Smoothing-based inference with directional data

Eduardo García-Portugués (edgarcia@est-econ.uc3m.es)
Department of Statistics
Universidad Carlos III de Madrid

EAFIT, September 15, 2017

Directional data: what, why, where?

- Directional data are vectors whose support is the hypersphere

$$
\Omega_{q}=\left\{\mathbf{x} \in \mathbb{R}^{q+1}:\|\mathbf{x}\|=1\right\}
$$

- Particular cases are the circle $(q=1)$ and the sphere ($q=2$)
- Statistical methods must account for the special nature of directional data

- Present in different applied fields: corner stone in bioinformatics, used in text mining

Figure: Circular density

Directional data: what, why, where?

- Directional data are vectors whose support is the hypersphere

$$
\Omega_{q}=\left\{\mathbf{x} \in \mathbb{R}^{q+1}:\|\mathbf{x}\|=1\right\}
$$

- Particular cases are the circle $(q=1)$ and the sphere ($q=2$)
- Statistical methods must account for the special nature of directional data
- Present in different applied fields: corner stone in bioinformatics, used in text mining

Figure: Spherical density

Directional data: what, why, where?

- Directional data are vectors whose support is the hypersphere

$$
\Omega_{q}=\left\{\mathbf{x} \in \mathbb{R}^{q+1}:\|\mathbf{x}\|=1\right\}
$$

- Particular cases are the circle $(q=1)$ and the sphere $(q=2)$
- Statistical methods must account for the special nature of directional data

Figure: Circular mean

Directional data: what, why, where?

- Directional data are vectors whose support is the hypersphere

$$
\Omega_{q}=\left\{\mathbf{x} \in \mathbb{R}^{q+1}:\|\mathbf{x}\|=1\right\}
$$

- Particular cases are the circle $(q=1)$ and the sphere ($q=2$)
- Statistical methods must account for the special nature of directional data

- Present in different applied fields: corner stone in bioinformatics, used in text mining

Figure: Circular mean

Directional data: what, why, where?

- Directional data are vectors whose support is the hypersphere

$$
\Omega_{q}=\left\{\mathbf{x} \in \mathbb{R}^{q+1}:\|\mathbf{x}\|=1\right\}
$$

- Particular cases are the circle $(q=1)$ and the sphere $(q=2)$
- Statistical methods must account for the special nature of directional data

- Present in different applied fields: corner stone in bioinformatics, used in text mining

Directional data: what, why, where?

- Directional data are vectors whose support is the hypersphere

$$
\Omega_{q}=\left\{\mathbf{x} \in \mathbb{R}^{q+1}:\|\mathbf{x}\|=1\right\}
$$

- Particular cases are the circle $(q=1)$ and the sphere $(q=2)$
- Statistical methods must account for the special nature of directional data

Figure: Circular mean

Directional data: what, why, where?

- Directional data are vectors whose support is the hypersphere

$$
\Omega_{q}=\left\{\mathbf{x} \in \mathbb{R}^{q+1}:\|\mathbf{x}\|=1\right\}
$$

- Particular cases are the circle $(q=1)$ and the sphere ($q=2$)
- Statistical methods must account for the special nature of directional data

Figure: Circular mean

Directional data: what, why, where?

- Directional data are vectors whose support is the hypersphere

$$
\Omega_{q}=\left\{\mathbf{x} \in \mathbb{R}^{q+1}:\|\mathbf{x}\|=1\right\}
$$

- Particular cases are the circle $(q=1)$ and the sphere ($q=2$)
- Statistical methods must account for the special nature of directional data

Figure: Circular mean

Literature overview

Mardia, K. V. (1972). Statistics of Directional Data. Academic Press.
Batschelet, E. (1981). Circular Statistics in Biology. Academic Press.
Watson, G. S. (1983). Statistics on Spheres. John Wiley \& Sons.
Fisher, N. I. (1993). Statistical Analysis of Circular Data. Cambridge University Press.

Fisher, N. I., Lewis, T. and Embleton, B. J. J. (1993). Statistical Analysis of Spherical Data. Cambridge University Press.

Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics. John Wiley \& Sons.

Hamelryck, T. and Mardia, K. V. and Ferkinghoff-Borg, J. (2012). Bayesian Methods in Structural Bioinformatics. Springer.

Pewsey, A., Neuhäuser, M. and Ruxton, G. D. (2013). Circular Statistics in R. Oxford University Press.

Ley, C. and Verdebout, T. (2017). Modern Directional Statistics. Chapman and Hall/CRC.

Ley, C. and Verdebout, T. (2018+). Applied Directional Statistics: Modern Methods and Case Studies. Chapman and Hall/CRC.

Protein structure modelling

Figure: Backbone and C_{α} representation

Figure: Cartoon view of a protein

Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A. and Hamelryck, T. A generative, probabilistic model of local protein structure. PNAS, 105(26):8932-8937

Text mining

- Document d (Ronald Fisher, 1938):
"To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of."
- Preprocessing of d :
(1) Lowercase conversion, remove punctuation, remove format, ...
(2) Pruning (remove stop words and too common or uncommon words)
(3) Stemming ("statistician" \rightarrow "statistic")
- Vector Space Model:
(1) Set a dictionary as a basis for a collection of documents:

$$
D=\{\text { "hello", "statistic", "experi", "examin", "world" }\}
$$

(2) Codify the document d as a frequency vector

$$
\mathbf{d}=(0,1,2,1,0) .
$$

(3) Standardize to remove length effects: $\mathbf{d} /\|\mathbf{d}\| \in \Omega_{\# D-1}$.

Text mining

- Document d (Ronald Fisher, 1938):
"To call in the statistician after experiment done may be no m
than asking him perform post mortem examination he may
able to may whe experiment died
- Preprocessing of d :
(1) Lowercase conversion, remove punctuation, remove format, ...
(2) Pruning (remove stop words and too common or uncommon words)
(3) Stemming ("statistician" \rightarrow "statistic")
- Vector Space Model:
(1) Set a dictionary as a basis for a collection of documents:

$$
D=\{\text { "hello", "statistic", "experi", "examin", "world" }\}
$$

(2) Codify the document d as a frequency vector

$$
\mathbf{d}=(0,1,2,1,0) .
$$

(3) Standardize to remove length effects: $\mathbf{d} /\|\mathbf{d}\| \in \Omega_{\# D-1}$.

Text mining

- Document d (Ronald Fisher, 1938):
"To call in the statistic
than ask experiment done may be no morm post mortem examin the may
abl to say what the experi die
- Preprocessing of d :
(1) Lowercase conversion, remove punctuation, remove format, ...
(2) Pruning (remove stop words and too common or uncommon words)
(3) Stemming ("statistician" \rightarrow "statistic")
- Vector Space Model:
(1) Set a dictionary as a basis for a collection of documents:

$$
D=\{\text { "hello", "statistic", "experi", "examin", "world" }\}
$$

(2) Codify the document d as a frequency vector

$$
\mathbf{d}=(0,1,2,1,0) .
$$

(3) Standardize to remove length effects: $\mathbf{d} /\|\mathbf{d}\| \in \Omega_{\# D-1}$.

Von Mises-Fisher distribution

- The von Mises-Fisher (vMF) is the most well known directional density:

$$
f_{\mathrm{vMF}}(\mathbf{x} ; \boldsymbol{\mu}, \kappa)=C_{q}(\kappa) \exp \left\{\kappa \mathbf{x}^{T} \boldsymbol{\mu}\right\}, \quad C_{q}(\kappa)=\frac{\kappa^{\frac{q-1}{2}}}{(2 \pi)^{\frac{q+1}{2}} \mathcal{I}_{\frac{q-1}{2}}(\kappa)}
$$

parametrized by a mean $\boldsymbol{\mu} \in \Omega_{q}$ and a concentration $\kappa \geq 0$

- Density wrt the Lebesgue measure ω_{q} in $\Omega_{q} . \omega_{q}$ denotes also the area surface of Ω_{q} :

$$
\omega_{q} \equiv \omega_{q}\left(\Omega_{q}\right)=2 \pi^{\frac{q+1}{2}} / \Gamma\left(\frac{q+1}{2}\right)
$$

- (Isotropic) Gaussian analogue:
(1) Same MLE characterization property
(2) If $\mathbf{X} \sim \mathcal{N}_{q+1}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}_{q+1}\right)$, then

$$
\mathbf{X} \left\lvert\,\|\mathbf{X}\|=1 \sim \operatorname{vMF}\left(\frac{\boldsymbol{\mu}}{\|\boldsymbol{\mu}\|}, \frac{\|\boldsymbol{\mu}\|}{\sigma^{2}}\right)\right.
$$

Von Mises distribution

Figure: $\operatorname{vM}(\boldsymbol{\mu}, \kappa)$ density in the circle and the sphere, with $\boldsymbol{\mu}=\left(\mathbf{0}_{q}, 1\right)$ and $\kappa=2$.

Von Mises distribution

Figure: $\operatorname{vM}(\boldsymbol{\mu}, \kappa)$ density in the circle and the sphere, with $\boldsymbol{\mu}=\left(-1, \mathbf{0}_{q}\right)$ and $\kappa=2$.

Von Mises distribution

Figure: $\operatorname{vM}(\boldsymbol{\mu}, \kappa)$ density in the circle and the sphere, with $\boldsymbol{\mu}=\left(\mathbf{0}_{q}, 1\right)$ and $\kappa=5$.

Von Mises distribution

Figure: $\operatorname{vM}(\boldsymbol{\mu}, \kappa)$ density in the circle and the sphere, with $\boldsymbol{\mu}=\left(\mathbf{0}_{q}, 1\right)$ and $\kappa=10$.

Contents of the talk

(1) Part I. Kernel density estimation with directional data under rotational symmetry

- Present a KDE under rotational symmetry
- Study its main asymptotic properties
- Illustrate empirical performance through
 simulations
(2) Part II. Estimation and testing in linear-directional regression
- Present a local linear estimator with directional predictor
- Build a goodness-of-fit test for regression models
- Apply both to test a common assumption in bioinformatics

Part I

Kernel density estimation with directional data under rotational symmetry

三-
García-Portugués, E., Ley, C., Verdebout, T. (2017). Kernel density estimation for directional data under rotational symmetry. Work in progress.

Contents of Part I

(1) KDE with directional data
(2) KDE under rotasymmetry

The rotasymmetrizer
Rotasymmetric KDE
(3) Simulation study

KDE with directional data

- For a sample $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \sim f$, the Kernel Density Estimator (KDE) for directional data is

$$
\hat{f}_{h}(\mathbf{x})=\frac{c_{h, q}(L)}{n} \sum_{i=1}^{n} L\left(\frac{1-\mathbf{x}^{T} \mathbf{X}_{i}}{h^{2}}\right)=\frac{1}{n} \sum_{i=1}^{n} L_{h}\left(\mathbf{x}, \mathbf{X}_{i}\right), \quad \mathbf{x} \in \Omega_{q}
$$Bai, Z. D., Rao, C. R. and Zhao, L. C. (1988). Kernel estimators of density function of directional data. J. Multivariate Anal., 27:24-39

- Note the h^{2} because $2\left(1-\mathbf{x}^{T} \mathbf{X}_{i}\right)=\left\|\mathbf{x}-\mathbf{X}_{i}\right\|^{2}$
- Normalizing constant $c_{h, q}(L)^{-1}=\lambda_{q}(L) h^{q}(1+o(1))$ with

$$
\lambda_{q}(L)=2^{\frac{q}{2}-1} \omega_{q-1} \int_{0}^{\infty} L(r) r^{\frac{q}{2}-1} d r
$$

- "Second moment" of $L: b_{q}(L)=\int_{0}^{\infty} L(r) r^{\frac{q}{2}} d r / \int_{0}^{\infty} L(r) r^{\frac{q}{2}-1} d r$
- If $L(r)=e^{-r}$, the vMF kernel, $c_{h, q}(L)=e^{1 / h^{2}} C_{q}\left(1 / h^{2}\right)$

Circular case

Figure: Construction of the kernel density estimator with $n=20$.

Circular case

Figure: Construction of the kernel density estimator with $n=20$.

Circular case

Figure: Construction of the kernel density estimator with $n=20$.

Circular case

Figure: Construction of the kernel density estimator with $n=20$.

Circular case

Figure: Construction of the kernel density estimator with $n=20$.

KDE construction: spherical case

Figure: Left: KDE with $n=1$. Right: true density

KDE construction: spherical case

Figure: Left: KDE with $n=2$. Right: true density

KDE construction: spherical case

Figure: Left: KDE with $n=3$. Right: true density

KDE construction: spherical case

Figure: Left: KDE with $n=5$. Right: true density

KDE construction: spherical case

Figure: Left: KDE with $n=10$. Right: true density

KDE construction: spherical case

Figure: Left: KDE with $n=20$. Right: true density

Rotasymmetry I

- Recurrent assumption: \mathbf{X} is rotational symmetric (or rotasymmetric) about some direction $\boldsymbol{\theta} \in \Omega_{q}$
- Circular case: rotasymmetry is reflective symmetry
- High-dimensional situation: rotasymmetry is behind many celebrated distributions

Figure: Rotasymmetry in the circular and spherical cases

Rotasymmetry II

Proposition (Rotasymmetry characterization)

Let \mathbf{X} a directional rv with density f. These statements are equivalent:
(1) $\mathbf{X} \stackrel{d}{=} \mathbf{O X}$, where $\mathbf{O}=\boldsymbol{\theta} \boldsymbol{\theta}^{T}+\sum_{i=1}^{q} \mathbf{b}_{i} \mathbf{b}_{i}^{T}$ is a rotation matrix on \mathbb{R}^{q+1} that fixes $\boldsymbol{\theta} \in \Omega_{q}$
(2) $f(\mathbf{x})=g\left(\mathbf{x}^{\top} \boldsymbol{\theta}\right), \forall \mathbf{x} \in \Omega_{q}$, where $g:[-1,1] \longrightarrow \mathbb{R}^{+}$is a link such that

$$
f^{*}(t)=\omega_{q-1} g(t)\left(1-t^{2}\right)^{\frac{q}{2}-1} \text { is a density in }[-1,1]
$$

- Rotasymmetry is related with the tangent-normal decomposition:

$$
\mathbf{x}=t \boldsymbol{\theta}+\left(1-t^{2}\right)^{\frac{1}{2}} \mathbf{B}_{\boldsymbol{\theta}} \boldsymbol{\xi}
$$

with $t=\mathbf{x}^{\top} \boldsymbol{\theta} \in[-1,1], \boldsymbol{\xi} \in \Omega_{q-1}$ and $\mathbf{B}_{\boldsymbol{\theta}}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right)_{(q+1) \times \boldsymbol{q}}$ such that $\mathbf{B}_{\boldsymbol{\theta}}^{T} \mathbf{B}_{\boldsymbol{\theta}}=\mathbf{I}_{q}$ and $\mathbf{B}_{\boldsymbol{\theta}} \mathbf{B}_{\boldsymbol{\theta}}^{T}=\mathbf{I}_{q+1}-\boldsymbol{\theta} \boldsymbol{\theta}^{T}$

- No monotonicity required in g, axial variables are covered as well

The rotasymmetrizer

Definition (Rotasymmetrizer)

The rotasymmetrizer around θ, R_{θ}, transforms a function $f: \Omega_{q} \longrightarrow \mathbb{R}$ into

$$
R_{\theta} f(\mathbf{x}):=\frac{1}{\omega_{q-1}} \int_{\Omega_{q-1}} f\left(\mathbf{x}_{\theta, \xi}\right) \omega_{q-1}(d \boldsymbol{\xi}),
$$

with $\mathbf{x}_{\boldsymbol{\theta}, \boldsymbol{\xi}}=\left(\mathbf{x}^{\boldsymbol{T}} \boldsymbol{\theta}\right) \boldsymbol{\theta}+\left(1-\left(\mathbf{x}^{\boldsymbol{T}} \boldsymbol{\theta}\right)^{2}\right)^{\frac{1}{2}} \mathbf{B}_{\boldsymbol{\theta}} \boldsymbol{\xi}$

- For point $x \in \Omega_{q}$, the operator averages out the density along the points sharing the same colatitude (wrt $\boldsymbol{\theta}$)
- Intuitively: parallel redistribution of probability mass

Figure: Input and output of $R_{\boldsymbol{\theta}}$ with $\boldsymbol{\theta}=(0,0,1)$

Properties

Proposition (Rotasymmetrizer properties)

Let be $f, f_{1}, f_{2}: \Omega_{q} \longrightarrow \mathbb{R}^{+}$directional densities and $\boldsymbol{\theta} \in \Omega_{q}$.
(1) Invariance from different matrices $\mathbf{B}_{\boldsymbol{\theta}}$:

$$
\begin{array}{r}
\int_{\Omega_{q-1}} f\left(\mathbf{x}_{\boldsymbol{\theta}, \boldsymbol{\xi}, 1}\right) \omega_{q-1}(d \boldsymbol{\xi})=\int_{\Omega_{q-1}} f\left(\mathbf{x}_{\boldsymbol{\theta}, \boldsymbol{\xi}, 2}\right) \omega_{q-1}(d \boldsymbol{\xi}), \\
\text { with } \mathbf{x}_{\boldsymbol{\theta}, \boldsymbol{\xi}, k}=\left(\mathbf{x}^{\top} \boldsymbol{\theta}\right) \boldsymbol{\theta}+\left(1-\left(\mathbf{x}^{\top} \boldsymbol{\theta}\right)^{2}\right)^{\frac{1}{2}} \mathbf{B}_{\boldsymbol{\theta}, k} \boldsymbol{\xi}, k=1,2
\end{array}
$$

(2) Linearity: $R_{\boldsymbol{\theta}}\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)(\mathbf{x})=\lambda_{1} R_{\theta} f_{1}(\mathbf{x})+\lambda_{2} R_{\boldsymbol{\theta}} f_{2}(\mathbf{x})$
(3) Density preservation: $R_{\theta} f$ is a density
(4) Characterization: $R_{\theta} f=f \Longleftrightarrow f$ is rotasymmetric around $\boldsymbol{\theta}$
(5) Explicit expression for the vMF density:

$$
R_{\theta} f_{\mathrm{vMF}}(\mathbf{x} ; \boldsymbol{\mu}, \kappa)=\frac{C_{q}(\kappa) \exp \left\{\kappa \mathbf{x}^{\top} \boldsymbol{\theta} \boldsymbol{\mu}^{\top} \boldsymbol{\theta}\right\}}{\omega_{q-1} C_{q-1}\left(\kappa\left[\left(1-\left(\mathbf{x}^{\top} \boldsymbol{\theta}\right)^{2}\right)\left(1-\left(\boldsymbol{\mu}^{\top} \boldsymbol{\theta}\right)^{2}\right)\right]^{\frac{1}{2}}\right)}
$$

Rotasymmetric KDE

- Goal: estimate semiparametrically f under rotasymmetry

Definition (Rotasymmetric KDE)

The rotasymmetric KDE (RKDE) is the application of the rotasymmetrizer to the usual KDE:

$$
\begin{gathered}
\hat{f}_{h, \boldsymbol{\theta}}(\mathbf{x}):=R_{\boldsymbol{\theta}} \hat{f}_{h}(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} L_{h, \boldsymbol{\theta}}\left(\mathbf{x}, \mathbf{X}_{i}\right), \\
\text { with } L_{h, \boldsymbol{\theta}}\left(\mathbf{x}, \mathbf{X}_{i}\right)=\frac{c_{h, \boldsymbol{q}}(L)}{\omega_{q-1}} \int_{\Omega_{q-1}} L\left(\frac{1-\mathbf{x}_{\boldsymbol{\theta}, \boldsymbol{\xi}}^{T} \mathbf{X}_{i}}{h^{2}}\right) \omega_{q-1}(d \xi)
\end{gathered}
$$

- The rotasymmetric vMF kernel has an explicit expression:

$$
L_{h, \boldsymbol{\theta}}\left(\mathbf{x}, \mathbf{X}_{i}\right)=\frac{C_{q}\left(1 / h^{2}\right) \exp \left\{\mathbf{x}^{\top} \boldsymbol{\theta} \mathbf{X}_{i}^{T} \boldsymbol{\theta} / h^{2}\right\}}{\omega_{q-1} C_{q-1}\left(\left[\left(1-\left(\mathbf{x}^{\top} \boldsymbol{\theta}\right)^{2}\right)\left(1-\left(\mathbf{X}_{i}^{T} \boldsymbol{\theta}\right)^{2}\right)\right]^{\frac{1}{2}} / h^{2}\right)}
$$

- The order of the normalizing constant is $\mathcal{O}\left(h^{-1}\right)$

Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\boldsymbol{\theta}=\left(\mathbf{0}_{q}, 1\right)$. The kernels have the same bandwidth

Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta=\left(0_{q}, 1\right)$. The kernels have the same bandwidth

Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta=\left(0_{q}, 1\right)$. The kernels have the same bandwidth

Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\boldsymbol{\theta}=\left(0_{q}, 1\right)$. The kernels have the same bandwidth

Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta=\left(0_{q}, 1\right)$. The kernels have the same bandwidth

Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta=\left(0_{q}, 1\right)$. The kernels have the same bandwidth

Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta=\left(0_{q}, 1\right)$. The kernels have the same bandwidth

Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta=\left(0_{q}, 1\right)$. The kernels have the same bandwidth

Connections with KDE in $[-1,1]$

- The RKDE kernels only depend on the projected sample $T_{i}=\mathbf{X}_{i}^{T} \boldsymbol{\theta}$ and the projected point $t=\mathbf{x}^{T} \boldsymbol{\theta}$
- RKDE is equivalent to KDE on $[-1,1]$ with bounded kernels adapted to capture the spikes of $f^{*}(t)=\omega_{q-1} g(t)\left(1-t^{2}\right)^{\frac{q}{2}-1}$
- Boundary bias is $\mathcal{O}\left(h^{2}\right)$ without any corrections

Figure: KDE of f^{*} with $g(t)=C_{q}(\kappa) \exp \{\kappa t\}, \kappa=1$ and $q=1$

Connections with KDE in $[-1,1]$

- The RKDE kernels only depend on the projected sample $T_{i}=\mathbf{X}_{i}^{T} \boldsymbol{\theta}$ and the projected point $t=\mathbf{x}^{\top} \boldsymbol{\theta}$
- RKDE is equivalent to KDE on $[-1,1]$ with bounded kernels adapted to capture the spikes of $f^{*}(t)=\omega_{q-1} g(t)\left(1-t^{2}\right)^{\frac{q}{2}-1}$
- Boundary bias is $\mathcal{O}\left(h^{2}\right)$ without any corrections

Figure: KDE of f^{*} with $g(t)=C_{q}(\kappa) \exp \{\kappa t\}, \kappa=1$ and $q=2$

Connections with KDE in $[-1,1]$

- The RKDE kernels only depend on the projected sample $T_{i}=\mathbf{X}_{i}^{T} \boldsymbol{\theta}$ and the projected point $t=\mathbf{x}^{T} \boldsymbol{\theta}$
- RKDE is equivalent to KDE on $[-1,1]$ with bounded kernels adapted to capture the spikes of $f^{*}(t)=\omega_{q-1} g(t)\left(1-t^{2}\right)^{\frac{q}{2}-1}$
- Boundary bias is $\mathcal{O}\left(h^{2}\right)$ without any corrections

Figure: KDE of f^{*} with $g(t)=C_{q}(\kappa) \exp \{\kappa t\}, \kappa=1$ and $q=3$

Connections with KDE in $[-1,1]$

- The RKDE kernels only depend on the projected sample $T_{i}=\mathbf{X}_{i}^{T} \boldsymbol{\theta}$ and the projected point $t=\mathbf{x}^{T} \boldsymbol{\theta}$
- RKDE is equivalent to KDE on $[-1,1]$ with bounded kernels adapted to capture the spikes of $f^{*}(t)=\omega_{q-1} g(t)\left(1-t^{2}\right)^{\frac{q}{2}-1}$
- Boundary bias is $\mathcal{O}\left(h^{2}\right)$ without any corrections

Figure: KDE of f^{*} with $g(t)=C_{q}(\kappa) \exp \{\kappa t\}, \kappa=1$ and $q=10$

Connections with KDE in $[-1,1]$

- The RKDE kernels only depend on the projected sample $T_{i}=\mathbf{X}_{i}^{T} \boldsymbol{\theta}$ and the projected point $t=\mathbf{x}^{T} \boldsymbol{\theta}$
- RKDE is equivalent to KDE on $[-1,1]$ with bounded kernels adapted to capture the spikes of $f^{*}(t)=\omega_{q-1} g(t)\left(1-t^{2}\right)^{\frac{q}{2}-1}$
- Boundary bias is $\mathcal{O}\left(h^{2}\right)$ without any corrections

Figure: KDE of f^{*} with $g(t)=C_{q}(\kappa) \exp \{\kappa t\}, \kappa=1$ and $q=100$

Bias (θ known)

- Assumptions:

A1 f is extended by $f(\mathbf{x} /\|\mathbf{x}\|)$ and is twice continuously differentiable A2 $L: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is continuous, bounded and has exponential decay
A3-1 The sequence $h=h_{n}$ satisfies $h \rightarrow 0$ and $n h \rightarrow \infty$
A3-q The sequence $h=h_{n}$ satisfies $h \rightarrow 0$ and $n h^{q} \rightarrow \infty$

- A3-q is required for consistency at $\mathbf{x}= \pm \boldsymbol{\theta}$ (note $\mathbf{A} 3-q \Rightarrow \mathrm{~A} 3-1$)

Proposition (Bias, $\boldsymbol{\theta}$ known)

Under A1-A3-1 and uniformly in $\mathbf{x} \in \Omega_{q}$,

$$
\mathbb{E}\left[\hat{f}_{h, \boldsymbol{\theta}}(\mathbf{x})\right]=R_{\theta} f(\mathbf{x})+\frac{b_{q}(L)}{q} \operatorname{tr}\left[R_{\theta} \mathcal{H} f(\mathbf{x})\right] h^{2}+o\left(h^{2}\right)
$$

If rotasymmetry holds, then $R_{\theta} f=f$ and the bias is KDE's one

Variance (θ known)

Proposition (Variance, $\boldsymbol{\theta}$ known)

Under A1-A2, A3 if $\left(\mathbf{x}^{\top} \boldsymbol{\theta}\right)^{2}<1$ and A4 otherwise,

$$
\operatorname{Var}\left[\hat{f}_{h, \boldsymbol{\theta}}(\mathbf{x})\right]=C_{\mathbf{x}^{\top} \boldsymbol{\theta}, \boldsymbol{q}, L}(h) \frac{R_{\theta} f(\mathbf{x})}{n}(1+o(1))-\frac{\left(R_{\theta} f(\mathbf{x})\right)^{2}}{n}
$$

uniformly in $\mathbf{x} \in \Omega_{q}$, where

$$
C_{\mathbf{x}^{\top} \theta, q, L}(h) \propto \begin{cases}\frac{\lambda_{q}\left(L^{2}\right) \lambda_{q}(L)^{-2}}{h^{q}}, & \left(\mathbf{x}^{\top} \boldsymbol{\theta}\right)^{2}=1, q \geq 1, \\ \frac{\lambda_{1}\left(L^{2}\right) \lambda_{1}(L)^{-2}}{2 h}, & \left(\mathbf{x}^{\top} \boldsymbol{\theta}\right)^{2}<1, q=1, \\ \frac{\lambda_{q}(L)^{2} \lambda_{q-1}(L)^{-2}}{\omega_{q-1}\left(1-\left(\mathbf{x}^{\top} \theta\right)^{2}\right)^{\frac{1}{2}} h}, & \left(\mathbf{x}^{\top} \boldsymbol{\theta}\right)^{2}<1, q \geq 2\end{cases}
$$

- The asymptotic constant of the variance increases with $q \rightarrow \infty$ since $\omega_{q-1} \rightarrow 0$! (but slowly than KDE's)

Spherical area surface

Figure: Spherical surface $\omega_{q}=2 \pi^{\frac{q+1}{2}} / \Gamma\left(\frac{q+1}{2}\right)$

- The area of Ω_{q} tends to zero, but not monotonically
- Weird maximum at dimension $q=6$
- $[-1,1]^{q}$ touches Ω_{q} in 2^{q} points, yet its area tends to infinity!

Key orders \& asymptotic normality

Concept	KDE $(\checkmark / \times$ rotasym. $)$	RKDE $(\checkmark$ rotasym. $)$	RKDE $(\times$ rotasym. $)$
Bias	$\mathcal{O}\left(h^{2}\right)$	$\mathcal{O}\left(h^{2}\right)$	$\mathcal{O}\left(R_{\theta} f(x)-f(x)\right)$
Variance	$\mathcal{O}\left(\left(n h^{q}\right)^{-1}\right)$	$\mathcal{O}\left((n h)^{-1}\right)$	$\mathcal{O}\left((n h)^{-1}\right)$
Optimal	$\mathcal{O}\left(n^{-\frac{4}{4+9}}\right)$	$\mathcal{O}\left(n^{-\frac{4}{5}}\right)$	$\mathcal{O}\left(\int\left(R_{\theta} f-f\right)^{2}\right)$

Table: Summary of the KDE and RKDE key orders

Corollary (Pointwise asymptotic normality, $\boldsymbol{\theta}$ known)
Under A1-A2, A3 if $\left(\mathbf{x}^{\top} \boldsymbol{\theta}\right)^{2}<1$ and A4 otherwise,

$$
a_{n}\left(\hat{f}_{h, \boldsymbol{\theta}}(\mathbf{x})-f(\mathbf{x})\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(R_{\boldsymbol{\theta}} f(\mathbf{x})-f(\mathbf{x}), C_{\mathbf{x}^{\top} \boldsymbol{\theta}, \boldsymbol{q}, L}(1)\right),
$$

where $a_{n}=\sqrt{n h}$ if $\left(\mathbf{x}^{\top} \boldsymbol{\theta}\right)^{2}<1$ and $a_{n}=\sqrt{n h^{q}}$ otherwise

Simulation study

Figure: Performance of the three kernel estimators with $q=1$ (left) and $q=2$ (right), with $n=100$

Ratios optimal MISEs	$q=1$	$q=2$	$q=3$	$q=4$	$q=5$	$q=6$
KDE/RKDE, $\boldsymbol{\theta}$	1.796	2.999	4.065	5.643	5.871	8.019
KDE/RKDE, $\hat{\boldsymbol{\theta}}$	1.289	2.014	2.537	3.035	3.207	3.467

Simulation study

Figure: Performance of the three kernel estimators with $q=3$ (left) and $q=4$ (right), with $n=100$

Ratios optimal MISEs	$q=1$	$q=2$	$q=3$	$q=4$	$q=5$	$q=6$
KDE/RKDE, $\boldsymbol{\theta}$	1.796	2.999	4.065	5.643	5.871	8.019
KDE/RKDE, $\hat{\boldsymbol{\theta}}$	1.289	2.014	2.537	3.035	3.207	3.467

Simulation study

Figure: Performance of the three kernel estimators with $q=5$ (left) and $q=6$ (right), with $n=100$

Ratios optimal MISEs	$q=1$	$q=2$	$q=3$	$q=4$	$q=5$	$q=6$
KDE/RKDE, $\boldsymbol{\theta}$	1.796	2.999	4.065	5.643	5.871	8.019
KDE/RKDE, $\hat{\boldsymbol{\theta}}$	1.289	2.014	2.537	3.035	3.207	3.467

Part II

Estimation and testing in linear-directional regression

García-Portugués, E., Van Keilegom, I., Crujeiras, R. and González-Manteiga, W. (2016). Testing parametric models in linear-directional regression. Scand. J. Stat., 43(4):1178-1191.

Contents of Part II

(1) Nonparametric estimation of the regression
(2) Goodness-of-fit tests for models with directional predictor Asymptotic distribution
Calibration in practice
(3) Data application

Regression with directional data

- Let (\mathbf{X}, Y) be a rv with support in $\Omega_{q} \times \mathbb{R}$ and \mathbf{X} having density f
- Consider the location-scale regression model

$$
Y=m(\mathbf{X})+\sigma(\mathbf{X}) \varepsilon \quad \text { with } \quad\left\{\begin{array}{l}
m(\mathbf{x})=\mathbb{E}[Y \mid \mathbf{X}=\mathbf{x}] \\
\sigma^{2}(\mathbf{x})=\operatorname{Var}[Y \mid \mathbf{X}=\mathbf{x}]
\end{array}\right.
$$

with $\mathbb{E}[\varepsilon \mid \mathbf{X}]=0, \mathbb{E}\left[\varepsilon^{2} \mid \mathbf{X}\right]=1$ and $\mathbb{E}\left[|\varepsilon|^{3} \mid \mathbf{X}\right]$ and $\mathbb{E}\left[\varepsilon^{4} \mid \mathbf{X}\right]$ bounded rv's

- Goal: estimate m nonparametrically from $\left\{\left(\mathbf{X}_{i}, Y_{i}\right)\right\}_{i=1}^{n}$
- Taylor expansions are required, so the first condition is:

A1 m and f are extended as $m(\mathbf{x} /\|\mathbf{x}\|)$ and $f(\mathbf{x} /\|\mathbf{x}\|) . m$ is third and f is twice continuously differentiable and f is bounded away from zero

Estimator

- Let $\mathbf{x}, \mathbf{X}_{i} \in \Omega_{q}$. The one term Taylor expansion of m is:

$$
m\left(\mathbf{X}_{i}\right)=m(\mathbf{x})+\nabla m(\mathbf{x})^{T}\left(\mathbf{X}_{i}-\mathbf{x}\right)+\mathcal{O}\left(\left\|\mathbf{X}_{i}-\mathbf{x}\right\|^{2}\right)
$$

Estimator

- Let $\mathbf{x}, \mathbf{X}_{i} \in \Omega_{q}$. The one term Taylor expansion of m is:

$$
m\left(\mathbf{X}_{i}\right)=m(\mathbf{x})+\nabla m(\mathbf{x})^{T}\left(\mathbf{I}_{q+1}-\mathbf{x} \mathbf{x}^{T}\right)\left(\mathbf{X}_{i}-\mathbf{x}\right)+\mathcal{O}\left(\left\|\mathbf{X}_{i}-\mathbf{x}\right\|^{2}\right)
$$

Estimator

- Let $\mathbf{x}, \mathbf{X}_{i} \in \Omega_{q}$. The one term Taylor expansion of m is:

$$
m\left(\mathbf{X}_{i}\right)=m(\mathbf{x})+\nabla m(\mathbf{x})^{T} \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}}^{T}\left(\mathbf{X}_{i}-\mathbf{x}\right)+\mathcal{O}\left(\left\|\mathbf{X}_{i}-\mathbf{x}\right\|^{2}\right)
$$

Estimator

- Let $\mathbf{x}, \mathbf{X}_{i} \in \Omega_{q}$. The one term Taylor expansion of m is:

$$
\begin{aligned}
m\left(\mathbf{X}_{i}\right) & =m(\mathbf{x})+\nabla m(\mathbf{x})^{T} \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathrm{x}}^{T}\left(\mathbf{X}_{i}-\mathbf{x}\right)+\mathcal{O}\left(\left\|\mathbf{X}_{i}-\mathbf{x}\right\|^{2}\right) \\
& \approx \beta_{0}+\left(\beta_{1}, \ldots, \beta_{q}\right)^{T} \mathbf{B}_{\mathbf{x}}^{T}\left(\mathbf{X}_{i}-\mathbf{x}\right)
\end{aligned}
$$

$$
\text { with } \mathbf{B}_{\mathbf{x}}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right)_{(q+1) \times q} \text { such that } \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}}^{T}=\mathbf{I}_{q+1}-\mathbf{x} \mathbf{x}^{T} \text {, }
$$

$$
\beta_{0}=m(\mathbf{x}) \text { and }\left(\beta_{1}, \ldots, \beta_{q}\right)=\mathbf{B}_{\mathbf{x}}^{T} \nabla m(\mathbf{x})
$$

Estimator

- Let $\mathbf{x}, \mathbf{X}_{i} \in \Omega_{q}$. The one term Taylor expansion of m is:

$$
\begin{aligned}
m\left(\mathbf{X}_{i}\right) & =m(\mathbf{x})+\nabla m(\mathbf{x})^{T} \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathrm{x}}^{T}\left(\mathbf{X}_{i}-\mathbf{x}\right)+\mathcal{O}\left(\left\|\mathbf{X}_{i}-\mathbf{x}\right\|^{2}\right) \\
& \approx \beta_{0}+\left(\beta_{1}, \ldots, \beta_{q}\right)^{T} \mathbf{B}_{\mathbf{x}}^{T}\left(\mathbf{X}_{i}-\mathbf{x}\right)
\end{aligned}
$$

$$
\text { with } \mathbf{B}_{\mathbf{x}}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right)_{(q+1) \times q} \text { such that } \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}}^{T}=\mathbf{I}_{q+1}-\mathbf{x} \mathbf{x}^{T} \text {, }
$$

$$
\beta_{0}=m(\mathbf{x}) \text { and }\left(\beta_{1}, \ldots, \beta_{q}\right)=\mathbf{B}_{\mathbf{x}}^{T} \nabla m(\mathbf{x})
$$

- Weighted minimum least squares problem:

$$
\min _{\beta \in \mathbb{R}^{q+1}} \sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\delta_{p, 1}\left(\beta_{1}, \ldots, \beta_{q}\right)^{T} \mathbf{B}_{\mathbf{x}}^{\top}\left(\mathbf{X}_{i}-\mathbf{x}\right)\right)^{2} L_{h}\left(\mathbf{x}, \mathbf{X}_{i}\right)
$$

Estimator

- Let $\mathbf{x}, \mathbf{X}_{i} \in \Omega_{q}$. The one term Taylor expansion of m is:

$$
\begin{aligned}
m\left(\mathbf{X}_{i}\right) & =m(\mathbf{x})+\nabla m(\mathbf{x})^{T} \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathrm{x}}^{T}\left(\mathbf{X}_{i}-\mathbf{x}\right)+\mathcal{O}\left(\left\|\mathbf{X}_{i}-\mathbf{x}\right\|^{2}\right) \\
& \approx \beta_{0}+\left(\beta_{1}, \ldots, \beta_{q}\right)^{T} \mathbf{B}_{\mathbf{x}}^{T}\left(\mathbf{X}_{i}-\mathbf{x}\right)
\end{aligned}
$$

$$
\text { with } \mathbf{B}_{\mathbf{x}}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right)_{(q+1) \times q} \text { such that } \mathbf{B}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}}^{T}=\mathbf{I}_{q+1}-\mathbf{x} \mathbf{x}^{T} \text {, }
$$

$$
\beta_{0}=m(\mathbf{x}) \text { and }\left(\beta_{1}, \ldots, \beta_{q}\right)=\mathbf{B}_{\mathbf{x}}^{T} \nabla m(\mathbf{x})
$$

- Weighted minimum least squares problem:

$$
\min _{\beta \in \mathbb{R}^{q+1}} \sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\delta_{p, 1}\left(\beta_{1}, \ldots, \beta_{q}\right)^{T} \mathbf{B}_{\mathbf{x}}^{T}\left(\mathbf{X}_{i}-\mathbf{x}\right)\right)^{2} L_{h}\left(\mathbf{x}, \mathbf{X}_{i}\right)
$$

- The solution is given by

$$
\begin{gathered}
\hat{m}_{h, p}(\mathbf{x})=\mathbf{e}_{1, p}^{T}\left(\mathcal{X}_{\mathbf{x}, p}^{T} \mathcal{W}_{\times} \mathcal{X}_{\mathrm{x}, p}\right)^{-1} \mathcal{X}_{\mathrm{x}, p}^{T} \mathcal{W}_{\mathrm{x}} \mathbf{Y}=\sum_{i=1}^{n} W_{p}^{n}\left(\mathbf{x}, \mathbf{X}_{i}\right) Y_{i}, \\
\boldsymbol{\mathcal { X }}_{\mathrm{x}, 1}=\left(\begin{array}{cc}
1 & \left(\mathbf{X}_{1}-\mathbf{x}\right)^{T} \mathbf{B}_{\mathbf{x}} \\
\vdots & \vdots \\
1 & \left(\mathbf{X}_{n}-\mathbf{x}\right)^{T} \mathbf{B}_{\mathbf{x}}
\end{array}\right), \quad \mathcal{W}_{\mathrm{x}}=\operatorname{diag}\left(L_{h}\left(\mathbf{x}, \mathbf{X}_{1}\right), \ldots, L_{h}\left(\mathbf{x}, \mathbf{X}_{n}\right)\right) \\
\text { Smoothing-based inference with directional data }
\end{gathered}
$$

How does it work?

How does it work?

How does it work?

How does it work?

How does it work?

Output

Figure: Local linear estimator with $n=100$ for the circle and the sphere

Testing a parametric model

- Goal: check nonparametrically $H_{0}: m \in \mathcal{M}_{\Theta}=\left\{m_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \Theta \subset \mathbb{R}^{s}\right\}$
- The statistic is the weighted L^{2}-distance between $\hat{m}_{h, p}$ and the smoothed $m_{\hat{\theta}}$:

$$
T_{n}=\int_{\Omega_{q}}\left(\hat{m}_{h, p}(\mathbf{x})-\mathcal{L}_{h, p} m_{\hat{\theta}}(\mathbf{x})\right)^{2} \hat{f}_{h}(\mathbf{x}) w(\mathbf{x}) \omega_{q}(d \mathbf{x})
$$

with $\mathcal{L}_{h, p} m_{\hat{\theta}}(\mathbf{x})=\sum_{i=1}^{n} W_{n}^{p}\left(\mathbf{x}, \mathbf{X}_{i}\right) m_{\hat{\theta}}\left(\mathbf{X}_{i}\right)$ the smoothing operator and $w: \Omega_{q} \rightarrow \mathbb{R}^{+}$a weight function (useful for removing possible boundary effects)

Alcalá, J. T., Cristóbal, J. A., and González-Manteiga, W. (1999). Goodness-of-fit test for linear models based on local polynomials. Statist. Probab. Lett., 42(1):39-46
Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist., 21(4):1926-1947

Asymptotic distribution

Theorem (Goodness-of-fit for linear-directional models)

Under A1-A6 and $H_{0}: m \in \mathcal{M}_{\ominus}$ (i.e., $m=m_{\boldsymbol{\theta}_{0}}$),

$$
n h^{\frac{q}{2}}\left(T_{n}-\frac{\lambda_{q}\left(L^{2}\right) \lambda_{q}(L)^{-2}}{n h^{q}} \int_{\Omega_{q}} \sigma_{\theta_{0}}^{2}(\mathbf{x}) w(\mathbf{x}) \omega_{q}(d \mathbf{x})\right) \xrightarrow{d} \mathcal{N}\left(0,2 \nu_{\theta_{0}}^{2}\right),
$$

where $\sigma_{\boldsymbol{\theta}_{0}}^{2}(\mathbf{x})=\mathbb{E}\left[\left(Y-m_{\boldsymbol{\theta}_{0}}(\mathbf{X})\right)^{2} \mid \mathbf{X}=\mathbf{x}\right]$ and

$$
\begin{aligned}
\nu_{\boldsymbol{\theta}_{0}}^{2}= & \int_{\Omega_{q}} \sigma_{\boldsymbol{\theta}_{0}}^{4}(\mathbf{x}) w(\mathbf{x})^{2} \omega_{q}(d \mathbf{x}) \\
& \times \gamma_{q} \lambda_{q}(L)^{-4} \int_{0}^{\infty} r^{\frac{q}{2}-1}\left\{\int_{0}^{\infty} \rho^{\frac{q}{2}-1} L(\rho) \varphi_{q}(r, \rho) d \rho\right\}^{2} d r
\end{aligned}
$$

- Conditions:

A5 $\hat{\boldsymbol{\theta}}$ is such that $\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{1}=\mathcal{O}_{\mathbb{P}}\left(n^{-\frac{1}{2}}\right)$, with $\boldsymbol{\theta}_{1}=\boldsymbol{\theta}_{0}$ if H_{0} holds
A6 m_{θ} is continuously differentiable as a function of θ, being this
derivative also continuous for $\mathbf{x} \in \Omega_{q}$

- If L is the von Mises kernel, $\nu_{\theta_{0}}^{2}=\int_{\Omega_{q}} \sigma_{\theta_{0}}^{4}(\mathbf{x}) w(\mathbf{x})^{2} \omega_{q}(d \mathbf{x}) \times(8 \pi)^{-\frac{q}{2}}$

Empirical evidence

Figure: $Q Q$-plot comparing the quantiles of the asymptotic distribution with the sample quantiles for $\left\{n h^{\frac{1}{2}}\left(T_{n}^{j}-\frac{\sqrt{\pi}}{4} n h\right)\right\}_{j=1}^{500}$ with $n=10^{2}$ (left) and $n=5 \times 10^{5}$ (right)

Calibration in practice

Algorithm (Calibration in practice)

To test $H_{0}: m \in \mathcal{M}_{\Theta}$ from the sample $\left\{\left(\mathbf{X}_{i}, Y_{i}\right)\right\}_{i=1}^{n}$:
(1) Obtain $\hat{\boldsymbol{\theta}}$, set $\hat{\varepsilon}_{i}=Y_{i}-m_{\hat{\boldsymbol{\theta}}}\left(\mathbf{X}_{i}\right), i=1, \ldots, n$ and compute T_{n}
(2) Bootstrap resampling. For $b=1, \ldots, B$:

- Set $Y_{i}^{*}=m_{\hat{\theta}}\left(\mathbf{X}_{i}\right)+\hat{\varepsilon}_{i} V_{i}^{*}$, where V_{i}^{*} are iid rv's such that $\mathbb{E}^{*}\left[V_{i}^{*}\right]=0$ and $\mathbb{E}^{*}\left[\left(V_{i}^{*}\right)^{2}\right]=1, i=1, \ldots, n$
- Compute $\hat{\boldsymbol{\theta}}^{*}$ from $\left\{\left(\mathbf{X}_{i}, Y_{i}^{*}\right)\right\}_{i=1}^{n}$ and $T_{n}^{* b}$
(3) Estimate the p-value by $\frac{1}{B} \sum_{b=1}^{B} \mathbf{1}_{\left\{T_{n} \leq T_{n}^{* b}\right\}}$

Theorem (Bootstrap consistency)

Under A1-A4, A5-A6 and A9, conditionally on the sample,

$$
n h^{\frac{q}{2}}\left(T_{n}^{*}-\frac{\lambda_{q}\left(L^{2}\right) \lambda_{q}(L)^{-2}}{n h^{q}} \int_{\Omega_{q}} \sigma_{\theta_{1}}^{2}(\mathbf{x}) w(\mathbf{x}) \omega_{q}(d \mathbf{x})\right) \xrightarrow{d} \mathcal{N}\left(0,2 \nu_{\theta_{1}}^{2}\right)
$$

in probability. If H_{0} holds, then $\boldsymbol{\theta}_{1}=\boldsymbol{\theta}_{0}$ and $T_{n}^{*} \stackrel{\text { d }}{=} T_{n}$ asymptotically

Protein structure modelling

Figure: Backbone and C_{α} representation

Figure: Cartoon view of a protein

Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A. and Hamelryck, T. A generative, probabilistic model of local protein structure. PNAS, 105(26):8932-8937

Protein structure modelling

Figure: Backbone and C_{α} representation

Figure: Cartoon view of a protein

Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A. and Hamelryck, T. A generative, probabilistic model of local protein structure. PNAS, 105(26):8932-8937

Protein structure modelling

Figure: Backbone and C_{α} representation

Figure: Cartoon view of a protein

Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A. and Hamelryck, T. A generative, probabilistic model of local protein structure. PNAS, 105(26):8932-8937

Testing in the C_{α} representation

- Goal: test the constant pseudo--bond length assumption:

$$
H_{0}: m(\mathbf{x})=c, c \in \mathbb{R}
$$

- Data: $n=18030$ pseudo-angles $(\mathbf{X} \equiv(\Theta, T))$ and pseudo-lengths (Y) extracted from 100 high precision protein structures
- Grid of 10 bandwidths, $B=1000$ bootstrap replicates and weight $w(\theta, \tau)=1_{\left\{80 \leq \frac{180}{\pi} \theta \leq 150\right\}}$
- Emphatically rejection of H_{0}
- Exploration of $m(\theta, \tau)$ by local linear estimator $\hat{m}_{h_{\mathrm{CV}}, 1}(\theta, \tau)$

Figure: Significance trace of the goodness-of-fit tests

Testing in the C_{α} representation

- Goal: test the constant pseudo-
-bond length assumption:

$$
H_{0}: m(\mathbf{x})=c, c \in \mathbb{R}
$$

- Data: $n=18030$ pseudo-angles $(\mathbf{X} \equiv(\Theta, T))$ and pseudo-lengths (Y) extracted from 100 high precision protein structures
- Grid of 10 bandwidths, $B=1000$ bootstrap replicates and weight $w(\theta, \tau)=\mathbf{1}_{\left\{80 \leq \frac{180}{\pi} \theta \leq 150\right\}}$
- Emphatically rejection of H_{0}
- Exploration of $m(\theta, \tau)$ by local linear estimator $\hat{m}_{h_{\mathrm{CV}}, 1}(\theta, \tau)$

Figure: Contourplot of $\hat{m}_{h \mathrm{Cv}, 1}(\theta, \tau)$ and pseudo-angles sample

Text mining application

- Data: 8121 news published in slashdot.org in 2013
- Complex data acquisition and treatment
- News: $\mathbf{X} \in \Omega_{1508-1}$. Log-number of comments: $Y \in \mathbb{R}$
- $H_{0}: m(\mathbf{x})=c+\boldsymbol{\eta}^{T} \mathbf{x}$ such that only $d=77$ coefficients are non-zero. d chosen using overpenalized LASSO
- Grid of 10 bandwidths with
$B=1000$ bootstrap replicates
- No evidence to reject the model

Figure: Significance trace of the goodness-of-fit test

Text mining application

- Data: 8121 news published in slashdot.org in 2013
- Complex data acquisition and treatment
- News: $\mathbf{X} \in \Omega_{1508-1}$. Log-number of comments: $Y \in \mathbb{R}$
- $H_{0}: m(\mathbf{x})=c+\boldsymbol{\eta}^{T} \mathbf{x}$ such that only $d=77$ coefficients are non-zero. d chosen using overpenalized LASSO
- Grid of 10 bandwidths with $B=1000$ bootstrap replicates
- No evidence to reject the model

Figure: Most influential coefficients (significances of the d coefficients are <0.002)

Thanks for your attention!

