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Classical Interval Arithmetic
Definition

I Operations are defined over the set of closed and
bounded intervals x = [x , x ].

I The result of the operation is defined logically for
� ∈ {+,−,×,÷} as x � y = {x � y | x ∈ x and y ∈ y}.

I The logical definition leads to operational definitions:
x + y = [x + y , x + y ],

x − y = [x − y , x − y ],

x × y = [min{xy , xy , xy , xy},max{xy , xy , xy , xy}]
1
x

= [
1
x
,

1
x
] if x > 0 or x < 0

x ÷ y = x × 1
y

(There are alternatives for × and ÷ more efficient for certain
architectures.)
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Classical Interval Arithmetic
What does this definition do?

I In exact arithmetic, the operational definitions give the
exact ranges of the elementary operations.

I Evaluating an expression in interval arithmetic does not
give an exact range of the expression, but does give
bounds on the range of the expression.

I Example (interval dependence)
If f (x) = (x + 1)(x − 1), then

f ([−2,2]) =
(
[−2,2] + 1

)(
[−2,2]− 1

)
= [−1,3][−3,1] = [−9,3],

whereas the exact range is [−1,3].
I The interval [−9,3] represents the exact range of

f̃ (x , y) = (x + 1)(y − 1) over the rectangle x ∈ [−2,2],
y ∈ [−2,2] (when x and y vary independently).
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Classical Interval Arithmetic
Why can this be mathematically rigorous with approximate arithmetic?

I The operational definitions give approximate end points.

I Modern computational environments (such as IEEE
754-compliant ones) allow rounding down to the nearest
machine number less than the exact result and rounding
up to the nearest machine number greater than the
exact result.

I If we use downward rounding to compute the lower end
point and upward rounding to compute the upper end
point, the result of each elementary operation contains
the exact range of that operation.

I Hence, an interval evaluation of an expression on a
machine mathematically rigorously contains the range of
the expression.

4 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

4/27

Classical Interval Arithmetic
Why can this be mathematically rigorous with approximate arithmetic?

I The operational definitions give approximate end points.
I Modern computational environments (such as IEEE

754-compliant ones) allow rounding down to the nearest
machine number less than the exact result and rounding
up to the nearest machine number greater than the
exact result.

I If we use downward rounding to compute the lower end
point and upward rounding to compute the upper end
point, the result of each elementary operation contains
the exact range of that operation.

I Hence, an interval evaluation of an expression on a
machine mathematically rigorously contains the range of
the expression.

4 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

4/27

Classical Interval Arithmetic
Why can this be mathematically rigorous with approximate arithmetic?

I The operational definitions give approximate end points.
I Modern computational environments (such as IEEE

754-compliant ones) allow rounding down to the nearest
machine number less than the exact result and rounding
up to the nearest machine number greater than the
exact result.

I If we use downward rounding to compute the lower end
point and upward rounding to compute the upper end
point, the result of each elementary operation contains
the exact range of that operation.

I Hence, an interval evaluation of an expression on a
machine mathematically rigorously contains the range of
the expression.

4 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

4/27

Classical Interval Arithmetic
Why can this be mathematically rigorous with approximate arithmetic?

I The operational definitions give approximate end points.
I Modern computational environments (such as IEEE

754-compliant ones) allow rounding down to the nearest
machine number less than the exact result and rounding
up to the nearest machine number greater than the
exact result.

I If we use downward rounding to compute the lower end
point and upward rounding to compute the upper end
point, the result of each elementary operation contains
the exact range of that operation.

I Hence, an interval evaluation of an expression on a
machine mathematically rigorously contains the range of
the expression.

4 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

5/27

Algebraic Properties
(or lack thereof)

I Interval arithmetic is commutative and associative.

I There are no additive and multiplicative inverses.

I For example:
[1,2] − [1,2] = [−1,1]
[1,2] / [1,2] =

[1
2 ,2
]

I Interval arithmetic is only subdistributive:
a(b + c) ⊆ ab + ac.

I For example,
[−1,1]

(
[−3,−2] + [2,3]

)
= [−1,1][−1,1] = [−1,1], while

[−1,1][−3,−2]+[−1,1][2,3] = [−3,3]+[−3,3] = [−6,6].

I Theorem (Single Use Expressions — SUE)
In an algebraic expression evaluated in exact interval
arithmetic, the result is the exact range if each variable
occurs only once in the expression.
• Note: The converse is not true.
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Alternative “Interval” Systems
(Different representations or different semantics)

Midpoint-radius arithmetic: Intervals represented in terms of
midpoint and error; addition gives exact range
but multiplication just gives an enclosure for the
range.

Circular arithmetic: Representation as midpoint-radius, but
with the midpoint in the complex plane.
Elementary operations are not exact, but are
mere enclosures.

Rectangular arithmetic: An alternative complex interval
arithmetic. Addition is exact, but multiplication
just gives an enclosure.

Kaucher arithmetic, modal arithmetic etc.: Algebraically
completes interval arithmetic with additive
inverses. It has uses, but interpretation of the
results is more complicated, sometimes
depending on monotonicity properties.
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Extensions
What do we do with this?

Consider
x
y

= [1,2]/[−3,4].

I In our operational definition,
1
y

=

[
1
4
,−1

3

]
???

I The arguments contain undefined quantities
a
0

for

a ∈ [1,2], but . . .
I The range of the operation over defined quantities is(
−∞,−1

3

]⋃ [1
4 ,∞

)
.

I Different definitions for the operation’s result and
different interpretations are appropriate in different
contexts. (More to be said later.)

I This has been carefully considered and defined in an
exception-tracking framework in the IEEE 1788-2015
standard for interval arithmetic.
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]⋃ [1
4 ,∞

)
.

I Different definitions for the operation’s result and
different interpretations are appropriate in different
contexts. (More to be said later.)

I This has been carefully considered and defined in an
exception-tracking framework in the IEEE 1788-2015
standard for interval arithmetic.
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History
Early work

The same basic interval operations described in all of the
early work, although it was apparently done independently.

Rosaline Cecily Young (Mathematische Annalen, 1931,)
prior to digital computers) “The Algebra of Many-Valued
Quantities.” The focus is on an arithmetic on limits,
where lim infx→x0 f (x) and lim supx→x0

f (x) are distinct
(such as in in generalized gradients of nonsmooth
functions). Ranges and roundoff error do not seem to
have been the primary motivation.

Paul S. Dwyer (Chapter in Linear Computations, 1951)
“Computation with Approximate Numbers.” Interval
computations are introduced as an integral part of
roundoff error analysis.

Mieczyslaw Warmus (Calculus of Approximations, 1956)
The motivation is apparently to provide a sound
theoretical backing to numerical computation.
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Really Early Work
(from a talk on the Origin of Intervals by Siegfried Rump)

Rump mentions

I a 1900 book Lectures on Numerical Computing (in
German) with error bounds for +, −, ·, / and innacurate
input data;

I an 1896 article “On computing with inexact numbers” (in
German) in the Journal for Junior Highschool Studies,
giving the impression interval computations were
standard fare in middle schools;

I 1887, 1879, and 1854 French work where explicit
formulas for the elementary operations and rigorous
error bounds were given;

I An 1809 work by Gauß in Latin where explicit
computation of error bounds, including rounding errors,
appears.
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History of Interval Arithmetic
It takes off.

(beginning of the era of modern computers)

Teruro Sunaga (RAAG Memoirs, 1958)
“Theory of an Interval Algebra and its Application to
Numerical Analysis.” Motivation is automatically
accounting for uncertainty and error in measurement
and computation.

Ray Moore (Lockheed Technical Report, 1959)
“Automatic Error Analysis in Digital Computation.” The
basic operations are given in this monograph.
• Numerical solution of ODEs, numerical integration, etc.

based on intervals appear in Moore’s 1962 dissertation.
Eldon Hansen collaborated with Ray Moore; wrote two

editions of Global Optimization with Interval Analysis,
with with William Walster.

William Kahan Proposed extended interval arithmetic,
saw to directed roundings in IEEE 754 and mentored
several currently prominent students.
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History of Interval Arithmetic
Others

(Karlsruhe)

Rudolf Krawczyk published his famous Krawczyk method for
existence / uniqueness proofs ( 1969)

Ulrich Kulisch at Karlsruhe mentored many students. The
group produced the “SC” languages, with an
interval data type.

Götz Alefeld wrote Introduction to Interval Computations,
among other

Siegfried Rump developed INTLAB, a Matlab toolbox for IA,
and founded the Institute for Reliable Computing
at Hamburg.
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History
(Others)

E.T.H. Zürich (Peter Henrici)
Universität Freiburg (Karl Nickel)
Universität Vienna (Arnold Neumaier) – Important for the

group’s work in global optimization and a global
optimization web site.

Various locations in Russia Extensive publications.
Various locations in France Notable successes in

autonomous robots, navigation, etc. Also,
perhaps the most significant locus of current
applied research.

Czech Republic Jiri Rohn and associates have developed
theory, methods, and software for interval linear
systems.
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Reasons for Interval Arithmetic
(general uses)

Rigorously bounding roundoff error in floating point
computations.

I Interval widths start out small, on the order of the
machine precision, but . . .

I overestimation can make results meaningless, and
obtaining meaningful results is often tricky.

Bounding function ranges over large domains
I provides a polynomial-time computation that often gives

helpful bounds, for . . .

• proving the hypotheses of fixed point theorems,
• bounding the objective function and proving or disproving

feasibility in global optimization algorithms,
• proving collision avoidance in robotics, navigation

systems, celestial mechanics,
• etc.
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Proving Fixed Point Theorems
Some Details

Theorem (Brouwer fixed point theorem)
If g is a continuous mapping from a compact convex set x
into itself, there is a fixed-point x ∈ x of g, i.e. g(x) = x.

I If we evaluate g : x ⊂ Rn → Rn over an interval vector x
and the interval value g(x) ⊆ x , this proves existence of
a fixed point of g in x .

I Interval techniques based on this prove existence,
uniqueness, and error bounds:

• the Krawczyk method.
• general interval Newton methods, such as the interval

Gauss–Seidel method.

14 / 27
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Successes
Proof of Important Conjectures

prize-winning work

I The Kepler Conjecture: (made by Johannes Kepler in
1611, proved with interval arithmetic by Thomas Hales)
— no packing of spheres in 3-dimensional space is
denser than face-centered cubic packing. See
https://en.wikipedia.org/wiki/Kepler_conjecture.

I Chaos and attractors for the Lorenz equations: (a
simplified ODE model of weather prediction).

I Hassard, Zhang, Hastings, and Troy use a
mathematically rigorous interval-arithmetic-based ODE
integrator to prove existence of chaotic solutions.

I (and earlier) Mischaikov and Mrozek use Conley index
theory and interval arithmetic to do the same.

I Warwick Tucker (in dissertation work) used normal form
theory and interval arithmetic to solve Stephen Smale’s
14-th problem, namely, that the Lorenz equations have a
persistent strange attractor.
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Proof of Important Conjectures
Additional prize-winning work

The R. E. Moore Prize for application of interval arithmetic
has been awarded to various researchers. See http:
//www.cs.utep.edu/interval-comp/honors.html.
Among these are:

2014 Kenta Kobayashi for Computer-Assisted Uniqueness
Proof for Stokes’ Wave of Extreme Form, and

2016 Banhelyi, Csendes, Krisztin, and Neumaier for Global
attractivity of the zero solution for Wright’s equation (a
model in population genetics)

2018 Figueras, Haro, and Luque for Rigorous
Computer-Assisted Application of KAM Theory: A
Modern Approach

2018 (a notable runner-up) Jean-Pierre Merlet for Simulation
of discrete-time controlled cable-driven parallel robots on
a trajectory
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The R. E. Moore Prize for application of interval arithmetic
has been awarded to various researchers. See http:
//www.cs.utep.edu/interval-comp/honors.html.
Among these are:

2014 Kenta Kobayashi for Computer-Assisted Uniqueness
Proof for Stokes’ Wave of Extreme Form, and

2016 Banhelyi, Csendes, Krisztin, and Neumaier for Global
attractivity of the zero solution for Wright’s equation (a
model in population genetics)

2018 Figueras, Haro, and Luque for Rigorous
Computer-Assisted Application of KAM Theory: A
Modern Approach

2018 (a notable runner-up) Jean-Pierre Merlet for Simulation
of discrete-time controlled cable-driven parallel robots on
a trajectory
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Engineering Questions Rigorously Resolved
Physics and chemical engineering

These include:

1. Simple use of range bounds;
2. Incorporation of range bounds in exhaustive domain

searches (branch and bound algorithms) to enclose a
global optimum of a minimization problem;

3. Incorporation of range bounds to rigorously enclose
solution sets to differential equations in sophisticated
mathematically rigorous ODE integrators.

2. Stadtherr et al Correction of major errors in widely used
tables of vapor-liquid equilibria.

3. Berz et al Proof of stability of the beam, given assumed
tolerances on the geometry and magnets, of the
once-proposed superconducting supercollider (and the
software continues to be used for other cyclotrons).
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Engineering Questions Rigorously Resolved
Robotics

I Luc Jaulin et al have used interval constraint
propagation to increase both reliability and efficiency of
underwater robot control and data analysis in generating
maps. (Luc is the 2012 Moore Prize recipient.)

I (Earlier work continuing to the present) The forward
manipulator problem (computation of joint angles for a
particular robot hand location) is easily solved with
exhaustive search (branch and bound) to the
corresponding systems of nonlinear equations.

I Interval arithmetic can be used in collision avoidance.
In early work (1988) yours truly used Fortran-77-based
software to show the set of published solutions to a
manipulator problem posed by Alexander Morgan at
General Motors was incorrect. This led to discovery of
an incorrectly-given coefficient in the paper and to
improvement in the software in use at General Motors.
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Pitfalls
Where should interval arithmetic be used?

I Replacing floating point data types by intervals generally
does not work. Due to interval dependency, this
commonly results in output intervals of (∞,∞).

I Different algorithms are used for interval computations
Also, different algorithms are used, depending on
whether there are just small roundoff errors or large
uncertainties in the data.

I Rule of thumb: Use floating point computations where
verification is not needed, and use intervals only to
provide bounds in strategic places.

I Keep the interval computations as simple as possible.

The above considerations are how success is achieved.
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Pitfalls
Care should be taken in the logic.

Consider proving existence of a solution with the Brouwer
fixed point theorem.

I Example
Consider g(x) =

√
x − 1 + 0.9, with a fixed point at

x ≈ 1.0127 and x ≈ 1.7873.
• On x ∈ [1.5,2], an interval evaluation gives

g(x) ⊆ [1.6071,1.9001] ⊂ [1.5,2], and we correctly
conclude g has a fixed point in [1.6071,1.9001].
However, · · ·
• if x = [0,1],

√
x − 1 =

√
[−1,0] evaluates to [0,0], so

g(x) = [0.9,0.9] ⊂ x , for an incorrect conclusion.
I This is due to g not continuous on [0,1], combined with

loose evaluation (returning the range only over the
intersection of the domain of g with the interval).

I Loose evaluation is appropriate in other contexts.

20 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

20/27

Pitfalls
Care should be taken in the logic.

Consider proving existence of a solution with the Brouwer
fixed point theorem.

I Example
Consider g(x) =

√
x − 1 + 0.9, with a fixed point at

x ≈ 1.0127 and x ≈ 1.7873.

• On x ∈ [1.5,2], an interval evaluation gives
g(x) ⊆ [1.6071,1.9001] ⊂ [1.5,2], and we correctly
conclude g has a fixed point in [1.6071,1.9001].
However, · · ·
• if x = [0,1],

√
x − 1 =

√
[−1,0] evaluates to [0,0], so

g(x) = [0.9,0.9] ⊂ x , for an incorrect conclusion.
I This is due to g not continuous on [0,1], combined with

loose evaluation (returning the range only over the
intersection of the domain of g with the interval).

I Loose evaluation is appropriate in other contexts.

20 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

20/27

Pitfalls
Care should be taken in the logic.

Consider proving existence of a solution with the Brouwer
fixed point theorem.

I Example
Consider g(x) =

√
x − 1 + 0.9, with a fixed point at

x ≈ 1.0127 and x ≈ 1.7873.
• On x ∈ [1.5,2], an interval evaluation gives

g(x) ⊆ [1.6071,1.9001] ⊂ [1.5,2], and we correctly
conclude g has a fixed point in [1.6071,1.9001].
However, · · ·

• if x = [0,1],
√

x − 1 =
√
[−1,0] evaluates to [0,0], so

g(x) = [0.9,0.9] ⊂ x , for an incorrect conclusion.
I This is due to g not continuous on [0,1], combined with

loose evaluation (returning the range only over the
intersection of the domain of g with the interval).

I Loose evaluation is appropriate in other contexts.

20 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

20/27

Pitfalls
Care should be taken in the logic.

Consider proving existence of a solution with the Brouwer
fixed point theorem.

I Example
Consider g(x) =

√
x − 1 + 0.9, with a fixed point at

x ≈ 1.0127 and x ≈ 1.7873.
• On x ∈ [1.5,2], an interval evaluation gives

g(x) ⊆ [1.6071,1.9001] ⊂ [1.5,2], and we correctly
conclude g has a fixed point in [1.6071,1.9001].
However, · · ·
• if x = [0,1],

√
x − 1 =

√
[−1,0] evaluates to [0,0], so

g(x) = [0.9,0.9] ⊂ x , for an incorrect conclusion.

I This is due to g not continuous on [0,1], combined with
loose evaluation (returning the range only over the
intersection of the domain of g with the interval).

I Loose evaluation is appropriate in other contexts.

20 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

20/27

Pitfalls
Care should be taken in the logic.

Consider proving existence of a solution with the Brouwer
fixed point theorem.

I Example
Consider g(x) =

√
x − 1 + 0.9, with a fixed point at

x ≈ 1.0127 and x ≈ 1.7873.
• On x ∈ [1.5,2], an interval evaluation gives

g(x) ⊆ [1.6071,1.9001] ⊂ [1.5,2], and we correctly
conclude g has a fixed point in [1.6071,1.9001].
However, · · ·
• if x = [0,1],

√
x − 1 =

√
[−1,0] evaluates to [0,0], so

g(x) = [0.9,0.9] ⊂ x , for an incorrect conclusion.
I This is due to g not continuous on [0,1], combined with

loose evaluation (returning the range only over the
intersection of the domain of g with the interval).

I Loose evaluation is appropriate in other contexts.

20 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

20/27

Pitfalls
Care should be taken in the logic.

Consider proving existence of a solution with the Brouwer
fixed point theorem.

I Example
Consider g(x) =

√
x − 1 + 0.9, with a fixed point at

x ≈ 1.0127 and x ≈ 1.7873.
• On x ∈ [1.5,2], an interval evaluation gives

g(x) ⊆ [1.6071,1.9001] ⊂ [1.5,2], and we correctly
conclude g has a fixed point in [1.6071,1.9001].
However, · · ·
• if x = [0,1],

√
x − 1 =

√
[−1,0] evaluates to [0,0], so

g(x) = [0.9,0.9] ⊂ x , for an incorrect conclusion.
I This is due to g not continuous on [0,1], combined with

loose evaluation (returning the range only over the
intersection of the domain of g with the interval).

I Loose evaluation is appropriate in other contexts.

20 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

21/27

Taming Interval Dependency
Constraint Propagation, Subdivision

To reduce the overestimation in evaluating an interval
expression, we may

I Rearrange the expression(s) or systems of equations.
I Use constraint propagation (solving for variables or

subexpressions in terms of other variables with known
smaller uncertainties)

I Subdivide the intervals of uncertainty, compute interval
values over these subintervals, and form the union of
these interval values.

I Single out dependencies as separate variables.
I Use any of many techniques in the literature.
I Cleverly use properties of the specific problem.

21 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

21/27

Taming Interval Dependency
Constraint Propagation, Subdivision

To reduce the overestimation in evaluating an interval
expression, we may

I Rearrange the expression(s) or systems of equations.

I Use constraint propagation (solving for variables or
subexpressions in terms of other variables with known
smaller uncertainties)

I Subdivide the intervals of uncertainty, compute interval
values over these subintervals, and form the union of
these interval values.

I Single out dependencies as separate variables.
I Use any of many techniques in the literature.
I Cleverly use properties of the specific problem.

21 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

21/27

Taming Interval Dependency
Constraint Propagation, Subdivision

To reduce the overestimation in evaluating an interval
expression, we may

I Rearrange the expression(s) or systems of equations.
I Use constraint propagation (solving for variables or

subexpressions in terms of other variables with known
smaller uncertainties)

I Subdivide the intervals of uncertainty, compute interval
values over these subintervals, and form the union of
these interval values.

I Single out dependencies as separate variables.
I Use any of many techniques in the literature.
I Cleverly use properties of the specific problem.

21 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

21/27

Taming Interval Dependency
Constraint Propagation, Subdivision

To reduce the overestimation in evaluating an interval
expression, we may

I Rearrange the expression(s) or systems of equations.
I Use constraint propagation (solving for variables or

subexpressions in terms of other variables with known
smaller uncertainties)

I Subdivide the intervals of uncertainty, compute interval
values over these subintervals, and form the union of
these interval values.

I Single out dependencies as separate variables.
I Use any of many techniques in the literature.
I Cleverly use properties of the specific problem.

21 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

21/27

Taming Interval Dependency
Constraint Propagation, Subdivision

To reduce the overestimation in evaluating an interval
expression, we may

I Rearrange the expression(s) or systems of equations.
I Use constraint propagation (solving for variables or

subexpressions in terms of other variables with known
smaller uncertainties)

I Subdivide the intervals of uncertainty, compute interval
values over these subintervals, and form the union of
these interval values.

I Single out dependencies as separate variables.

I Use any of many techniques in the literature.
I Cleverly use properties of the specific problem.

21 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

21/27

Taming Interval Dependency
Constraint Propagation, Subdivision

To reduce the overestimation in evaluating an interval
expression, we may

I Rearrange the expression(s) or systems of equations.
I Use constraint propagation (solving for variables or

subexpressions in terms of other variables with known
smaller uncertainties)

I Subdivide the intervals of uncertainty, compute interval
values over these subintervals, and form the union of
these interval values.

I Single out dependencies as separate variables.
I Use any of many techniques in the literature.

I Cleverly use properties of the specific problem.

21 / 27



Interval
Arithmetic (IA)
Fundamentals

What is IA?

Variations

History
Early

Moore

Others

Underlying
Rationale

Successes
Famous Proofs

Engineering Verifications

Practical Pitfalls

Practical
Software
ODE Packages

Existence Verification

The IEEE Standard

conclusion

21/27

Taming Interval Dependency
Constraint Propagation, Subdivision

To reduce the overestimation in evaluating an interval
expression, we may

I Rearrange the expression(s) or systems of equations.
I Use constraint propagation (solving for variables or

subexpressions in terms of other variables with known
smaller uncertainties)

I Subdivide the intervals of uncertainty, compute interval
values over these subintervals, and form the union of
these interval values.

I Single out dependencies as separate variables.
I Use any of many techniques in the literature.
I Cleverly use properties of the specific problem.
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Available Software
Packages for Verified Solution of ODE Systems

I COSY-infinity, the cyclotron beam software by Berz and
Makino. This is the most successful software for
handling input data with wide intervals. However, the old
version is no longer distributed and the new version is
not yet publicly available. (C / C++ / Fortran)

I Codes from Mark Stadtherr et al: These have also been
successful for somewhat wider intervals, but not as
much as that of Berz and Makino. They are research
codes, not of “industrial strength." (C++)

I Other generally available codes: Some of these are
polished and packaged, but may be practical only for
narrow or point input data, to bound computational
errors. Two such packages are:

• VNODE-LP (Nedialkov et al, literate programming/C++),
• ValEncIA-IVP (Rauh, Hofer, Auer, C++, somewhat older)
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Existence Verification Packages
Usually part of larger libraries

(included in constraint propagation or global optimization packages)

I Two constraint propagation / global optimization
packages, from among many.

I IBEX, a C++ library for constraint propagation.
(extensively used by its developers in pattern recognition
and robotics).

I GlobSol, primarily a Fortran 90 library, with some C / C++
and a Matlab interface. (This is my work – it is somewhat
dated and not optimally efficient, but certainly available.)

I Some general toolboxes.

I INTLAB, a very popular Matlab toolbox for interval
computations.

I See IEEE-1788-compliant packages in the following.
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IEEE 1788-2015
Standard for Interval Arithmetic

I Defines basic interval arithmetic, specifying accuracy,
required elementary functions, etc.

I Defines an optional binding to the IEEE 754-2008
standard for floating point arithmetic.

I Specifies how extended interval arithmetic is handled,
from various special cases.

Example (The underlying set is R, not R.)[
1
2
,∞
)
← [2,3]

[0,4]
.

I Contains a decoration system for tracking continuity of
an expression, if extended interval arithmetic has been
used, etc. This can be viewed as a generalization of
IEEE 754 exception handling.
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IEEE 1788-2015 Standard
Implementations

Conforming

Gnu Octave (Matlab-like) by Oliver Heimlich.
See http://octave.sourceforge.net/interval/

JInterval (Java) by Dmitry Nadezhin and Sergei Zhilin.
See https://java.net/projects/jinterval

C++ by Marco Nehmeier (J. Wolff v. Gudenberg).
See https://github.com/nehmeier/libieeep1788

Conformance in Progress

ValidatedNumerics.jl (Julia) by David P. Sanders and
Luis Benet (UNAM)

See https:

//github.com/dpsanders/ValidatedNumerics.jl
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Interval Arithmetic Packages
Good non-conforming packages

I In many applications, full implementation of the IEEE
standard is not needed.

For example, in simple calculations, the decorations
(exception handling) and extended arithmetic would not
play a part.

I For efficiency, ease of implementation, or other reasons,
some packages are not totally conforming.
Siegfried Rump’s INTLAB is one widely-used such
package.
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Further Information

Feel free to contact me

I for details,
I for advice,
I for references,
I to tell me about your work.

See
interval.louisiana.edu/kearfott.html

Thank you!

Questions?
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