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Objective

Review the algorithms available in the literature and determining a
strategy to solve numerically epidemiological models based on
ODEs where both the parameters and initial conditions are closed
real intervals as a strategy to deal with the uncertainty of these.
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Uncertainty

Uncertainty is present in any process of measuring and obtaining
information that is required to explain a real phenomenon. In
many sciences it is possible to conduct experiments to obtain
information and test hypotheses. Experiments with the spread of
infectious diseases in human populations are often impossible,
unethical or expensive (Hethcote, 2009).



Causes of uncertainty

Lack of information

Conflict evidence

Ambiguity

Measurement

Belief



Uncertainty in epidemiological models

Uncertainty in 
dengue cases  
reported 

Uncertainty in  
experimental data 



Ross-McDonald model
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How has the uncertainty been considered in
epidemiological models?

Probability theory

In (Luz et al. 2003) assumed that parameters as duration of
infectious period in humans, biting rate, mosquito to human
transmission and human to mosquito transmission follows a
uniform distribution, while the extrinsic incubation period
follows a triangular distribution, this information was obtained
from several works that conducted experiments with different
vector populations.

In (Britton and Lindenstrand, 2009) it is assumed that latent
and infection periods are random and independent with the
gamma distribution.



How has the uncertainty been considered in
epidemiological models?

Fuzzy theory

In (Barros et al. 2001) an SIS model was formulated

dS

dt
= −βSI + γI

dI

dt
= βSI − γI

where β, and γ are given by functions that depend on the amount
of virus, v .

β(v) =


1, if vM < v ≤ vmax ,
v−vmin
vM−vmin

, if vmin < v ≤ vM

0, otherwise.

, γ(v) = (γ0−1)
vmax

v + 1



Motivation of interval arithmetic

The notion of irrational number entails some process of
approximation from above and below. Archimedes (287-212
BCE) was able to bracket π by taking a circle and considering
inscribed and circumscribed polygons (Moore and Lodwick,
2003).

The purpose of interval analysis is to provide upper and lower
bounds on the effect all errors and uncertainties have on
computed quantity (Hansen and Walster, 2003).

Interval analysis began as a tool for bounding rounding errors.



Some history of interval analysis
Ramon E. Moore conceived interval arithmetic in 1957, while an
employee of Lockheed Missiles and Space Co. Inc., as an approach
to bound rounding errors in mathematical computation (Hijazi et
al. 2008).



Applications of interval analysis

Practical application areas include chemical and structural
engineering, economics, control circuitry design, beam
physics, global optimization, constraint satisfaction, asteroid
orbits, robotics, signal processing, computer graphics, and
behavioral ecology (Moore and Lodwick, 2003).

Interval analysis has been used in rigorous computer-assisted
proofs, for example, Hales’ proof on the Kepler conjecture.

An interval Newton method has been developed for solving
systems of nonlinear equations.

Interval methods can bound the solutions of linear systems
with inexact data.

There are rigorous interval branch-and-bound methods for
global optimization.



Interval arithmetic
The set of intervals on the real line R is defined by

I = {X = [x , x ] | x , x ∈ R, x ≤ x }. (1)

Observations

We say an interval X is degenerate if x = x .

If x = −x then X is symmetric.

Two intervals X and Y are equal if x = y and x = y .



Let [X ] = [ x , x ]. We define the following quantities for intervals:

Width: w(X ) = x − x

Magnitude: |X | = max{|x |, |x |}
Midpoint: m(X ) = 1

2 (x + x)

0 x xm(X)

w(X)

|X|



Interval-arithmetic operations

Let X = [x , x ] and Y = [y , y ]

1 X + Y = [x + y , x + y ]

2 −X = [−x ,−x ]

3 X − Y = X + (−Y ) = [x − y , x − y ]

4 X · Y = [min{S},max{S}], where S = {xy , xy , xy , xy}

5 1/Y = [1/y , 1/y ], 0 /∈ Y

6 X/Y = X · 1/Y = {x/y | x ∈ X , y ∈ Y }, 0 /∈ Y .



Examples

Consider X = [−2, 1], Y = [1, 3] and Z = [2, 5]

1 X + Y = [−2 + 1, 1 + 3] = [−1, 4]

2 −Y = [−3,−1]

3 X − Y = [−2, 1] + [−3,−1] = [−5, 0]

4 X · Y = [−6, 3], where S = {−2,−6, 1, 3}

5 1/Z =
[

1
5 ,

1
2

]
6 Y /Z = Y · 1/Z = [ 1

5 ,
3
2 ], where S = {1

5 ,
3
5 ,

1
2 ,

3
2}



Properties of interval-arithmetic operations

Commutativity and asociativity of the sum operation and
multiplication.

Identity element of the sum [0, 0] y [1, 1] for multiplication.

There is no inverse elements for both operations.

Subdistributy property, X (Y + Z ) ⊆ XY + XZ



Interval vectors and matrices

An interval vector is a vector with interval components. An
interval matrix is a matrix with interval components. Let be
A ∈ In×n an interval matrix with elements Aij .

Matrix norm: ||A|| = max
i

∑
j
|Aij |.

Width: w(A) = max
i , j

w(Aij).

Midpoint: (m(A))ij = m(Aij).



Hausdorff metric

Let X , Y ∈ Rn. Then the Hausdorff metric between X and Y is
defined by

dH(X , Y ) = max

{
sup
x∈X

inf
y∈Y
||x − y ||, sup

y∈Y
inf
x∈X
||x − y ||

}

where || · || is a norm in Rn.

If X = [x , x ], and Y = [y , y ] the distance between two intervals is
given by

dH(X ,Y ) = max{|x − y |, |x − y |} (2)

Finally, if X , Y ∈ In are two interval vectors, the distance is given
by

dH(X ,Y ) = max
1≤i≤n

{ dH(Xi ,Yi ) } (3)



Interval-valued function

Given a function f = f (x1, . . . , xn) of several variables, we will wish
to find the image set

f (X1, . . . ,Xn) = {f (x1, . . . , xn) | x1 ∈ X1, . . . , xn ∈ Xn},

where X1, . . . ,Xn are specified intervals.

Definition
We say that F is an interval extension of f , if an interval-valued
function F of n interval variables X1, . . . ,Xn such that for real
arguments x1, . . . , xn we have

F (x1, . . . , xn) = f (x1, . . . , xn)



Interval-valued function

Definition
We say that F = F (X1, . . . ,Xn) is inclusion isotonic if

Yi ⊆ Xi for i = 1, . . . , n then F (Y1, . . . ,Yn) ⊆ F (X1, . . .Xn). (4)

Theorem
If F is an inclusion isotonic interval extension of f , then

f (X1, . . . ,Xn) ⊆ F (X1, . . . ,Xn) (5)



Integration

Definition
We define the interval integral∫

[a,b]
F (t)dt =

[∫
[a,b]

F (t)dt,

∫
[a,b]

F (t)dt,

]

where F (t) = [F (t), F (t) ].

Inclusion property

IfF (t) ⊆ G (t) for all t ∈ [a, b], then,

∫
[a,b]

F (t)dt ⊆
∫

[a,b]
G (t)dt.



Inverse Problem

Estimates of  
model parameters 
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µ = ?

� = ?

� = ?

The optimization problem that we want to solve is given by

min
P∈Ik

dH(xi (t; P), Di (t))

s.t ẋ(t) = F (x(t),P, t), t ∈ [t0,T ]

x(t0) = X0

where P is the interval parameter vector, X0 is the interval vector
of initial conditions, and Di is the interval of data observed.
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Forward Problem

Estimates of  
model parameters 
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Obtain a solution of the system of equations given by

dx

dt
= f(t; x; p), x(t0) = x0, (6)

where x = (x1, . . . , xn) ∈ In is the vector of n variables,
p = (p1, . . . , pk) ∈ Ik is the vector of k parameters,
x0 = (x10 , . . . , xn0) is the vector of initial conditions, f is an
interval-valued vectorial function, and t represents the time.
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Taylor coefficients

The ith Taylor coefficient of u(t) evaluated at some point tj is
given by

(uj)i =
u(i)(tj)

i !
(7)

where u(i)(t) is the ith derivative of u(t). Consider the
autonomous differential system

y ′(t) = f (y), y(tj) = yj (8)

The Taylor coefficients of y(t) at tj satisfy

(yj)0 = yj ,

(yj)1 = f [1](yj) = f (yj),

(yj)i =
1

i

(
∂f [i−1]

∂y
f

)
(yj) for i ≥ 2



Taylor coefficients

In this way, the approximation of degree N by Taylor series for the
function y(t) is given by:

y(t) =
N−1∑
i=0

(y)i (t − t0)i + RN([ t0 , t ]) (9)

where RN([ t0 , t ]) = (y)N(s)(t − t0)N for all s ∈ [ t0 , t ].



Taylor coefficients

If we consider the initial value problem given by an interval, Yj

y ′(t) = f (y), y(tj) = yj ∈ Yj

Taylor coefficients would be given by:

(Yj)0 = Yj

(Yj)1 = f [1](Yj) = f (Yj)

(Yj)i = f [i ](Yj) =
1

i

(
∂f (i−1)

∂y
f

)
(Yj) for i ≥ 2

and therefore we could construct (9) for functions defined in I.



ODEs and Initial Value Problem
Consider the integral equation

y(t) = y0 +

∫ t

0
f (s, y(s))ds (10)

which is formally equivalent to the initial value problem for the
ODE

y ′(t) = f (t, y(t))

y(0) = y0
(11)

We define an operator p(y)(t) = y0 +
∫ t

0 f (s, y(s))ds. Let the
interval operator P : M → M be defined on class M of interval
enclosures of operator p.



ODEs and Initial Value Problem

Theorem
If P is an inclusion isotonic interval of p, and if P(Y (0)) ⊆ Y (0),
then the sequence defined by

Y (k+1) = P(Y (k)), (k = 0, 1, 2, . . . ) (12)

has the following properties

(1) Y (k+1) ⊆ Y (k), k = 0, 1, 2, . . .

(2) For every a ≤ t ≤ b, the limit

Y (t) =
∞⋂
k=0

Y (k)(t) (13)

exists as an interval Y (t) ⊆ Y (k)(t), k = 0, 1, 2, . . . .



ODEs and Initial Value Problem

(3) Any solution of (10) which is in Y (0) is also in Y (k) for all k
and in Y as well. That is, if y(t) ∈ Y (0)(t) for all a ≤ t ≤ b,
then y(t) ∈ Y (k)(t) for all k and all a ≤ t ≤ b.

(4) If there is a real number c such that 0 ≤ c < 1, for which
X ⊆ Y(0) implies

sup
t

w(P(X )(t)) ≤ c sup
t

w(X (t)), a ≤ t ≤ b. (14)

for every X ∈ M, then (10) has the unique solution Y (t) in
Y (0) given by (13).



ODEs and Initial Value Problem
In (Nedialkov, Jackson, and Corliss, 1999) is considered the
problem

y ′(t) = f (y)

y(t0) ∈ Y0
(15)

where t ∈ [t0,T ]. We consider a grid t0 < t1 < · · · < tm = T , and
denote the stepsize from tj to tj+1 by hj . We denote a solution
of (15) with an initial condition yj at tj by y(t; tj , yj). In most of
methods to solve this problem, each integration step consists of
two phases:

Validating existence and uniqueness.

Computing a tighter enclosure



ODEs and Initial Value Problem
In (Lin and Stadtherr, 2007) for the system

y ′1 = θ1y1(1− y2), y1(0) = 1.2, θ1 ∈ 3 + [−0.01, 0.01],

y ′2 = θ2y2(y1 − 1), y2(0) = 1.1, θ2 ∈ 1 + [−0.01, 0.01],



On the other hand, seeking to provide the space I for a richer
structure in (Hukuhara, 1967), the following definition of the
difference between intervals was formulated.

Definition
Let X ,Y ∈ I such that X = [ x , x ] and Y = [ y , y ]. If
x − y ≤ x − y , then the Hukuhara difference exists and is given by

Z = X 	 Y = [x − y , x − y ].

If we consider the space I with Hukuhara’s difference, we would
have the additive inverses for each interval, however this difference
does not exist if the condition x − y ≤ x − y is not satisfy.



Definition
(Stefanini and Bede, 2009; Stefanini, 2010) Let X ,Y ∈ I such that
X = [ x , x ] and Y = [ y , y ] be two intervals; the gHdifference is

[ x , x ]	g [ y , y ] = [ z , z ]⇐⇒


(i)

{
x = y + z ,

x = y + z

or (ii)

{
y = x − z ,

y = x − z ,

so that [ x , x ]	g [ y , y ] = [ z , z ] is always defined by

c = min{x − y , x − y}, c = max{x − y , x − y},

i.e.

[ a, b ]	g [ c , d ] = [ min{a− c , b − d},max{a− c , b − d} ]



In (Stefanini and Bede, 2009) is considered the problem

y ′ = f (x , y), y(x0) = y0

where f : [a, b]× I → I, with f (x , y) = [f (x , y), f (x , y)] for
y ∈ I, i.e y = [y , y ], and y0 = [y0, y0].



Theorem
The interval differential equation (36) is equivalent to the integral
equation

y(x)	g y0 =

∫ x

x0

f (t, y(t))dt

on some interval [x0, x0 + δ].



Conclusions

The analysis interval theory has taken boom for the handling
of uncertainty.

Several methodologies have been developed to solve
differential equations where the initial conditions are defined
as an interval. However, there are not many developments
about how to solve systems of equations where both the
parameters and the initial conditions belong to the space of
the intervals.
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