fairness, Concentration, and Welfare
(2) A quotient method with minimum G Overview Quotient Methods Apportionments and Welfare Decomposition Approach The underlying IP problem, and results
(3) Ongoing research, and open problems

The general case
Degressive Proportionality
Open Problems

Open Problems

It can be shown that existing apportionment methods (classic as well as modern) are not guaranteed to minimize G

Open Problems

It can be shown that existing apportionment methods (classic as well as modern) are not guaranteed to minimize G

Question: what is the computational complexity of finding an apportionment yielding minimum G ?

Open Problems

It can be shown that existing apportionment methods (classic as well as modern) are not guaranteed to minimize G

Question: what is the computational complexity of finding an apportionment yielding minimum G ?

Direction 1 devise a method finding the minimum G apportionment in polynomial time in n and S (and may be $\log V$)

Open Problems

It can be shown that existing apportionment methods (classic as well as modern) are not guaranteed to minimize G

Question: what is the computational complexity of finding an apportionment yielding minimum G ?

Direction 1 devise a method finding the minimum G apportionment in polynomial time in n and S (and may be $\log V$)

Direction 2 prove that finding the minimum G apportionment is NP-hard

Thanks for your fair attention!

