Seminar 4 of the PhD in Mathematical Engineering

Adjoint free variational data assimilation and model order reduce techniques

Student
Andrés Yarce Botero

Advisors
Nicolás Pinel, Olga Lucía Quintero, Arnold W. Heemink

12/10/18

Inspire Create Transform

Outline

- Motivation
- Introduction
- Model order reduction
- Adjoint free data assimilation techniques
- References

Inspire Create Transform

1

Motivation

¿Can we reduce the cost of data assimilation in the context of atmospheric chemical transport simulation without degrading the results?
¿How can one avoid or minimize the problem of not having an adjoint model for a highly non linear, large scale model?

Introduction

 $+\mu\left(\frac{\partial^{2} v_{y}}{\partial x^{2}}+\frac{\partial^{2} v_{y}}{\partial y^{2}}+\frac{\partial^{2} v_{y}}{\partial z^{2}}\right)+\rho g_{v}$ $\left.\frac{\partial v_{z}}{\partial z}\right)=-\frac{\partial p}{\partial z}$$$
\left.+\frac{\partial^{2} v_{z}}{\partial y^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right)+\rho g_{z}
$$

Modeling the atmosphere

Introduction

Many modern mathematical models of real-life processes pose challenges when used in numerical simulations, due to their complexity and large size (dimension)

Introduction

Chemical

 Transport Model (CTM)

Inspire Create Transform

UNIVERSIDAD

Introduction

$$
\begin{gathered}
\frac{\partial C_{1}}{\partial t}=-\nabla \cdot\left(\boldsymbol{u} . \boldsymbol{C}_{\mathbf{1}}\right)+\frac{\partial}{\partial \boldsymbol{v}}\left(K_{v} \frac{\partial C_{1}}{\partial v}\right)+E+R+Q-D-W \\
\cdot \\
\frac{\partial C_{n}}{\partial t}=-\nabla \cdot\left(\boldsymbol{u} . C_{n}\right)+\frac{\partial}{\partial v}\left(K_{v} \frac{\partial C_{n}}{\partial v}\right)+E+R+Q-D-W
\end{gathered}
$$

State space formulation

$$
\mathbf{X}^{\mathrm{f}}\left(\mathrm{t}_{\mathrm{i}+1}\right)=\mathcal{M}\left[\boldsymbol{X}^{f}\left(t_{i}, \alpha\right)\right] \quad \begin{gathered}
\boldsymbol{X} \in \mathbb{R}^{\boldsymbol{n}} \\
\mathcal{M}\left[\boldsymbol{X}^{f}\left(t_{i}, \alpha\right)\right]: \mathbb{R}^{n} \Rightarrow \mathbb{R}^{n}
\end{gathered}
$$

LOTOS-EUROS model

Introduction

Atmosferic grid cell

Remember: ¿What is data assimilation?

Remember: ¿What is data assimilation?

Remember: ¿What is data assimilation?

Variational Data Assimilation

$$
\mathcal{J}\left(\boldsymbol{x}_{0}\right)=\frac{1}{2}\left\|x_{0}-\boldsymbol{x}_{b}\right\|_{\boldsymbol{B}}^{2}+\frac{1}{2}\|H(\boldsymbol{x})-y\|_{\boldsymbol{R}}^{2}
$$

```
3D-Var
```

Distance to forecast Distance to observations

$$
\mathcal{J}\left(\boldsymbol{x}_{0}\right)=\frac{1}{2}\left(\boldsymbol{x}_{0}-\boldsymbol{x}_{b}\right)^{T} \boldsymbol{B}^{-1}\left(\boldsymbol{x}_{0}-\boldsymbol{x}_{b}\right)+\frac{1}{2}\left(H\left(\boldsymbol{x}_{0}\right)-\boldsymbol{y}_{0}\right)^{T} \boldsymbol{R}^{-1}\left(\mathcal{H}\left(\boldsymbol{x}_{0}\right)-\boldsymbol{y}_{0}\right)
$$

Variational Data Assimilation

Strongly constrained $\mathcal{J}\left(\boldsymbol{x}_{0}\right)=\frac{1}{2}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}_{b}\right\|_{\boldsymbol{B}}^{2}+\frac{1}{2} \sum_{\substack{s=0 \\ \text { Distance to background } \\ \text { Distance to observations } \\ \\ \boldsymbol{R}}}^{s}$

$$
\mathcal{J}\left(x_{o}\right)=\frac{1}{2}\left[\left(\boldsymbol{x}_{0}-\boldsymbol{x}_{b}\right)^{T} \boldsymbol{B}^{-1}\left(\boldsymbol{x}_{0}-\boldsymbol{x}_{b}\right)+\sum_{i=0}^{s}\left(\mathcal{H}\left(\boldsymbol{x}_{i}\right)-\boldsymbol{y}_{i}\right)^{T} \boldsymbol{R}^{-1}\left(\mathcal{H}\left(\boldsymbol{x}_{i}\right)-\boldsymbol{y}_{i}\right)\right]
$$

Weakly constrained

$$
\begin{gathered}
\mathcal{J}\left(\boldsymbol{x}_{0}\right)=\frac{1}{2}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}_{b}\right\|_{\boldsymbol{B}}^{2}+\frac{1}{2} \sum_{i=0}^{s}\left\|\mathcal{H} M_{i}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)-\boldsymbol{y}_{i}\right\|+\frac{1}{2} \sum_{i=0}^{s}\left\|\boldsymbol{x}-\boldsymbol{x}_{\boldsymbol{k}}\right\|_{\boldsymbol{P}}^{2} \\
\mathcal{J}\left(x_{o}\right)=\frac{1}{2}\left(\boldsymbol{x}_{0}-\boldsymbol{x}_{b}\right)^{T} \boldsymbol{B}^{-1}\left(\boldsymbol{x}_{0}-\boldsymbol{x}_{b}\right)+\sum_{i=0}^{S}\left(\mathcal{H}\left(\boldsymbol{x}_{i}\right)-\boldsymbol{y}_{i}\right)^{T} \boldsymbol{R}^{-1}\left(\mathcal{H}\left(\boldsymbol{x}_{i}\right)-\boldsymbol{y}_{i}\right)+ \\
\sum_{i=0}\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)^{T} \boldsymbol{P}^{-1}\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right)
\end{gathered}
$$

UNIVERSIDAD

Variational Data Assimilation

$$
\begin{gathered}
x_{k}=\mathcal{M} x_{k-1} y_{k}=\mathcal{H} x_{s}+v_{s} \quad v_{s} \sim N(0, \boldsymbol{R}) \\
\mathcal{J}\left(\boldsymbol{x}_{0}\right)=\frac{1}{2}\left(\mathcal{H} x_{s}-y_{s}\right)^{T} \boldsymbol{R}^{-1}\left(\mathcal{H} x_{s}-y_{s}\right) \\
x_{1}=\mathcal{M} x_{0} \longrightarrow x_{2}=\mathcal{M} x_{1}=\mathcal{M} \mathcal{M} x_{1} \ldots \quad x_{s}=\mathcal{M} x_{s-1}=\mathcal{M}^{s} x_{0} \\
\mathcal{J}\left(x_{0}\right)=\frac{1}{2}\left(\mathcal{H} \mathcal{M}^{s} x_{0}-y_{s}\right)^{T} \boldsymbol{R}^{-1}\left(\mathcal{H} \mathcal{M}^{s} x_{0}-y_{s}\right) \\
\delta \mathcal{J}=-\left(\mathcal{H} \mathcal{M}^{s} x_{0}-y_{0}\right)^{T} \boldsymbol{R}^{-1} \mathcal{H} \frac{\partial \mathcal{M}^{s}}{\partial x} \delta x_{0}
\end{gathered}
$$

Variational Data Assimilation

$$
\delta \mathcal{J}=\left\langle\mathcal{H}^{T} \boldsymbol{R}^{-1}\left(\mathcal{H} \mathcal{M}^{s} x_{0}-y_{0}\right)^{T}, \frac{\partial \mathcal{M}^{s}}{\partial x} \delta x_{0}\right\rangle
$$

The adjoint trick

$$
\begin{aligned}
& \delta \mathcal{J}\left(\boldsymbol{x}_{0}\right)=\left\langle\left[\frac{\partial \mathcal{M}^{s}}{\partial x}\right]^{T} \mathcal{H}^{T} \boldsymbol{R}^{-1}\left(\mathcal{H} \mathcal{M}^{s} x_{0}-y_{0}\right)^{T}, \delta x_{0}\right\rangle \\
& \delta \mathcal{J}\left(\boldsymbol{x}_{0}\right)=\left\langle\nabla_{\delta\left(x_{0}\right)} \mathcal{J}, \delta \boldsymbol{x}_{0}\right\rangle \\
& \nabla_{\delta\left(\boldsymbol{x}_{0}\right) \mathcal{J}}=\left[\frac{\partial \mathcal{M}^{s}}{\partial x}\right]^{T} \mathcal{H}^{T} \boldsymbol{R}^{-1}\left(\mathcal{H} \mathcal{M}^{s} x_{0}-y_{0}\right)^{T}
\end{aligned}
$$

Variational Data Assimilation

$$
\nabla_{\delta\left(x_{0}\right)} \mathcal{J}=\left[\frac{\partial \mathcal{M}}{\partial p}\right]^{T} \mathcal{H}^{T} \boldsymbol{R}^{-1}\left(\mathcal{H} \mathcal{M}^{s} x_{0}-y_{0}\right)^{T}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{1}}{\partial x_{3}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{3}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\frac{\partial f_{3}}{\partial x_{1}} & \frac{\partial f_{3}}{\partial x_{2}} & \frac{\partial f_{3}}{\partial x_{3}} & \cdots & \frac{\partial f_{3}}{\partial x_{n}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \frac{\partial f_{n}}{\partial x_{3}} & \cdots & \frac{\partial f_{n}}{\partial x_{2}}
\end{array}\right] \begin{array}{l}
\text { Low scalability adjoint } \\
\text { (Changes in the resolution) } \\
\text { Difficult to mantain if there } \\
\text { is change in the model } \\
\text { The minimization requires } \\
\text { repeated sequential runs of } \\
\text { a low resolution linear } \\
\text { model and its adjoint }
\end{array}} \\
& \text { Atmospheric Chemical Transport Model: High-dimensional numerical model } \sim \sim \mathbf{1 0}^{\mathbf{6}}-\mathbf{1 0}^{\mathbf{8}} \text { states }
\end{aligned}
$$

¿Can we reduce the cost of data assimilation in the context of atmospheric chemical transport simulation without degrading the results?

Model Order Reduction

By a reduction of the model state space dimension, an approximation to the original model is computed which is commonly referred to as reduced order model

Model Order Reduction

Vector and matrix sizes

$$
\begin{aligned}
\mathbf{X}^{\mathrm{f}}\left(\mathrm{t}_{\mathrm{i}+1}\right) & =\mathcal{M}\left[\mathbf{X}^{f}\left(t_{i}, \alpha\right)\right] & {[\mathrm{X}]=n } & {[B]=n \times n \quad[M]=\mathrm{n} \times n } \\
\mathbf{Y}\left(t_{i}\right) & =\mathcal{H} \mathbf{X}^{f}\left(t_{i}\right) & {[\mathrm{Y}]=m } & {[\mathcal{H}]=\mathrm{m} \times n }
\end{aligned}
$$

For some applications, n and m are large $10^{6}-10^{8} \Rightarrow$ impossible to store/compute/multiply/inverse data assimilation matrices B and H and M

Possible solution: rank reduction method

Model Order Reduction

Rank reduction (Square root decomposition)

A symmetric definite matrix B can be decomposed into $S S^{T}$ where S is a $n \times n$
choosing only a small number r of significative columns $\longrightarrow \mathbf{S}_{r}$ with size $n \times r$

$$
\text { Set } B_{r}=S_{r} S_{r}^{T} \text { with } B_{r} \approx B
$$

Inspire Create Transform

Model Order Reduction

Singular Value Decomposition (SVD)

For any $m \times \mathrm{n}$ matrix A we can factor it into:

$$
A=U \sum V^{T}
$$

$U=m \times n$ ortogonal matrix
$V=n \times n$ ortogonal matrix
$\Sigma=m \times n$ diagonal matrix with $\sum_{\{i, j\}}=\sigma_{i} \geq 0$
$\sigma_{i}^{\prime} s$ are ordered $\sigma_{i} \geq \sigma_{\{i+1\}}$ for $i=1 \ldots n$

Model Order Reduction

Model Order Reduction

Model Order Reduction

Number of singular values used:1

Model Order Reduction

$\alpha \in D$

α_{1}
D

Snapshots of the forward model

Model Order Reduction

$$
\alpha \in D
$$

$$
\begin{array}{cc}
\alpha_{1} & \alpha_{2}
\end{array}
$$

\square

Snapshots of the forward model

Model Order Reduction

$$
\alpha \in D
$$

Snapshots of the forward model

Collection of snapshots of the state

Model Order Reduction

Usually SVD is calculated for $\boldsymbol{S}=\left[\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right]$ or also the following eigenvector problem is solved

$$
\boldsymbol{S}^{T} \boldsymbol{S} \boldsymbol{V}_{i}=\lambda_{\mathrm{i}} \mathbf{V}_{\mathrm{i}}
$$

Where \boldsymbol{V}_{i} and λ_{i} are the ith eigenvector and eigenvalue respectively and the corresponding basis \boldsymbol{P} can be obtained applying:

$$
\begin{gathered}
P_{i}=S V \lambda_{i}^{1 / 2} \\
\widehat{\bar{X}}\left(t_{i}\right)=X^{b}\left(t_{i}\right)+P R\left(t_{i}\right)
\end{gathered}
$$

(Vermeulen P, et al. (2005).)

Inspire Create Transform

¿How can avoid or minimize the problem of not having an adjoint model for a highly non linear, large scale model?

Incremental 4D var

- Incremental DA (Courtier, 1994) : deals with perturbation made to known reference states

Is based in the preconditioning technique of the matrix \mathbf{B}

$$
\mathbf{B}=\mathbf{U} \mathbf{U}^{\mathbf{T}}
$$

Where \mathbf{U} is knowing as the preconditioning matrix

$$
\begin{gathered}
x_{a}=x_{b}+U w \\
w=\delta x
\end{gathered}
$$

Incremental 4D var

The cost function in control variable space becomes

$$
\begin{gathered}
\boldsymbol{J}(w)=\frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w}+\frac{1}{2} \sum_{i=0}^{s}\left(\boldsymbol{H M U} \boldsymbol{w}+\boldsymbol{d}_{i}\right)^{T} \boldsymbol{R}^{-1}\left(\boldsymbol{H} \boldsymbol{M} \boldsymbol{U} \boldsymbol{w}+\boldsymbol{d}_{i}\right) \\
\nabla_{\boldsymbol{w}} \mathcal{J}=\boldsymbol{w}+\sum_{i=0}^{s} \mathbf{U}^{T} \mathbf{M}^{T} \mathbf{H}^{T} \mathbf{R}^{-1}\left(\mathbf{H M U w}+\mathbf{d}_{i}\right) \\
\boldsymbol{d}_{\boldsymbol{i}}=\boldsymbol{H} M\left(\boldsymbol{x}_{\boldsymbol{b}}\right)-\boldsymbol{y}_{\boldsymbol{i}}
\end{gathered}
$$

Incremental 4D var

Adjoint-free data assimilation techniques

4D EnVar

Simple idea \longrightarrow linear combination of ensemble members

One ensemble member vector

$$
\mathbf{x}_{\mathrm{b}}^{\prime}=\frac{1}{\sqrt{\mathrm{~N}-1}}\left(\mathbf{x}_{\mathrm{b} 1}-\overline{\mathbf{x}_{\mathrm{b}}}, \mathbf{x}_{\mathrm{b} 2}-\overline{\mathbf{x}_{\mathrm{b}}}, \ldots, \mathbf{x}_{\mathrm{bN}}-\overline{\mathbf{x}_{\mathrm{b}}}\right)
$$

N ensemble number
\mathbf{x} state vector
b denotes background

Adjoint-free data assimilation techniques

4D EnVar

The background error covariance calculated approximately as

$$
\mathbf{B} \approx \mathbf{X}_{b}^{\prime} \mathbf{X}_{b}^{\prime T}
$$

From the analisys step in the EnKF we had

$$
\begin{gathered}
\boldsymbol{x}_{\boldsymbol{a}}=\boldsymbol{x}_{\boldsymbol{b}}+\boldsymbol{B} \boldsymbol{H}^{\boldsymbol{T}}\left(\boldsymbol{H} \boldsymbol{B} \boldsymbol{H}^{\boldsymbol{T}}+\boldsymbol{R}\right)^{-1}\left(\boldsymbol{y}-H \boldsymbol{x}_{\boldsymbol{b}}\right) \\
\mathbf{B} \mathbf{H}^{T} \approx \mathbf{X}_{b}^{\prime} \mathbf{X}_{b}^{\prime T} \mathbf{H}^{t}=\mathbf{X}_{b}^{\prime}\left(\mathbf{H} \mathbf{X}_{b}^{\prime}\right)^{T} \\
\mathbf{H B} \mathbf{H}^{T} \approx \mathbf{H X}_{b}^{\prime}\left(\mathbf{H} \mathbf{X}_{b}^{\prime}\right)^{T} \\
\mathbf{H} \mathbf{X}_{b}^{\prime}=\frac{1}{\sqrt{N-1}}\left(H \boldsymbol{x}_{b 1}-H \overline{\boldsymbol{x}_{b}}, H \boldsymbol{x}_{b 2}-H \overline{\boldsymbol{x}_{b}}, \ldots, H \boldsymbol{x}_{b N}-H \overline{\boldsymbol{x}_{b}}\right)
\end{gathered}
$$

Adjoint-free data assimilation techniques

$$
\mathcal{J}(w)=\frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w}+\frac{1}{2} \sum_{i=0}^{s}\left(\mathbf{H M X} X_{\mathrm{b}} \boldsymbol{w}+\boldsymbol{d}_{i}\right)^{T} \boldsymbol{R}^{-1}\left(\mathbf{H M X} \mathbf{b}_{\mathrm{b}} \boldsymbol{w}+\boldsymbol{d}_{i}\right)
$$

$$
\nabla_{\boldsymbol{w}} \mathcal{J}=\boldsymbol{w}+\sum_{i=0}^{s}(\underbrace{\mathbf{H} \mathbf{M} \mathbf{X}_{\mathrm{b}}^{\prime}})^{T} \mathbf{R}^{-1}\left(\mathbf{H M X} \mathbf{b}_{\mathrm{b}}^{\prime} \mathbf{w}+\mathbf{d}_{i}\right)
$$

> NO ADJOINT MODEL NEEDED

References

Bannister. (2017). Review article. A review operational methods of variational and ensemble-variational data assimilation. Journal Royal Meteorological Society.

Courtier P, et al. (1994). A strategy for operational implementation of 4DVar using an incremental approach. Journal Royal Meteorological Society.

Liu C, et al. (2007). An Ensemble based four-dimensional Variational Data Assimilation Scheme. Part I: Technical formulation and preliminary test. American Meteorological Society.

Oke, T., Mills, G., Christen, A., \& Voogt, J. (2017). Air Pollution. In Urban Climates (pp. 294-331). Cambridge: Cambridge University Press. doi:10.1017/9781139016476.012

Vermeulen P, et al. (2005). Model-reduced variational data assimilation. Monthly weather review.

EOS-AURA satéllite
wavelength range $=270$ to 500 nm
spectral resolution 0.5 nm

UNIVERSIDAD

Satellite data acquisition and preprocessing

Crop and Apply Kernel transformation

Initial comparison with the model

Procedure to apply the sensitivity kernel transformation to $\mathrm{OMI} \mathrm{NO}_{2}$ concentration

Satellite data acquisition and preprocessing

Concentration mapped from OMI to LE grid

$$
f_{\{i, j\}}=\frac{\operatorname{Area}\left(\mathrm{P}_{\mathrm{i}} \cap C_{j}\right)}{\operatorname{Area}\left(C_{j}\right)} \quad \longrightarrow \sum_{i=1}^{4} f_{\{i, j\}} * \operatorname{Conc}_{\{i\}}
$$

Methodology to map the traces of the satellite information to the LE model GRID
(Kim et al. 2016)

UNIVERSIDAD

Satellite data acquisition and preprocessing January

1 e 15 molecules/cm2
\square
$\square .0$
\square
\square
\square

0.3
1.0
1.3
1.6
2.0
2.3
\square
\square
\square

OMI NO2 Concentration mapped to LE Grid

Satellite data acquisition and preprocessing

UNIVERSIDAD

Satellite data acquisition and preprocessing

Final product OMI to LE grid (complete 2016)

UNIVERSIDAD

Future

Inspire Create Transform

