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Abstract

Let (M, g) be a riemannian manifold is connected and closed (compact with-
out boundary), and let ∆g be the Laplace-Beltrami operator determined by
g. The heat equation on (M, g) is the differential equation ∂u

∂t = ∆gu where
u : M × [0,+∞)→ R. For each function f : M → R in L2(M, g) there exists
a unique solution u of the heat equation such that u(·, 0) = f . It has been
conjectured that

If (M, g) is locally homogeneous, i.e. each pair of points p, q in M , have iso-
metric neighborhoods, then there exists an open dense subset S of L2(M, g),
with the property that for each f ∈ S there exists a real Tf > 0 such that if
t ≥ Tf , the function u(·, t) : M → R is Morse and has a number of critical
points less than or equal to the number of critical points of any other Morse
function on M .

It is natural to start the study of this conjecture examining a collection as
rich as possible of examples of locally homogeneous riemannian manifolds of
different dimensions. Examples in dimension 3 are particularly adequate for
testing the conjecture, because they are well known, and also because they
are more varied and less trivial than manifolds in dimensions 1 and 2.
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