Inspira Crea Transforma

The International Spring School on Integrated Operational Problems: What a PhD student can learn

Juan David Palacio Domínguez PhD student on Mathematical Engineering - EAFIT

Doctoral Seminar on Mathematical Engineering - August 3, 2018

Inspira Crea Transforma

Outline

- What is the International Spring School on Integrated Operational Problems – ISSIOP?
- About Troyes in France
- Research and lectures at the ISSIOP
- My schedule at the ISSIOP
- Personal experience and acknowledgements

Inspira Crea Transforma

What is the ISSIOP?

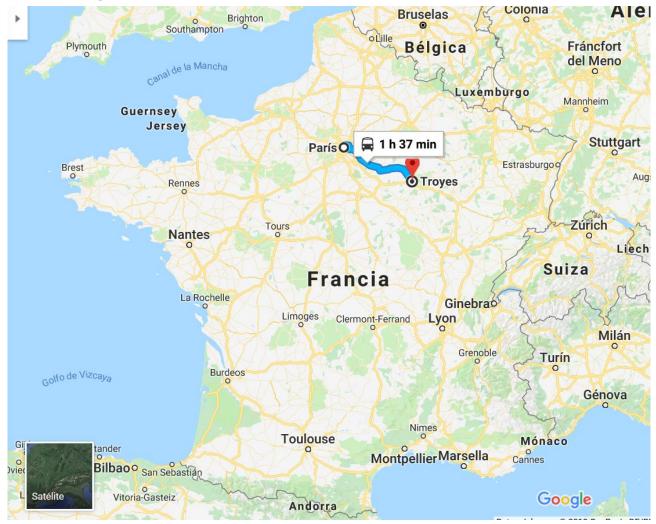
It is the fourth edition of the GdR RO Young Researchers School, organized in collaboration with 4 working groups (GT2L, GT Bermuda, GT Meta, GT OSI)

In 2018 the school takes an international dimension: all the courses are made by scientists from several countries (Spain, Belgium, France).

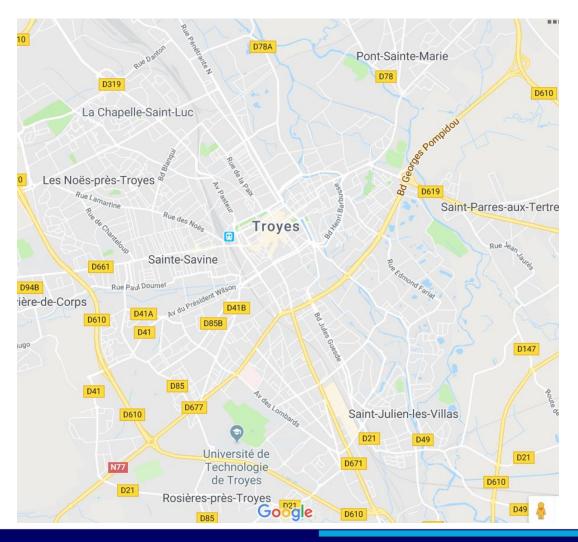
Inspira Crea Transforma

What is the ISSIOP?

EU/ME METAHEURISTICS



Inspira Crea Transforma


About Troyes in France

Inspira Crea Transforma

About Troyes in France

Inspira Crea Transforma

About Troyes in France

Inspira Crea Transforma

Research and lectures at ISSIOP

Ch. Prins UTT

J. Billaut Université F. Rabelais (Tours)

A. Corberán Universidad de Valencia

D. Feillet Marc Sevaux E. Mines Saint-Etienne Université de Bretagne-Sud

Kenneth Sörensen Univ. Antwerpen

Inspira Crea Transforma

Research and lectures at ISSIOP

- 1. Split algorithms Ch. Prins
- 2. Column generation D. Feillet
- 3. Integrated scheduling and routing J. Billaut
- 4. Introduction to web services M. Sevaux
- 5. Optimization of Smart grids E.G. Talbi
- 6. Internet of things L. Merghem-Boulahia
- 7. The trustfull promises of block chain Ph. Entzman
- 8. Constraint programming E. Hebrard
- 9. Linear programming for routing A. Corberán
- 10. Last advances in metaheuristics K. Sörensen

My schedule at ISSIOP

Lectures

Projects

Split algorithms

Column generation

Integrated scheduling and routing

Constraint programming

Linear programming for routing

Last advances in metaheuristics

Column generation Integrated scheduling and routing

Inspira Crea Transforma

Column generation lecture

Vehicle Routing Problem with Time Windows (VRPTW)

Column generation algorithm

Implementation remarks

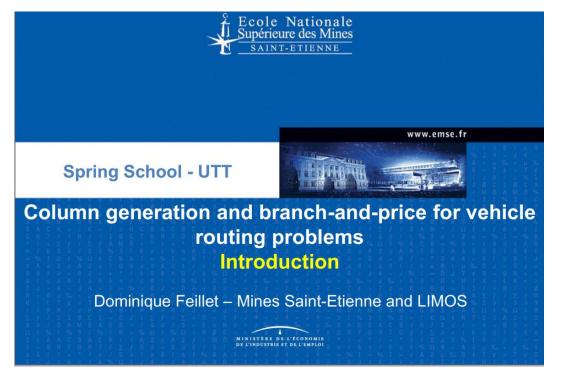


Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

Inspira Crea Transforma

Column generation lecture

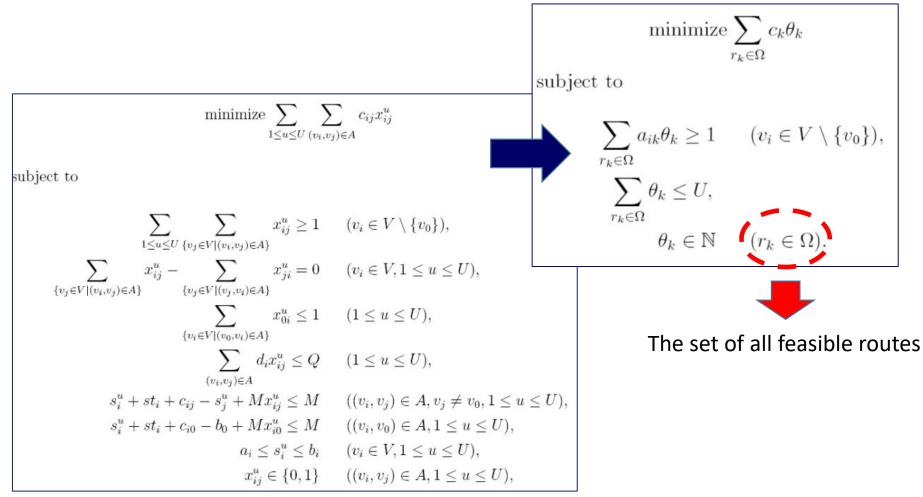


Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

Inspira Crea Transforma

Column generation lecture

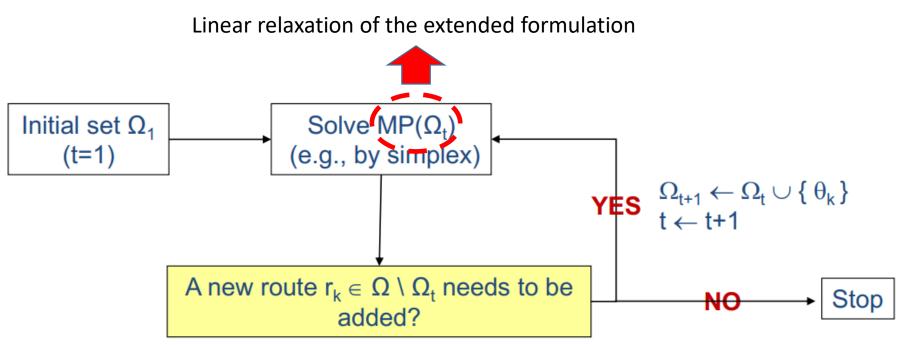


Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

Inspira Crea Transforma

Integrated scheduling and routing lecture

Basics on scheduling and routing

Integrated problem

GLPK (for a MILP implementation)

Python (for a metaheuristic implementation)

Lecture Integrated Scheduling and Routing

Jean-Charles BILLAUT – University of Tours

International Spring School on Integrated Operational Problems Troyes 14-16 May 2018

Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

Inspira Crea Transforma

Integrated scheduling and routing lecture

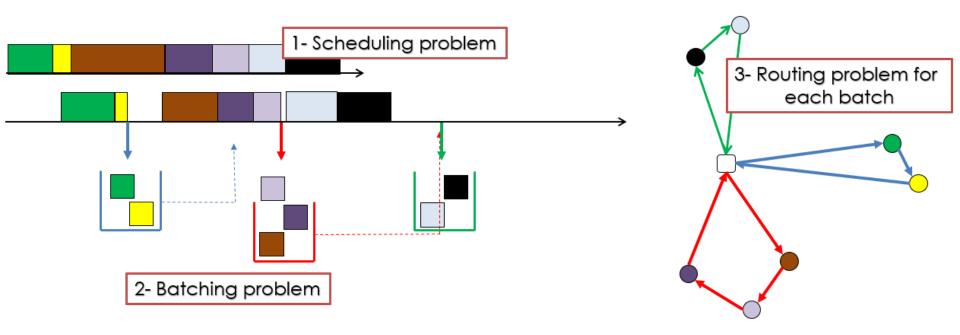


Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

Inspira Crea Transforma

Integrated scheduling and routing lecture

```
_____________________________
# scheduling
s.t. contr Ck 1 {i in 0..m-1, j1 in 0..n-1, j2 in 0..n-1:j1!=j2}:
# if j1 precedes j2
C[i,j2] >= C[i,j1] + p[i,j2] - BigM*(1-y[j1,j2]);
                                                                   implementation for the
                                                          MILP
s.t. contr Ck 2 {j1 in 0..n-1, j2 in 0..n-1:j1!=j2}:
# j1 before j2 or j2 before j1
                                                          scheduling part using GLKP
y[j1,j2]+y[j2,j1]=1;
s.t. contr Ck 2b {i in 1..m-1, j in 0..n-1}:
# "routing" constraint
                                         # Data
C[i,j] >= C[i-1,j] + p[i,j];
                                         #_____
                                         param n;
s.t. contr Ck 2a {j in 0..n-1}:
                                         param m;
                                         param p {i in 0..m-1, j in 0..n-1};
# first job
                                         param d {j in 0..n-1};
C[0,i] >= p[0,i];
                                         param BigM:=sum{i in 0..m-1, j in 0..n-1} p[i,j];
s.t. def TjM {j in 0...n-1}:
                                         # Variables
                                         # tardiness expression
                                         var y {j1 in 0..n-1, j2 in 0..n-1}, binary; \#= 1 if j1 < j2
Ti[i] >= C[m-1,i] - d[i];
                                         var C {i in 0..m-1, j in 0..n-1}, >= 0; # completion time of job j
                                         var Tj \{j \text{ in } 0..n-1\}, >= 0; \# \text{ tardiness of job } j
end;
                                         minimize Obj: sum{j in 0..n-1} Tj[j];
```


Integrated scheduling and routing lecture

```
def InsertTabu(voisinage, indi, indj):
    ElemTabu=[voisinage,indi,indj]
    if len(TabuList) == TabuSize:
        del(TabuList[0])
    TabuList.append (ElemTabu)
```

```
def NotTabu(voisinage, indi, indj):
    ElemTabu=[voisinage,indi,indj]
    notTabu = True
    if(ElemTabu in TabuList):
        notTabu = False
    return (notTabu)
```

```
Parameters
```

```
nbjobs=len(pp)
INFINI = 999999999
TabuList=[]
TabuSize = 7
TIME LIMIT = nbjobs * m / 4
DELTA = nbjobs/2 # is used to limit the swaps
FLAG SWAP BOTH = 1
FLAG SWAP SEQ = 1
FLAG SWAP BATCH = 1
FLAG 20PT = 0
```

```
______
 Neighborhood
 _____
def swap both(i,j,sol):
   # the sequence sol is modified by a swap both in the sequence and in the batches
   #_____
                              _______
   #print('before swap seq:',i,j,sol)
   job i = sol[0][i]
   job 1 = [job i]
   job j = sol[0][j]
   job 2 = [job j]
   sol[0]=sol[0][0:i]+job 2+sol[0][i+1:j]+job 1+sol[0][j+1:nbjobs]
   u=0
```


Inspira Crea Transforma

Split algorithms lecture

Route-first cluster-second methods

Basic splitting procedure

Applications to heuristics and metaheuristics.

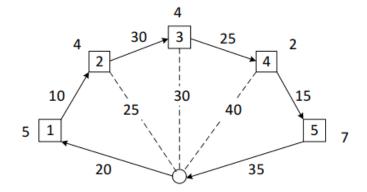
Tour splitting algorithms for vehicle routing problems

Prof. Christian PRINS christian.prins@utt.fr

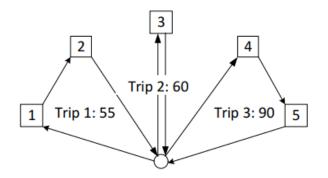
Institute Charles Delaunay (ICD) – UTT 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex, France

Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

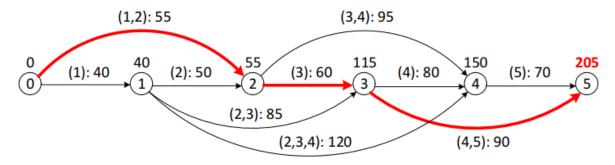
Inspira Crea Transforma


Vigilada Mineducación

stitut Charles Delaunay



CINIS


Split algorithms lecture

1. Giant tour *T* = (1, 2, 3, 4, 5) with demands

3. Optimal splitting, cost 205

2. Auxiliary graph H of possible trips for Q = 10 – Shortest path in bold

Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

Inspira Crea Transforma

Lp-based methods for routing problems lecture

Polyhedral combinatorics applied to:

Lp-based methods for solving routing problems

- TSP
- OARP
- Close –enough ARP

Ángel Corberán

Universitat de València, Spain

Spring School on Integrated Operational Problems May 14-16, Troyes, France

Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

Inspira Crea Transforma

Lp-based methods for routing problems lecture

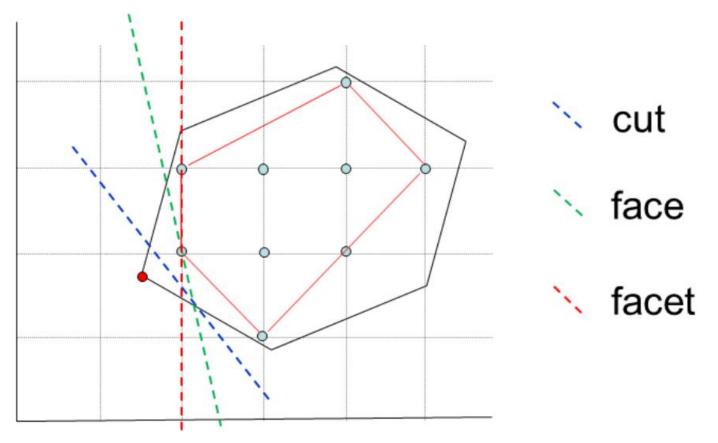


Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

Inspira Crea Transforma

Last advances in metaheuristics lecture

Complementary local search operators

Properties of good solutions

Solution metrics

Designing a heuristic the modern way

Or: how to solve very large vehicle routing problems

Kenneth Sörensen Florian Arnold kenneth.sorensen@uantwerpen.be
florian.arnold@uantwerpen.be

International Spring School on Integrated Operational Problems -Troyes - 14-16 may 2018

Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

Inspira Crea Transforma

Last advances in metaheuristics lecture

State of the art

- Use as many local search (constructive) operators as possible
- Either VNS or LNS
- Fit in a metaheuristic framework
 - This is your Unique Selling Point
 - But it really does not matter all that much
- Beware of "Frankenstein" algorithms

Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

Inspira Crea Transforma

Last advances in metaheuristics lecture

Comparison to other algorithms

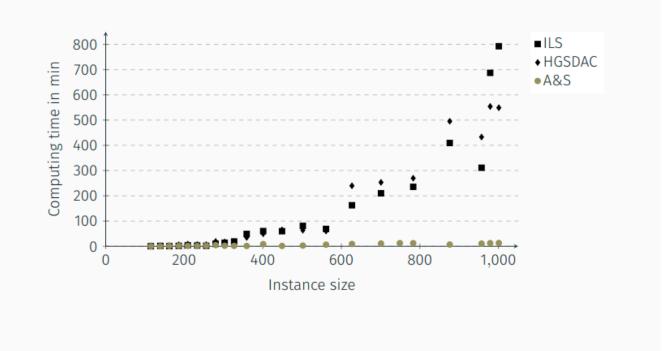


Image taken from: http://fc.isima.fr/~lacomme/Spring_School/conf/slides/

Inspira Crea Transforma

Personal experience and acknowledgements

Inspira Crea Transforma

The International Spring School on Integrated Operational Problems: What a PhD student can learn

Juan David Palacio Domínguez PhD student on Mathematical Engineering - EAFIT

Doctoral Seminar on Mathematical Engineering - August 3, 2018

Inspira Crea Transforma

