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Motivation

Advantage

Easy implementations, low computational cost, general formulation

Updating

Using observation this forecast is modified at each step

Ensemble-Based data assimilation

Uses an ensemble to model the statics of the first guess 
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Ensemble Kalman Filter
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Ensemble Kalman Filter
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Ensemble Kalman Filter
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De St Venant equations

4



Ensemble Kalman Filter
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Covariance Localization

Consequences

State variable may be incorrectly impacted by a remote observation

Causes

Approximation of the forecast covariance by the ensemble covariance

Spurious correlations 

Correlations between states not physically related.
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Covariance Localization

Where

Between  𝑷𝑡
𝑓

, and a correlation function with local support, 𝜌.

How

Applying a Schur product     𝐴 𝑜 𝐵 = 𝐴𝑖𝑗𝐵𝑖𝑗

Covariance localization 

Cutting off longer range correlations at a specified distance. 
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Covariance Localization

• The correlation function 𝜌 is commonly taken as defined in 
Gaspari and Cohn (1999), such that

Here 𝑧 is the Euclidean distance between either of the grid points in 
physical space. A length scale 𝑐 is defined such that beyond this the 
correlation reduces from 1 and at a distance of more than twice the 
correlation length scale the correlation reduces to zero.
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Covariance Localization
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Covariance Localization

In the EnKF the ensemble Kalman gain is given by

The forecast error covariance appears twice within this equation 
and strictly speaking the Schur product should be taken with each 
of these occurrences such that we have

Since 𝜌 is a covariance matrix and 𝑷𝑡
𝑓

is a covariance matrix then it 

can be proved that (𝜌 𝑜 𝑷𝑡
𝑓
) is also a covariance matrix 

(Horn,1990).
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Covariance Localization
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Covariance Localization
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Covariance Localization
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Covariance Localization
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Covariance Localization
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Covariance Localization
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Parameter Estimation

Include the parameters in the state vector

This new vector state is called augmented state. 

In the EnKF

Parameters only appears implicit in the model operator

Parameter Estimation

In applications, it is necessary estimate unknow parameters
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Parameter Estimation

𝒙𝑡 = 𝑴(𝒙𝑡−1, 𝜽)

where 𝜽 is the vector of unknown parameters. Since the parameters
are a source of uncertainty, we can model them as a stochastic
process Γ(𝜽). 

In this way, the EnKF is capable of estimating the augmented state
vector including the parameters.

𝒙𝑡
𝜽𝑡

=
𝑴(𝒙𝑡−1, 𝜽𝑡−1)

Γ(𝜽𝑡−1)
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Parameter Estimation
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Parameter Estimation

The emission of PM2.5 is considered as follows:

where 𝒆𝑡 is the default emissions (emission inventory), 𝜹𝒆 is the 
correction factor and ෝ𝒆𝑡 is the estimated emission. With this we 
augmented the state vector as:  

The factor 𝜹𝒆𝑡 is modeled as a colored noise process, forced by a    
white noise 𝒘𝑘 with a mean zero and a standard deviation of 30%. A 
time correlation of α = 0.95 ensures that the samples are smoothed 
in time

ෝ𝒆𝑡 = 𝒆𝑡(1 + 𝜹𝒆)

𝒙𝑡
𝜹𝒆𝑡

=
𝑴(𝒙𝑡−1, 𝜽𝑡−1)

α𝜹𝒆𝑡−1
+

𝟎

1 − α𝟐
𝒘𝑘
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Preliminary Results

Resolution of LE 0.01°x 0.01° ≈ 1 km x 1km

Emission Inventory EDGAR 4.0

EDGAR Inventory Resolution 0.1°x 0.1° ≈ 10 km x 10km

Species assimilated PM10 and PM2.5

Period of simulation April 1, 2016-April 12,2016
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Preliminary Results
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Preliminary Results

Background EnKF
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Preliminary Results
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Preliminary Results

Background Emissions PM2.5 EnKF Emissions PM2.5
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