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Objetive of the presentation

A diffusion kernel is a term coined by Laferty (2005) and it alludes to a
Mercer kernel (or classifier in the context of Machine Learning), this results
from solving the heat equation (diffusion equation) in the modeled manifold
in the data set that have a known distribution (multinomial, gaussian, q-
gaussian, etc.). In this short presentation the path that has been developed
to obtain a diffusion kernel will be shown with the hypothesis that the data
have a q-gaussian distribution with parameters (µ, σ).
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Figure 1: Ideas about the operation of SVM
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Concepts, notations and equations of interest

⋆ p(x , θ): Probability distribution for x a random variable in Ω y θ a
vector of parameters in R

n.
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Concepts, notations and equations of interest

⋆ p(x , θ): Probability distribution for x a random variable in Ω y θ a
vector of parameters in R

n.

⋆ ψ(θ): Potential function, it results from writing the distribution p(x , θ)
as p(x , θ) = exp(F (x) · θ − ψ(θ)) called exponential family, where
F (x) = (F1(x),F2(x) . . . ,Fn(x)) and θ = (θ1, θ2, . . . , θn).
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Concepts, notations and equations of interest

⋆ p(x , θ): Probability distribution for x a random variable in Ω y θ a
vector of parameters in R

n.

⋆ ψ(θ): Potential function, it results from writing the distribution p(x , θ)
as p(x , θ) = exp(F (x) · θ − ψ(θ)) called exponential family, where
F (x) = (F1(x),F2(x) . . . ,Fn(x)) and θ = (θ1, θ2, . . . , θn).

⋆ E [f (x)]: Expected value with respect to the distribution p for a
function f (x), is written

E [f (x)] =

∫

Ω

f (x)pdµ
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Concepts, notations and equations of interest

⋆ p(x , θ): Probability distribution for x a random variable in Ω y θ a
vector of parameters in R

n.

⋆ ψ(θ): Potential function, it results from writing the distribution p(x , θ)
as p(x , θ) = exp(F (x) · θ − ψ(θ)) called exponential family, where
F (x) = (F1(x),F2(x) . . . ,Fn(x)) and θ = (θ1, θ2, . . . , θn).

⋆ E [f (x)]: Expected value with respect to the distribution p for a
function f (x), is written

E [f (x)] =

∫

Ω

f (x)pdµ

⋆ ∂i f (x): Partial derivative of f (x) with respect to the i-th component
of the vector θ, is written

∂i f (x) =
∂f (x)

∂θi
.
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Concepts, notations and equations of interest

⋆ p(x , θ): Probability distribution for x a random variable in Ω y θ a
vector of parameters in R

n.

⋆ ψ(θ): Potential function, it results from writing the distribution p(x , θ)
as p(x , θ) = exp(F (x) · θ − ψ(θ)) called exponential family, where
F (x) = (F1(x),F2(x) . . . ,Fn(x)) and θ = (θ1, θ2, . . . , θn).

⋆ E [f (x)]: Expected value with respect to the distribution p for a
function f (x), is written

E [f (x)] =

∫

Ω

f (x)pdµ

⋆ ∂i f (x): Partial derivative of f (x) with respect to the i-th component
of the vector θ, is written

∂i f (x) =
∂f (x)

∂θi
.

⋆ ℓ = log p: Score function, logarithm of the probability distribution.
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Concepts, notations and equations of interest

⋆ gF
ij : Components of Fisher’s metric, defined as

gF
ij =

∫

Ω

(∂iℓ) (∂jℓ) pdµ .

Juan Carlos Arango Parra Diffusion Kernels on q-Gaussian Manifold



Concepts, notations and equations of interest

⋆ gF
ij : Components of Fisher’s metric, defined as

gF
ij =

∫

Ω

(∂iℓ) (∂jℓ) pdµ .

⋆ ∂f
∂t = ∆g f : Heat equation or diffusion equation where ∆ is the
operator Laplace - Beltrami defined in terms of the metric as

∆g f =
1

√

det g

∑

j

∂

∂xj

(
∑

i

g ij
√

det g
∂f

∂xi

)

,

g ij are the components of the inverse of the metric g = [gij ].
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Concepts, notations and equations of interest

⋆ gF
ij : Components of Fisher’s metric, defined as

gF
ij =

∫

Ω

(∂iℓ) (∂jℓ) pdµ .

⋆ ∂f
∂t = ∆g f : Heat equation or diffusion equation where ∆ is the
operator Laplace - Beltrami defined in terms of the metric as

∆g f =
1

√

det g

∑

j

∂

∂xj

(
∑

i

g ij
√

det g
∂f

∂xi

)

,

g ij are the components of the inverse of the metric g = [gij ].

⋆ Γij,k : Christofell symbols, defined as

Γij,k =

n∑

h=1

1

2
[∂igjh + ∂jgih − ∂hgij ] g

hk .
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Concepts, notations and equations of interest

⋆ R l
ijk : Components of the metric tensor, are calculated by means of the

expression

R l
ijk =

n∑

h=1

[
ΓhikΓ

l
jh − ΓhjkΓ

l
ih

]
+ ∂jΓ

l
ik − ∂iΓ

l
jk .
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Concepts, notations and equations of interest

⋆ R l
ijk : Components of the metric tensor, are calculated by means of the

expression

R l
ijk =

n∑

h=1

[
ΓhikΓ

l
jh − ΓhjkΓ

l
ih

]
+ ∂jΓ

l
ik − ∂iΓ

l
jk .

⋆ Geodesic curve: It is obtained by solving the system of homogeneous
second order differential equations

dθk

dt
+

n∑

i ,j=1

Γij,k
dθi

dt

dθj

dt

where each θi are the components of the parameter θ.
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Concepts, notations and equations of interest

⋆ R l
ijk : Components of the metric tensor, are calculated by means of the

expression

R l
ijk =

n∑

h=1

[
ΓhikΓ

l
jh − ΓhjkΓ

l
ih

]
+ ∂jΓ

l
ik − ∂iΓ

l
jk .

⋆ Geodesic curve: It is obtained by solving the system of homogeneous
second order differential equations

dθk

dt
+

n∑

i ,j=1

Γij,k
dθi

dt

dθj

dt

where each θi are the components of the parameter θ.

⋆ ρ: Geodesic distance, parametrizing the geodetic curve as γ(t), this
distance is

ρ =

∫ b

a

√

gγ (γ̇, γ̇)dt

where γ̇ is the derivate of γ with respect to t.
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Way to obtain a diffusion kernel

Lafferty and Lebanon propose in their article Diffusion Kernels on Statis-

tical Manifold (Laferty and Lebanon, 2005) the following way of work

Classification of Data (SVM)
Sigmoid
Polynomial
Linear
Gaussian

Data set Mercer Kernels
Classic look
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Way to obtain a diffusion kernel

Lafferty and Lebanon propose in their article Diffusion Kernels on Statis-

tical Manifold (Laferty and Lebanon, 2005) the following way of work

Classification of Data (SVM)
Sigmoid
Polynomial
Linear
Gaussian

Data set Mercer Kernels
Classic look

Geodesic distance
Geodesic curve

Curvature
Christofell symbols

Probability

distributions Heat Kernel

families

InformationFisher

Manifold

Heat Equation

Information metric or Difussion
New look

Juan Carlos Arango Parra Diffusion Kernels on q-Gaussian Manifold



Heat kernel by Grigor’yan and Noguchi

1 In the case of the Euclidean space R
n, the Heat Kernel is given by

Kt(x , y) =
1

(4πt)n/2
exp

(

−‖x − y‖2

4t

)

=
1

(4πt)n/2
exp

(

−d2(x , y)

4t

)

where ‖x − y‖2 is the square of the Euclidean distance (geodesic
distance) between points x and y .
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Heat kernel by Grigor’yan and Noguchi

1 In the case of the Euclidean space R
n, the Heat Kernel is given by

Kt(x , y) =
1

(4πt)n/2
exp

(

−‖x − y‖2

4t

)

=
1

(4πt)n/2
exp

(

−d2(x , y)

4t

)

where ‖x − y‖2 is the square of the Euclidean distance (geodesic
distance) between points x and y .

2 On the hyperbolic space H
n, the heat kernel is given by

Kt(x , x
′) =







(−1)m

(2π)m
1√
4πt

(

1
sinh ρ

∂
∂ρ

)m
exp

(

−m2t − ρ2

4t

)

If n = 2m + 1

(−1)m

(2π)m

√
2

√

(4πt)3

(

1
sinh ρ

∂
∂ρ

)m
∫∞

ρ

s exp

(

−
(2m+1)2t

4 − s2

4t

)

√

cosh s−cosh ρ
ds If n = 2m + 2

where ρ = d(x , x ′) is the geodesic distance between the two points
in the plane H

n. If n = 2 (m = 0 in the second case) then

Kt(x , x
′) =

√
2

(4πt)
3
2

exp
(

− t

4

)∫ ∞

ρ

s exp
(

− s2

4t

)

√

cosh s − cosh ρ
ds .
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Tsallis entropy

In the context of non-extensive statistical mechanics, Constantino Tsallis
(in 1988) defines entropy relative to q as

Sq =
1

1 − q

(
∑

i

p
q
i − 1

)

=
1

1 − q
(hq − 1)

where
∑

i

p(xi ) =
∑

i

pi = 1, q is a fixed value less than 3 called entropy

index and hq is the functional hq = E [pq] (E [·] it can be summation or
integral) that allows defining an expected value relative to q. So, if q → 1
the Shannon entropy

S = −
∑

i

p (xi ) log p (xi )

used in classical statistical mechanics is obtained.
The description makes sense when defining a pair of inverse functions
one of the other, called q-exponential and q-logarithm that generalize the
exponential and the logarithm, recovering these when q tends to 1.
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The q-exponential function

The q-exponential function is defined as

expq(x) = [1 + (1 − q)x ]
1

1−q

+

for −∞ < q < 3. The derivative for a fixed q value is

d

dx
expq(x) =

[
expq(x)

]q
.
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The q-exponential function

The q-exponential function is defined as

expq(x) = [1 + (1 − q)x ]
1

1−q

+

for −∞ < q < 3. The derivative for a fixed q value is

d

dx
expq(x) =

[
expq(x)

]q
.

q = 0

q = −0.5

q = −1

q = −3

Figure 2: expq(x) for q < 0
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Graphs for the function q-exponential

q = 0q = 1
2 q = 1

3q = 9
10

Figure 3: expq(x) for 0 < q < 1
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Graphs for the function q-exponential

q = 0q = 2

q = 3

q = 3
2

Figure 4: expq(x) for 1 < q < 3
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The q-logarithm function

The inverse of the q-exponential function, the q-logarithm, is given by

lnq x =
x1−q − 1

1 − q

provided that x > 0. The graph for some values of q is presented below,
as well as its derivative for q fixed.
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The q-logarithm function

The inverse of the q-exponential function, the q-logarithm, is given by

lnq x =
x1−q − 1

1 − q

provided that x > 0. The graph for some values of q is presented below,
as well as its derivative for q fixed.

d
dx
[logq(x)] =

1

xq

q = 0.5

q = 1/3

q = 0.9

q = 2

q = 1.5

q = 1.3

Figure 5: lnq(x) for 0 < q < 3
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q-Gaussian Distribution

The q-gaussian distribution has density function

pq(x , θ) =
1

Zq,σ
expq

(

− (x − µ)2

(3 − q)σ2

)

=
1

Zq,σ

[

1 − (1 − q)

(3 − q)

(x − µ)2

σ2

] 1
1−q

where θ = (µ, σ) are the parameters on which the manifold of information
is defined, Zq,σ is the normalization constant that depends on q, is written
as Zq,σ = Aqσ.

Juan Carlos Arango Parra Diffusion Kernels on q-Gaussian Manifold



q-Gaussian Distribution

The q-gaussian distribution has density function

pq(x , θ) =
1

Zq,σ
expq

(

− (x − µ)2

(3 − q)σ2

)

=
1

Zq,σ

[

1 − (1 − q)

(3 − q)

(x − µ)2

σ2

] 1
1−q

where θ = (µ, σ) are the parameters on which the manifold of information
is defined, Zq,σ is the normalization constant that depends on q, is written
as Zq,σ = Aqσ.

Figure 6: q-gaussian distribution
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Normalization constant

The normalization constant is obtained by satisfying the expression

∫ ∞

−∞
f (x)dx = 1 or Zq,σ =

∫ ∞

−∞

[

1 − (1 − q)

(3 − q)

(x − µ)2

σ2

] 1
1−q

dx .
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Normalization constant

The normalization constant is obtained by satisfying the expression

∫ ∞

−∞
f (x)dx = 1 or Zq,σ =

∫ ∞

−∞

[

1 − (1 − q)

(3 − q)

(x − µ)2

σ2

] 1
1−q

dx .

By means of a variable change, the constant Aq is defined in terms of the
Beta function (or the Gamma function) for some values of q

1 Aq =
√

3−q
1−q

B
(

2−q
1−q

, 1

2

)

if −∞ < q < 1. In this situation the

admissible domain for x is
[

− σ√
1−q

, σ√
1−q

]

.

2 Aq =
√

2π if q = 1.

3 Aq =
√

3−q
q−1

B
(

3−q
2(q−1) ,

1

2

)

if 1 < q < 3. The domain for x are all

real numbers.
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Particular cases

1 Gaussian distribution (q = 1).

2 Cauchy distribution (q = 2).

3 t-Students distribution (q = 1 + 2

n+1
with n ∈ N).

4 Uniform distribution (q → −∞).

5 Wigner semicircle distribution (q = −1).
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The q-gaussian distribution belong an exponential family

According to the definition of the function q-logarithm applied to the
q-gaussian distribution it is possible to write

logq pq =
1

1 − q

((
1

Zq,σ
expq

(

− (x − µ)2

(3 − q)σ2

))1−q

− 1

)

,



The q-gaussian distribution belong an exponential family

According to the definition of the function q-logarithm applied to the
q-gaussian distribution it is possible to write

logq pq =
1

1 − q

((
1

Zq,σ
expq

(

− (x − µ)2

(3 − q)σ2

))1−q

− 1

)

,

=
Z q−1
q,σ

3 − q

2µ

σ2

︸ ︷︷ ︸

θ1

x
︸︷︷︸

F1(x)

+
Z q−1
q,σ

3 − q

1

σ2

︸ ︷︷ ︸

θ2

(−x2)
︸ ︷︷ ︸

F2(x)

−
[

Z q−1
q,σ

3 − q

µ2

σ2
− logq

(
1

Zq,σ

)]

︸ ︷︷ ︸

ψq(µ,σ)

,

= θ1F1(x) + θ2F2(x)− ψq(µ, σ) .
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The q-gaussian distribution belong an exponential family

According to the definition of the function q-logarithm applied to the
q-gaussian distribution it is possible to write

logq pq =
1

1 − q

((
1

Zq,σ
expq

(

− (x − µ)2

(3 − q)σ2

))1−q

− 1

)

,

=
Z q−1
q,σ

3 − q

2µ

σ2

︸ ︷︷ ︸

θ1

x
︸︷︷︸

F1(x)

+
Z q−1
q,σ

3 − q

1

σ2

︸ ︷︷ ︸

θ2

(−x2)
︸ ︷︷ ︸

F2(x)

−
[

Z q−1
q,σ

3 − q

µ2

σ2
− logq

(
1

Zq,σ

)]

︸ ︷︷ ︸

ψq(µ,σ)

,

= θ1F1(x) + θ2F2(x)− ψq(µ, σ) .

Then the q-gaussian distribution is an element in the family q-exponential
with parameters and function q-potential

θ1 =
Z q−1
q,σ

3 − q

2µ

σ2
, θ2 = −

Z q−1
q,σ

3 − q

1

σ2
,

ψq(θ1, θ2) = − θ2
1

4θ2
− logq

[

(−dq θ2)
1

3−q

]

, with dq =
3 − q

A2
q

.
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Fisher’s metrics and its representations

On the manifold defined by the q-gaussian distribution, it is possible to
define two metrics. To do this, Amari (2009) defines the functional Ωq for
a probability distribution p as

Ωq,p =

∫

Ω

pqdµ ,
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Fisher’s metrics and its representations

On the manifold defined by the q-gaussian distribution, it is possible to
define two metrics. To do this, Amari (2009) defines the functional Ωq for
a probability distribution p as

Ωq,p =

∫

Ω

pqdµ ,

it allows to define a probability distribution q-relative

p̂q =
1

Ωp,q
pq where

∫

Ω

p̂dµ = 1 .
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Fisher’s metrics and its representations

On the manifold defined by the q-gaussian distribution, it is possible to
define two metrics. To do this, Amari (2009) defines the functional Ωq for
a probability distribution p as

Ωq,p =

∫

Ω

pqdµ ,

it allows to define a probability distribution q-relative

p̂q =
1

Ωp,q
pq where

∫

Ω

p̂dµ = 1 .

along with the q-expectation

E [f (x)] =

∫

Ω

f (x)p̂qdµ =
1

Ωq,p

∫

Ω

f (x)pqdµ .

For the q-gaussian distribution the relation is fulfilled (Tanaya, 2011)

Ωq,p =
3 − q

2
Z 1−q
q,p =

3 − q

2
A1−q
q σ1−q .

Juan Carlos Arango Parra Diffusion Kernels on q-Gaussian Manifold



Fisher’s metrics and its representations

One of the metrics defined in the manifold is the usual Fisher gF
ij induced

by the Score function ℓ = log pq and the other is the q-Fisher’s metric
defined by Amari (2009) and what can be written about the distribution
p̂ as

g
(q)
ij = Ep̂

[
(∂iℓq) (∂jℓq) qp

q−1
]
=

q

Ωq,p

∫

Ω

(∂iℓq) (∂jℓq) p
2q−1dµ .

where ℓq = logq pq .
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Fisher’s metrics and its representations

One of the metrics defined in the manifold is the usual Fisher gF
ij induced

by the Score function ℓ = log pq and the other is the q-Fisher’s metric
defined by Amari (2009) and what can be written about the distribution
p̂ as

g
(q)
ij = Ep̂

[
(∂iℓq) (∂jℓq) qp

q−1
]
=

q

Ωq,p

∫

Ω

(∂iℓq) (∂jℓq) p
2q−1dµ .

where ℓq = logq pq . The two metrics are related by means of equality
(Amari 2009)

g
(q)
ij =

q

Ωq,p
gF
ij .
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Fisher’s metrics and its representations

One of the metrics defined in the manifold is the usual Fisher gF
ij induced

by the Score function ℓ = log pq and the other is the q-Fisher’s metric
defined by Amari (2009) and what can be written about the distribution
p̂ as

g
(q)
ij = Ep̂

[
(∂iℓq) (∂jℓq) qp

q−1
]
=

q

Ωq,p

∫

Ω

(∂iℓq) (∂jℓq) p
2q−1dµ .

where ℓq = logq pq . The two metrics are related by means of equality
(Amari 2009)

g
(q)
ij =

q

Ωq,p
gF
ij .

It is also shown that Fisher’s q-metric is of the form

g
(q)
ij = ∂i∂jψq

which induces a Hessian manifold. Deriving the function q-potential in
terms of parameters θ1 and θ2 we get the matrix g (q) and by a change of

coordinates it is possible to obtain a matrix diagonal g
(q)
∗ .
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q-Fisher’s metrics and its matrix representations

ψq(θ1, θ2) = − θ2
1

4θ2
− logq

[

(−dq θ2)
1

3−q

]

Coordinates (θ1, θ2) Coordinates (µ, σ)

g (q) =





−1

2θ2
θ1
2θ2

2

θ1
2θ2

2
− θ2

1
2θ3

2
+ 1

3−q

Ω−1
q,θ2
θ2
2



 g
(q)
∗ =

[
Ω−1

q,σ

σ2 0

0
(3−q)Ω−1

q,σ

σ2

]

det
(
g (q)

)
= 1

2(3−q)

Ω−1
q,θ2

(−θ2)3
det
(

g
(q)
∗

)

=
(3−q)Ωq,σ

σ4

[
g (q)

]−1

=
[

(3 − q)Ωθ
2
1 − 2θ2 (3 − q)Ωθ1θ2

(3 − q)Ωθ1θ2 (3 − q)Ωθ2
2

] [

g
(q)
∗

]−1

=

[
Ωσ

2 0

0 Ωσ2

3−q

]
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Fisher’s metrics and its matrix representations

ψq(θ1, θ2) = − θ2
1

4θ2
− logq

[

(−dq θ2)
1

3−q

]

gF
ij =

Ωq,p

q
g
(q)
ij

Coordinates (θ1, θ2) Coordinates (µ, σ)

gF =

[ −Ω
2qθ2

Ωθ1
2qθ2

2

Ωθ1
2qθ2

2
− Ωθ2

1

2qθ3
2
+ 1

q(3−q)
1

θ2
2

]

gF
∗ =

[
1

qσ2 0

0 3−q
qσ2

]

det
(
g (q)

)
= 1

2q2(3−q)
Ω

(−θ2)3
det
(
gF
∗

)
= 3−q

q2σ4

[
gF
]−1

=

[

(3 − q)qθ2
1 −

2qθ2
Ω

(3 − q)qθ1θ2

(3 − q)qθ1θ2 (3 − q)qθ2
2

]
[
gF
∗

]−1
=

[
qσ2 0

0
q

3−q
σ

2

]
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Christoffel symbols and curvature

Deriving the components of the matrix gF
∗ regarding the parameters (µ, σ),

it is possible to obtain the Christoffel symbols as summarized in continua-
tion

Derivadas de las componentes de la métrica

∂1g
F
11

= 0 ∂1g
F
12

= 0 ∂1g
F
21

= 0 ∂1g
F
22

= 0

∂2g
F
11

= − 2

qσ3 ∂2g
F
12

= 0 ∂2g
F
21

= 0 ∂2g
F
22

= − 2(3−q)
qσ3
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Christoffel symbols and curvature

Deriving the components of the matrix gF
∗ regarding the parameters (µ, σ),

it is possible to obtain the Christoffel symbols as summarized in continua-
tion

Derivadas de las componentes de la métrica

∂1g
F
11

= 0 ∂1g
F
12

= 0 ∂1g
F
21

= 0 ∂1g
F
22

= 0

∂2g
F
11

= − 2

qσ3 ∂2g
F
12

= 0 ∂2g
F
21

= 0 ∂2g
F
22

= − 2(3−q)
qσ3

Christoffel symbols

ΓF
11,1 = 0 ΓF

11,2 = 1

(3−q)σ ΓF
12,1 = − 1

σ ΓF
12,2 = 0

ΓF
21,1 = − 1

σ ΓF
21,2 = 0 ΓF

22,1 = 0 ΓF
22,2 = − 1

σ
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Christoffel symbols and curvature

Deriving the components of the matrix gF
∗ regarding the parameters (µ, σ),

it is possible to obtain the Christoffel symbols as summarized in continua-
tion

Derivadas de las componentes de la métrica

∂1g
F
11

= 0 ∂1g
F
12

= 0 ∂1g
F
21

= 0 ∂1g
F
22

= 0

∂2g
F
11

= − 2

qσ3 ∂2g
F
12

= 0 ∂2g
F
21

= 0 ∂2g
F
22

= − 2(3−q)
qσ3

Christoffel symbols

ΓF
11,1 = 0 ΓF

11,2 = 1

(3−q)σ ΓF
12,1 = − 1

σ ΓF
12,2 = 0

ΓF
21,1 = − 1

σ ΓF
21,2 = 0 ΓF

22,1 = 0 ΓF
22,2 = − 1

σ

Metric Tensor

R1
212

= 1

σ2 R2
212

= 0 R1212 = g11R
1
212

= − 1

qσ4

Curvature and Geometry

k = R1212

det(gF
∗
)
= − q

3−q
< 0 Negative constant curvature (hyperbolic space)
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Geodesic curves

Assuming that the coordinates (µ, σ) can be parametric depending on t

and with the Christoffel symbols previously found, it is possible to define a
system of homogeneous second order differential equations that describes
the geodesic curves for the hyperbolic manifold generated by the q-gaussian
distribution

d2µ

dt2
− 2

σ

dµ

dt

dσ

dt
= 0

d2σ

dt2
+

1

(3 − q)σ

(
dµ

dt

)2

− 1

σ

(
dσ

dt

)2

= 0 .
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Geodesic curves

Assuming that the coordinates (µ, σ) can be parametric depending on t

and with the Christoffel symbols previously found, it is possible to define a
system of homogeneous second order differential equations that describes
the geodesic curves for the hyperbolic manifold generated by the q-gaussian
distribution

d2µ

dt2
− 2

σ

dµ

dt

dσ

dt
= 0

d2σ

dt2
+

1

(3 − q)σ

(
dµ

dt

)2

− 1

σ

(
dσ

dt

)2

= 0 .

With the substitution w = dµ
dσ it is possible to show that the curve that

solves this system is
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Geodesic curves

Assuming that the coordinates (µ, σ) can be parametric depending on t

and with the Christoffel symbols previously found, it is possible to define a
system of homogeneous second order differential equations that describes
the geodesic curves for the hyperbolic manifold generated by the q-gaussian
distribution

d2µ

dt2
− 2

σ

dµ

dt

dσ

dt
= 0

d2σ

dt2
+

1

(3 − q)σ

(
dµ

dt

)2

− 1

σ

(
dσ

dt

)2

= 0 .

With the substitution w = dµ
dσ it is possible to show that the curve that

solves this system is

(µ− h)2 + (3 − q)σ2 =
3 − q

k2

where h and k are constants that possibly depend on q. This curve is
an ellipse with center in (h, 0), that is, on the axis µ. If q = 2 (Cauchy
distribution) the curves are circumferences of radio 1

k
.
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Further works

⋆ Find the geodesic distance for a q-gaussiana distribution for any
1 < q < 3.

⋆ The Box-Muller method is applicable for q-gaussian distribution
(Thistleton, 2007) generating random data with this distribution.

⋆ Program in Python these diffusion kernels for the manifold generated
by the q-gaussian distribution.

⋆ Define appropriate Christoffel symbols for the q-metric that allow me
to find the curvature for the system (µ, σ) and that is in accordance
with the result k = 5−3q

(q−3)2(2q−3) (Matsuzoe, 2014).

⋆ Study another way to find distances by means of the heat equation
(Keenan, 2013).
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