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Directional data: what, why, where?

I Directional data are vectors whose
support is the hypersphere

Ωq =
{
x ∈ Rq+1 : ||x|| = 1

}
I Particular cases are the circle (q = 1)

and the sphere (q = 2)
I Statistical methods must account for

the special nature of directional data
I Present in different applied fields:

corner stone in bioinformatics, used in
text mining

Figure: Circular density
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Protein structure modelling

Figure: Backbone and Cα
representation Figure: Cartoon view of a protein

Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A.
and Hamelryck, T. A generative, probabilistic model of local protein structure.
PNAS, 105(26):8932-8937
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Text mining

I Document d (Ronald Fisher, 1938):

“To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be
able to say what the experiment died of.”

I Preprocessing of d :
1 Lowercase conversion, remove punctuation, remove format, . . .
2 Pruning (remove stop words and too common or uncommon words)
3 Stemming (“statistician” → “statistic”)

I Vector Space Model:
1 Set a dictionary as a basis for a collection of documents:

D = {“hello”, “statistic”, “experi”, “examin”, “world”}

2 Codify the document d as a frequency vector

d = (0, 1, 2, 1, 0).

3 Standardize to remove length effects: d/ ||d|| ∈ Ω#D−1.
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Von Mises-Fisher distribution

I The von Mises-Fisher (vMF) is the most well known directional
density:

fvMF(x; µ, κ) = Cq(κ) exp
{
κxT µ

}
, Cq(κ) = κ

q−1
2

(2π) q+1
2 I q−1

2
(κ)

parametrized by a mean µ ∈ Ωq and a concentration κ ≥ 0
I Density wrt the Lebesgue measure ωq in Ωq. ωq denotes also the

area surface of Ωq:

ωq ≡ ωq(Ωq) = 2π
q+1
2
/

Γ
(q + 1

2

)
I (Isotropic) Gaussian analogue:

1 Same MLE characterization property
2 If X ∼ Nq+1

(
µ, σ2Iq+1

)
, then

X
∣∣ ||X|| = 1 ∼ vMF

(
µ

||µ|| ,
||µ||
σ2

)
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Von Mises distribution
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Figure: vM(µ, κ) density in the circle and the sphere, with µ = (0q, 1)
and κ = 2.
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Figure: vM(µ, κ) density in the circle and the sphere, with µ = (−1, 0q)
and κ = 2.
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Von Mises distribution
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Figure: vM(µ, κ) density in the circle and the sphere, with µ = (0q, 1)
and κ = 5.
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Von Mises distribution
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Figure: vM(µ, κ) density in the circle and the sphere, with µ = (0q, 1)
and κ = 10.
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Contents of the talk

1 Part I. Kernel density estimation with directional data under
rotational symmetry

I Present a KDE under rotational symmetry
I Study its main asymptotic properties
I Illustrate empirical performance through

simulations

2 Part II. Estimation and testing in linear-directional regression
I Present a local linear estimator with directional

predictor
I Build a goodness-of-fit test for regression models
I Apply both to test a common assumption in

bioinformatics

8 / 38
Eduardo García-Portugués Smoothing-based inference with directional data

N



Part I

Kernel density estimation with
directional data under rotational

symmetry

García-Portugués, E., Ley, C., Verdebout, T. (2017). Kernel density
estimation for directional data under rotational symmetry. Work in
progress.
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Contents of Part I

1 KDE with directional data

2 KDE under rotasymmetry
The rotasymmetrizer
Rotasymmetric KDE

3 Simulation study
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KDE with directional data

I For a sample X1, . . . ,Xn ∼ f , the Kernel Density Estimator (KDE)
for directional data is

f̂h(x) = ch,q(L)
n

n∑
i=1

L
(
1− xTXi

h2

)
= 1

n

n∑
i=1

Lh (x,Xi ) , x ∈ Ωq

Bai, Z. D., Rao, C. R. and Zhao, L. C. (1988). Kernel estimators of
density function of directional data. J. Multivariate Anal., 27:24–39

I Note the h2 because 2(1− xTXi ) = ||x− Xi ||2

I Normalizing constant ch,q(L)−1 = λq(L)hq(1 + o (1)) with

λq(L) = 2
q
2−1ωq−1

∫ ∞
0

L(r)r
q
2−1 dr

I “Second moment” of L: bq(L) =
∫∞
0 L(r)r

q
2 dr

/ ∫∞
0 L(r)r

q
2−1 dr

I If L(r) = e−r , the vMF kernel, ch,q(L) = e1/h2Cq(1/h2)
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Circular case

Θ

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 π 2 π 3π 2 2π

Figure: Construction of the kernel density estimator with n = 20.
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KDE construction: spherical case

Figure: Left: KDE with n = 1. Right: true density
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KDE construction: spherical case

Figure: Left: KDE with n = 2. Right: true density
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KDE construction: spherical case

Figure: Left: KDE with n = 3. Right: true density
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KDE construction: spherical case

Figure: Left: KDE with n = 5. Right: true density
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KDE construction: spherical case

Figure: Left: KDE with n = 10. Right: true density
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KDE construction: spherical case

Figure: Left: KDE with n = 20. Right: true density
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Rotasymmetry I

I Recurrent assumption: X is rotational symmetric (or
rotasymmetric) about some direction θ ∈ Ωq

I Circular case: rotasymmetry is reflective symmetry
I High-dimensional situation: rotasymmetry is behind many

celebrated distributions

0

π 2

π

3π 2

0 0.5 1

Figure: Rotasymmetry in the circular and spherical cases
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Rotasymmetry II

Proposition (Rotasymmetry characterization)
Let X a directional rv with density f . These statements are equivalent:

1 X d= OX, where O = θθT +
∑q

i=1 bibT
i is a rotation matrix on

Rq+1 that fixes θ ∈ Ωq

2 f (x) = g
(
xT θ

)
, ∀x ∈ Ωq, where g : [−1, 1] −→ R+ is a link

such that

f ∗(t) = ωq−1g(t)(1− t2)
q
2−1 is a density in [−1, 1]

I Rotasymmetry is related with the tangent-normal decomposition:

x = tθ + (1− t2) 1
2Bθξ

with t = xT θ ∈ [−1, 1], ξ ∈ Ωq−1 and Bθ = (b1, . . . ,bq)(q+1)×q
such that BT

θ Bθ = Iq and BθBT
θ = Iq+1 − θθT

I No monotonicity required in g , axial variables are covered as well
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The rotasymmetrizer

Definition (Rotasymmetrizer)
The rotasymmetrizer around θ, Rθ, trans-
forms a function f : Ωq −→ R into

Rθf (x) := 1
ωq−1

∫
Ωq−1

f (xθ,ξ) ωq−1(dξ),

with xθ,ξ = (xT θ)θ + (1− (xT θ)2) 1
2Bθξ

I For point x ∈ Ωq, the operator averages
out the density along the points sharing the
same colatitude (wrt θ)

I Intuitively: parallel redistribution of
probability mass

Figure: Input and
output of Rθ with
θ = (0, 0, 1)
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Properties

Proposition (Rotasymmetrizer properties)
Let be f , f1, f2 : Ωq −→ R+ directional densities and θ ∈ Ωq.

1 Invariance from different matrices Bθ:∫
Ωq−1

f (xθ,ξ,1) ωq−1(dξ) =
∫

Ωq−1

f (xθ,ξ,2) ωq−1(dξ),

with xθ,ξ,k = (xT θ)θ + (1− (xT θ)2) 1
2Bθ,kξ, k = 1, 2

2 Linearity: Rθ(λ1f1 + λ2f2)(x) = λ1Rθf1(x) + λ2Rθf2(x)
3 Density preservation: Rθf is a density
4 Characterization: Rθf = f ⇐⇒ f is rotasymmetric around θ

5 Explicit expression for the vMF density:

RθfvMF(x; µ, κ) =
Cq(κ) exp

{
κxT θµT θ

}
ωq−1Cq−1

(
κ [(1− (xT θ)2)(1− (µT θ)2)]

1
2
)
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Rotasymmetric KDE
I Goal: estimate semiparametrically f under rotasymmetry

Definition (Rotasymmetric KDE)
The rotasymmetric KDE (RKDE) is the application of the rotasym-
metrizer to the usual KDE:

f̂h,θ(x) := Rθ f̂h(x) = 1
n

n∑
i=1

Lh,θ (x,Xi ) ,

with Lh,θ (x,Xi ) = ch,q(L)
ωq−1

∫
Ωq−1

L
(
1− xT

θ,ξXi

h2

)
ωq−1(dξξξ)

I The rotasymmetric vMF kernel has an explicit expression:

Lh,θ(x,Xi ) =
Cq(1/h2) exp

{
xT θXT

i θ
/
h2
}

ωq−1Cq−1

( [
(1− (xT θ)2)(1− (XT

i θ)2)
] 1

2
/
h2
)

I The order of the normalizing constant is O
(
h−1
)
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Comparison of kernels

0
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Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with θ = (000q, 1). The kernels have the same bandwidth
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Connections with KDE in [−1, 1]
I The RKDE kernels only depend on the projected sample

Ti = XT
i θ and the projected point t = xT θ

I RKDE is equivalent to KDE on [−1, 1] with bounded kernels
adapted to capture the spikes of f ∗(t) = ωq−1g(t)(1− t2)

q
2−1

I Boundary bias is O
(
h2
)
without any corrections
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Figure: KDE of f ∗ with g(t) = Cq(κ) exp {κt}, κ = 1 and q = 1

20 / 38
Eduardo García-Portugués Smoothing-based inference with directional data

N



Connections with KDE in [−1, 1]
I The RKDE kernels only depend on the projected sample

Ti = XT
i θ and the projected point t = xT θ

I RKDE is equivalent to KDE on [−1, 1] with bounded kernels
adapted to capture the spikes of f ∗(t) = ωq−1g(t)(1− t2)

q
2−1

I Boundary bias is O
(
h2
)
without any corrections

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4

t

D
en

si
ty

f*
RKDE
Kernels

Figure: KDE of f ∗ with g(t) = Cq(κ) exp {κt}, κ = 1 and q = 2
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Figure: KDE of f ∗ with g(t) = Cq(κ) exp {κt}, κ = 1 and q = 3
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Figure: KDE of f ∗ with g(t) = Cq(κ) exp {κt}, κ = 1 and q = 10
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Figure: KDE of f ∗ with g(t) = Cq(κ) exp {κt}, κ = 1 and q = 100
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Bias (θ known)

I Assumptions:
A1 f is extended by f (x/ ||x||) and is twice continuously differentiable
A2 L : R+ → R+ is continuous, bounded and has exponential decay

A3-1 The sequence h = hn satisfies h→ 0 and nh→∞
A3-q The sequence h = hn satisfies h→ 0 and nhq →∞

I A3-q is required for consistency at x = ±θ (note A3-q ⇒ A3-1)

Proposition (Bias, θ known)
Under A1–A3-1 and uniformly in x ∈ Ωq,

E
[
f̂h,θ(x)

]
= Rθf (x) + bq(L)

q tr [RθHf (x)] h2 + o
(
h2
)

If rotasymmetry holds, then Rθf = f and the bias is KDE’s one
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Variance (θ known)

Proposition (Variance, θ known)
Under A1–A2, A3 if (xT θ)2 < 1 and A4 otherwise,

Var
[
f̂h,θ(x)

]
= CxT θ,q,L(h)Rθf (x)

n (1 + o (1))− (Rθf (x))2
n

uniformly in x ∈ Ωq, where

CxT θ,q,L(h) ∝



λq(L2)λq(L)−2

hq , (xT θ)2 = 1, q ≥ 1,

λ1(L2)λ1(L)−2

2h , (xT θ)2 < 1, q = 1,

λq(L)2λq−1(L)−2

ωq−1 (1− (xT θ)2)
1
2 h
, (xT θ)2 < 1, q ≥ 2

I The asymptotic constant of the variance increases with q →∞
since ωq−1 → 0! (but slowly than KDE’s)
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Spherical area surface
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)
I The area of Ωq tends to zero, but not monotonically
I Weird maximum at dimension q = 6
I [−1, 1]q touches Ωq in 2q points, yet its area tends to infinity!
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Key orders & asymptotic normality

Concept KDE RKDE RKDE
(X/× rotasym.) (X rotasym.) (× rotasym.)

Bias O
(

h2
)

O
(

h2
)

O (Rθf (x)− f (x))

Variance O
(

(nhq)−1
)

O
(

(nh)−1
)

O
(

(nh)−1
)

Optimal
AMISE O

(
n−

4
4+q
)

O
(

n−
4
5
)

O
(∫

(Rθf − f )2
)

Table: Summary of the KDE and RKDE key orders

Corollary (Pointwise asymptotic normality, θ known)
Under A1–A2, A3 if (xT θ)2 < 1 and A4 otherwise,

an

(
f̂h,θ(x)− f (x)

)
d−→ N

(
Rθf (x)− f (x),CxT θ,q,L(1)

)
,

where an =
√
nh if (xT θ)2 < 1 and an =

√
nhq otherwise
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Simulation study
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Figure: Performance of the three kernel estimators with q = 1 (left) and
q = 2 (right), with n = 100

Ratios optimal MISEs q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

KDE/RKDE, θ 1.796 2.999 4.065 5.643 5.871 8.019
KDE/RKDE, θ̂ 1.289 2.014 2.537 3.035 3.207 3.467
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Figure: Performance of the three kernel estimators with q = 3 (left) and
q = 4 (right), with n = 100

Ratios optimal MISEs q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

KDE/RKDE, θ 1.796 2.999 4.065 5.643 5.871 8.019
KDE/RKDE, θ̂ 1.289 2.014 2.537 3.035 3.207 3.467
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Figure: Performance of the three kernel estimators with q = 5 (left) and
q = 6 (right), with n = 100

Ratios optimal MISEs q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

KDE/RKDE, θ 1.796 2.999 4.065 5.643 5.871 8.019
KDE/RKDE, θ̂ 1.289 2.014 2.537 3.035 3.207 3.467
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Part II

Estimation and testing in
linear-directional regression

García-Portugués, E., Van Keilegom, I., Crujeiras, R. and
González-Manteiga, W. (2016). Testing parametric models in
linear-directional regression. Scand. J. Stat., 43(4):1178–1191.
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Contents of Part II

1 Nonparametric estimation of the regression

2 Goodness-of-fit tests for models with directional predictor
Asymptotic distribution
Calibration in practice

3 Data application
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Regression with directional data

I Let (X,Y ) be a rv with support in Ωq × R and X having density f
I Consider the location-scale regression model

Y = m(X) + σ(X)ε with
{

m(x) = E [Y |X = x] ,
σ2(x) = Var [Y |X = x] ,

with E [ε|X] = 0, E
[
ε2|X

]
= 1 and E

[
|ε|3|X

]
and E

[
ε4|X

]
bounded rv’s

I Goal: estimate m nonparametrically from {(Xi ,Yi )}n
i=1

I Taylor expansions are required, so the first condition is:
A1 m and f are extended as m (x/ ||x||) and f (x/ ||x||). m is third and

f is twice continuously differentiable and f is bounded away from
zero
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Estimator
I Let x,Xi ∈ Ωq. The one term Taylor expansion of m is:

m(Xi ) = m(x) + ∇m(x)T (Xi − x) +O
(
||Xi − x||2

)

≈ β0 + (β1, . . . , βq)T BT
x (Xi − x),

I Weighted minimum least squares problem:

min
β∈Rq+1

n∑
i=1

(
Yi − β0 − δp,1 (β1, . . . , βq)T BT

x (Xi − x)
)2

Lh(x,Xi )

I The solution is given by

m̂h,p(x) = eT
1,p
(
X T

x,pWxX x,p
)−1 X T

x,pWxY =
n∑

i=1

W n
p (x,Xi ) Yi ,

X x,1 =

 1 (X1 − x)TBx
...

...
1 (Xn − x)TBx

 , Wx = diag (Lh(x,X1), . . . , Lh(x,Xn))
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x = Iq+1 − xxT ,
β0 = m(x) and (β1, . . . , βq) = BT

x ∇m(x)
I Weighted minimum least squares problem:

min
β∈Rq+1

n∑
i=1

(
Yi − β0 − δp,1 (β1, . . . , βq)T BT

x (Xi − x)
)2

Lh(x,Xi )

I The solution is given by

m̂h,p(x) = eT
1,p
(
X T

x,pWxX x,p
)−1 X T

x,pWxY =
n∑

i=1

W n
p (x,Xi ) Yi ,

X x,1 =

 1 (X1 − x)TBx
...

...
1 (Xn − x)TBx

 , Wx = diag (Lh(x,X1), . . . , Lh(x,Xn))
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How does it work?
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Output
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Figure: Local linear estimator with n = 100 for the circle and the sphere
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Testing a parametric model

I Goal: check nonparametrically H0 : m ∈MΘ = {mθ : θ ∈ Θ ⊂ Rs}
I The statistic is the weighted L2-distance between m̂h,p and the

smoothed mθ̂:

Tn =
∫

Ωq

(
m̂h,p(x)− Lh,pmθ̂(x)

)2 f̂h(x)w(x)ωq(dx),

with Lh,pmθ̂(x) =
∑n

i=1W p
n (x,Xi )mθ̂(Xi ) the smoothing operator

and w : Ωq → R+ a weight function (useful for removing possible
boundary effects)

Alcalá, J. T., Cristóbal, J. A., and González-Manteiga, W. (1999).
Goodness-of-fit test for linear models based on local polynomials. Statist.
Probab. Lett., 42(1):39–46
Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus
parametric regression fits. Ann. Statist., 21(4):1926–1947
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Asymptotic distribution

Theorem (Goodness-of-fit for linear-directional models)
Under A1–A6 and H0 : m ∈MΘ (i.e., m = mθ0),

nh
q
2

(
Tn −

λq(L2)λq(L)−2

nhq

∫
Ωq

σ2
θ0(x)w(x)ωq(dx)

)
d−→ N

(
0, 2ν2θ0

)
,

where σ2θ0
(x) = E

[
(Y −mθ0(X))2|X = x

]
and

ν2θ0 =
∫

Ωq

σ4
θ0(x)w(x)2 ωq(dx)

× γqλq(L)−4
∫ ∞
0

r
q
2−1
{∫ ∞

0
ρ

q
2−1L(ρ)ϕq(r , ρ) dρ

}2

dr

I Conditions:
A5 θ̂ is such that θ̂ − θ1 = OP

(
n− 1

2
)
, with θ1 = θ0 if H0 holds

A6 mθ is continuously differentiable as a function of θ, being this
derivative also continuous for x ∈ Ωq

I If L is the von Mises kernel, ν2θ0 =
∫

Ωq
σ4

θ0(x)w(x)2 ωq(dx)× (8π)−
q
2
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Empirical evidence

● ●
● ●●●●

●●●●●●
●●●

●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●
●●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●

●●●●●
●●
●●●●

●●●●
●●
●●
●●

●●
●
●●●

●●●
●

● ●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Sample quantiles

T
he

or
et

ic
al

 q
ua

nt
ile

s 
of

 a
 N

 0,
 2

ν θ 02
 

●

Quantiles for hn = 0.5 × n−1 3. p−values:  K−S=0.00, S−W=0.00.
Quantiles for hn = 0.5 × n−1 5. p−values:  K−S=0.00, S−W=0.00.

●

●
●

●●●●●●●●●
●●

●●●●●
●●●●●●

●●●●●●●
●●●●
●●●●●●●●

●●●●●
●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●
●●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●
●●●●●

●●
●●●●●

●●●●●
●●

●●
●

●●● ●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Sample quantiles
T

he
or

et
ic

al
 q

ua
nt

ile
s 

of
 a

 N
 0,

 2
ν θ 02

 

●

Quantiles for hn = 0.5 × n−1 3. p−values:  K−S=0.27, S−W=0.84.
Quantiles for hn = 0.5 × n−1 5. p−values:  K−S=0.00, S−W=0.01.

Figure: QQ-plot comparing the quantiles of the asymptotic distribution
with the sample quantiles for

{
nh 1

2
(
T j

n −
√
π
4 nh

)}500
j=1 with n = 102 (left)

and n = 5× 105 (right)
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Calibration in practice

Algorithm (Calibration in practice)
To test H0 : m ∈MΘ from the sample {(Xi ,Yi )}n

i=1:
1 Obtain θ̂, set ε̂i = Yi −mθ̂(Xi ), i = 1, . . . , n and compute Tn

2 Bootstrap resampling. For b = 1, . . . ,B:
I Set Y ∗i = mθ̂(Xi ) + ε̂i V ∗i , where V ∗i are iid rv’s such that

E∗[V ∗i ] = 0 and E∗[(V ∗i )2] = 1, i = 1, . . . , n
I Compute θ̂

∗ from {(Xi ,Y ∗i )}n
i=1 and T ∗bn

3 Estimate the p-value by 1
B
∑B

b=1 1{Tn≤T ∗b
n }

Theorem (Bootstrap consistency)
Under A1–A4, A5–A6 and A9, conditionally on the sample,

nh
q
2

(
T ∗n −

λq(L2)λq(L)−2

nhq

∫
Ωq

σ2
θ1(x)w(x)ωq(dx)

)
d−→ N

(
0, 2ν2θ1

)
in probability. If H0 holds, then θ1 = θ0 and T ∗n

d= Tn asymptotically
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Protein structure modelling

Figure: Backbone and Cα
representation Figure: Cartoon view of a protein

Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A.
and Hamelryck, T. A generative, probabilistic model of local protein structure.
PNAS, 105(26):8932-8937
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Testing in the Cα representation

I Goal: test the constant pseudo-
-bond length assumption:

H0 : m(x) = c, c ∈ R

I Data: n = 18030 pseudo-angles
(X ≡ (Θ,T )) and pseudo-lengths
(Y ) extracted from 100 high
precision protein structures

I Grid of 10 bandwidths, B = 1000
bootstrap replicates and weight
w(θ, τ) = 1{80≤ 180

π θ≤150}
I Emphatically rejection of H0

I Exploration of m(θ, τ) by local
linear estimator m̂hCV,1(θ, τ)
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Figure: Significance trace of the
goodness-of-fit tests
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Testing in the Cα representation

I Goal: test the constant pseudo-
-bond length assumption:

H0 : m(x) = c, c ∈ R

I Data: n = 18030 pseudo-angles
(X ≡ (Θ,T )) and pseudo-lengths
(Y ) extracted from 100 high
precision protein structures

I Grid of 10 bandwidths, B = 1000
bootstrap replicates and weight
w(θ, τ) = 1{80≤ 180

π θ≤150}
I Emphatically rejection of H0

I Exploration of m(θ, τ) by local
linear estimator m̂hCV,1(θ, τ)

Figure: Contourplot of m̂hCV,1(θ, τ)
and pseudo-angles sample
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Text mining application

I Data: 8121 news published in
slashdot.org in 2013

I Complex data acquisition and
treatment

I News: X ∈ Ω1508−1. Log-number
of comments: Y ∈ R

I H0 : m(x) = c + ηTx such that
only d = 77 coefficients are
non-zero. d chosen using
overpenalized LASSO

I Grid of 10 bandwidths with
B = 1000 bootstrap replicates

I No evidence to reject the model
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Figure: Significance trace of the
goodness-of-fit test
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Text mining application

I Data: 8121 news published in
slashdot.org in 2013

I Complex data acquisition and
treatment

I News: X ∈ Ω1508−1. Log-number
of comments: Y ∈ R

I H0 : m(x) = c + ηTx such that
only d = 77 coefficients are
non-zero. d chosen using
overpenalized LASSO

I Grid of 10 bandwidths with
B = 1000 bootstrap replicates

I No evidence to reject the model

Figure: Most influential coefficients
(significances of the d coefficients are
< 0.002)
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Thanks for your attention!
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