> Relaxation Techniques in Optimization and Control: an Overview of the Recently Published Elsevier Book

Vadim Azhmyakov

 Department of Basic Sciences, Universidad de Medelln, Republic of Colombia,
 ** Division for Automation and Robotics, Tomsk Polytechnic University, Tomsk, Russian Federation

Medellin, Antioquia, March 2018

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

PUBLISHNG WITH ELSEVIER

- 2 OPTIMAL CONTROL OF HYBRID AND SWITCHED SYSTEMS
 - Hybrid Systems
 - Optimal Control of Hybrid Systems

3 AN EXAMPLE OF THE WEAK RELAXATION TECHNIQUE

- Problem Formulation
- Classic (Excessive) Relaxations and PGs
- Some Comments
- Infimal Convolution Based Relaxation and PGs
- Numerical Treatment of the Initial OCP

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

PUBLISHNG WITH ELSEVIER

OPTIMAL CONTROL OF HYBRID AND SWITCHED SYSTEMS AN EXAMPLE OF THE WEAK RELAXATION TECHNIQUE

Publishing with Elsevier

Optimization technique is nowadays not only a mathematical technique but also a "technology".

https://www.elsevier.com/books/a-relaxation-based-approach-tooptimal-control-of-hybrid-and-switched-systems/azhmyakov/978-0-12-814788-7

Elsevier publishing process

Step 1. a book proposal \Rightarrow Step 2. some 5 internationally recognized Reviewers \Rightarrow Step 3. decision of the general Elsevier Committee \Rightarrow Step 4. if positive \Rightarrow Step 5. definition of the time scheduling for the Chapters-by-Chapters delivery \Rightarrow Step 6. book design definition / production

< ロ > < 同 > < 回 > < 回 > < □ > <

Main Concepts

A HS is a 7-tuple $\{\mathscr{Q}, M, U, F, \mathscr{U}, I, \mathscr{S}\}$, where

- \mathcal{Q} is a finite set of discrete states (called *locations*);
- $M = \{M_q\}_{q \in \mathscr{Q}} \subset \mathbb{R}^n$ is a family of smooth manifolds;
- U ⊆ ℝ^m is a set of admissible control input values (called *control set*);
- $F = \{f_q\}, q \in \mathscr{Q}$ is a family of maps $f_q : [0, t_f] \times M_q \times U \rightarrow TM_q$, where TM_q is the tangent bundle of M_q (see e.g., [19,27]);
- \mathscr{U} is the set of all admissible control functions;
- $I = \{I_q\}$ is a family of adjoint subintervals of $[0, t_f]$ such that $\sum_{q \in Q} |I_q| = t_f$;
- \mathscr{S} is a subset of Ξ , where $\Xi := \{ (q, x, q', x') : q, q' \in \mathscr{Q}, x \in M_q, x' \in M_{q'} \}$

Main Concepts

Let $u(\cdot) \in \mathscr{U}$ be an admissible control for a HS. Then a "continuous" trajectory of HS is an absolutely continuous function $x : [0, t_f] \rightarrow \bigcup_{q \in \mathscr{Q}} M_q$ such that $x(0) = x_0 \in M_{q_1}$ and

- $\dot{x}(t) = f_{q_i}(t, x(t), u(t))$ for almost all $t \in [t_{i-1}, t_i]$ and all i = 1, ..., r + 1;
- the switching condition $(x(t_i), x(t_{i+1})) \in S_{q_i, q_{i+1}}$ holds if i = 1, ..., r.

The vector $\mathscr{R}_{r+1} := (q_1, ..., q_{r+1})$ is called a "discrete trajectory" of the hybrid control system. Let HS be defined above. For an admissible control $u(\cdot) \in \mathscr{U}$, the triplet $\mathscr{X}^u := (\tau, x(\cdot), \mathscr{R})$, where τ is the set of the corresponding switching times $\{t_i\}, x(\cdot)$ and \mathscr{R} are the corresponding continuous and discrete trajectories, is called a hybrid trajectory of HS.

Hybrid Systems Optimal Control of Hybrid Systems

Main Problem

minimize $\phi(\mathbf{x}(t_f))$ subject to $\dot{\mathbf{x}}(t) = f_{q_i}(t, \mathbf{x}(t), u(t))$ a.e. on $[t_{i-1}, t_i]$ $q_i \in \mathcal{Q} \ i = 1, ..., r+1, \ \mathbf{x}(0) = \mathbf{x}_0 \in M_{q_1}, \ u(\cdot) \in \mathcal{U}.$

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Problem Formulation

smooth system:

$$\dot{\mathbf{x}}(t) = f(t, \mathbf{x}(t), u(t)), \ t \in [t_0, t_f], \ \mathbf{x}(t_0) = \mathbf{x}_0,$$
 (1)

for each component
$$u_k(\cdot)$$
 of $u(\cdot) = [u_1(\cdot), \dots, u_m(\cdot)]^T \Rightarrow \mathscr{Q}^{(k)} := \left\{ q_j^{(k)} \in \mathbb{R}, j = 1, \dots, M_k \right\}, M_k \in \mathbb{N}, k = 1, \dots, m, q_1^{(k)} < q_2^{(k)} < \dots < q_{M_k}^{(k)}.$

control switching times: $\mathscr{T}^{(k)} := \left\{ t_i^{(k)} \in \mathbb{R}_+, i = 0, \dots, N_k \right\}$, where $N_k \in \mathbb{N}$, $k = 1, \dots, m$. Moreover, $t_0^{(k)} < t_1^{(k)} < \dots < t_{N_k}^{(k)}$ and for each $\mathscr{T}^{(k)}$, $t_{N_1}^{(1)} = \dots = t_{N_m}^{(m)} = t_f$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

.

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Problem Formulation

space of admissible (piecewise constant) controls

$$\mathscr{S} = \mathscr{S}_1 \times \ldots \times \mathscr{S}_m,$$

where
$$\mathscr{S}_k := \left\{ v : [t_0, t_f] \to \mathbb{R} \mid v(t) = \sum_{i=1}^{N_k} I_{[t_{i-1}^{(k)}, t_i^{(k)})}(t) q_{j_i}^{(k)} \right\},\ q_{j_i}^{(k)} \in \mathscr{Q}^{(k)}, \ j_i \in \mathbb{Z}[1, M_k], \ t_i^{(k)} \in \mathscr{T}^{(k)}.$$

main OCP

minimize
$$J(u(\cdot)) = \frac{1}{2} \int_{t_0}^{t_f} (\langle Q(t)x(t), x(t) \rangle + \langle R(t)u(t), u(t) \rangle) dt + \frac{1}{2} \langle Gx(t_f), x(t_f) \rangle,$$
 (2)
subject to (1), $u(\cdot) \in \mathscr{S}$

・ロン・雪と・雪と・ ヨン・

3

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Classic (Excessive) Relaxations and PGs

admissible control space convexification

$$\operatorname{conv}(\mathscr{S}) := \left\{ v(\cdot) \mid v(t) = \sum_{s=1}^{|\mathscr{S}|} \lambda_s u_s(t), \ \sum_{s=1}^{|\mathscr{S}|} \lambda_s = 1 \right\},$$
$$\lambda_s \ge 0, u_s(\cdot) \in \mathscr{S}, s = 1, \dots, |\mathscr{S}|.$$

fully relaxed OCP

minimize $\bar{co}{J(u(\cdot))}$, subject to (1), $u(\cdot) \in conv(\mathscr{S})$. (3)

! a convex minimization problem in $\mathbb{L}^2\{[t_0, t_f]; \mathbb{R}^m\}$!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ● ●

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Classic (Excessive) Relaxations and PGs

the gradient method (GM)

$$\begin{split} u_{(l+1)}(\cdot) &= \gamma_{l} \mathscr{P}_{\text{conv}(\mathscr{S})} \left[u_{(l)}(\cdot) - \alpha_{l} \nabla \bar{co} \{ J(u_{(l)}(\cdot)) \} \right] + (1 - \gamma_{l}) u_{(l)}(\cdot), \\ \text{where } l \in \mathbb{N}, \, \nabla \bar{co} \{ J(u(\cdot)) \}(t) &= -\partial H(t, x(t), u(t), p(t), p_{n+1}) / \partial u, \\ \frac{d\tilde{p}(t)}{dt} &= -\frac{\partial H(t, x(t), u(t), p(t), p_{n+1})}{\partial \tilde{x}}, \\ \tilde{p}(t_{f}) &= -\frac{\partial (\bar{co} \{ \phi(\tilde{x}(t_{f})) \} \}}{\partial \tilde{x}}, \, \tilde{x}(t_{0}) = (x_{0}^{T}, 0)^{T}, \, x := (x, x_{n+1})^{T}, \\ \frac{d\tilde{x}(t)}{dt} &= \frac{\partial H(t, x(t), u(t), p(t), p_{n+1})}{\partial \tilde{p}}, \, \tilde{p}(t) := (p(t), p_{n+1})^{T}, \\ H(t, x, u, p, p_{n+1}) &= \langle p, f(t, x, u) \rangle + \frac{1}{2} p_{n+1} (\langle Q(t)x, x \rangle + \langle R(t)u, u \rangle) \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 >

.

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Classic (Excessive) Relaxations and PGs

Theorem

Let $p_{n+1} \neq 0$. Consider $\{u_{(l)}(\cdot)\}$ generated by GM with a constant step size α . Then for $u_{(0)}(\cdot) \in \operatorname{conv}(\mathscr{S})$ the resulting sequence $\{u_{(l)}(\cdot)\}$ is a minimizing sequence for (3), i.e., $\lim_{l\to\infty} c\bar{o}\{J(u_{(l)}(\cdot))\} = c\bar{o}\{J(u^*(\cdot))\}$. Additionally assume that that $\partial f(t, x, u)/\partial u$ is Lipschitz with respect to (x, u) and $\alpha \in (0, 2/L)$, where $L := (L_x I + L_u) + \lambda$,

$$I := \max_{t \in [t_0, t_f]} \{ I_t(t) \}, \ \lambda := \max_{t \in [t_0, t_f]} \{ \lambda_{\max}^R(t) \},$$

 $l_t(t)$ are Lipschitz constants of $x^u(t)$, for $t \in [t_0, t_f]$ and $\lambda_{\max}^R(t)$ is the maximal eigenvalue of R(t). Then $\{u_{(l)}(\cdot)\}$ converges $\mathbb{L}^2\{[t_0, t_f]; \mathbb{R}^m\}$ - weakly to a solution $u^*(\cdot)$ of (3).

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Some Comments

- future modifications: Armijo step sizes (Armijo line search), Exogenous step size, others
- from the computational point of view the fully convexified OCP (3) is related with a mathematically sophisticated procedure, namely, with the calculation of a convex envelope of a composite functional in Hilbert space

< □ > < 同 > < 回 > < 回 > < 回 >

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Infimal Convolution Based Relaxation and PGs

two interesting concepts:

Definition

 $J(u(\cdot))$ is locally para-convex around $u(\cdot) \in \mathbb{L}^2\{[t_0, t_f]; \mathbb{R}^m\}$ if the infimal (prox) convolution $J_\lambda(u(\cdot))$ is convex and continuous on a δ -ball $\mathscr{B}_{\delta}(u(\cdot))$ around $u(\cdot)$ for some $\delta > 0$, $\lambda > 0$.

Definition

 $\begin{array}{l} J(u(\cdot)) \text{ is prox-regular at } \hat{u}(\cdot) \in \mathbb{L}^2\{[t_0,t_f];\mathbb{R}^m\} \text{ if } \exists \varepsilon > 0, \ r > 0 \\ \text{such that } J(u_1(\cdot)) > J(u_2(\cdot)) + \\ \langle \nabla J(\hat{u}(\cdot)), u_1(\cdot) - u_2(\cdot) \rangle_{\mathbb{L}^2\{[t_0,t_f];\mathbb{R}^m\}} - \frac{r}{2} ||u_1(\cdot) - u_2(\cdot)||^2_{\mathbb{L}^2\{[t_0,t_f];\mathbb{R}^m\}} \\ \forall u_1(\cdot) \text{ from a } \varepsilon \text{-ball } \mathscr{B}_{\varepsilon}(\hat{u}(\cdot)) \text{ around } \hat{u}(\cdot) \text{ whenever} \\ u_2(\cdot) \in \mathscr{B}_{\varepsilon}(\hat{u}(\cdot)) \text{ and } |J(u_1(\cdot)) - J(\hat{u}(\cdot))| < \varepsilon. \end{array}$

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Infimal Convolution Based Relaxation and PGs

infimal prox convolution for the original OCP (2)

$$J_{\lambda}(u(\cdot)) = \frac{1}{2} \int_{t_0}^{t_f} \left(\langle Q(t) x(t), x(t) \rangle + \langle (R(t) + \lambda I) u(t), u(t) \rangle \right) dt + \frac{1}{2} \langle Gx(t_f), x(t_f) \rangle$$

infimal convolution based OCP

minimize $J_{\lambda}(u(\cdot))$, subject to (1), $u(\cdot) \in \text{conv}(\mathscr{S})$, (4)

assume that (4) possesses an optimal solution $u_{\lambda}^{opt}(\cdot)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Infimal Convolution Based Relaxation and PGs

GM applied to (4)

$$u_{(l+1)}(\cdot) = \gamma_l \mathscr{P}_{\mathsf{conv}}(\mathscr{S}) \left[u_{(l)}(\cdot) - \alpha_l \nabla J_{\lambda}(u_{(l)}(\cdot)) \right] + (1 - \gamma_l) u_{(l)}(\cdot), \ l \in \mathbb{N}$$

Theorem

Let $p_{n+1} \neq 0$ and $u_0^{opt}(\cdot) \in int\{conv(\mathscr{S})\}$. Consider $\{u_{(l)}(\cdot)\}$ generated by GM with a constant step size α . Then there exists $u_{(0)}(\cdot) \in conv(\mathscr{S})$ such that

$$\lim_{\lambda \to 0} \lim_{I \to \infty} J_{\lambda}(u_{(I)}(\cdot)) = \min_{conv(\mathscr{S})} J(u(\cdot)) = J(u_0^{opt}(\cdot)).$$

3

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Numerical Treatment of the Initial OCP

numerical example

$$\dot{x}_{1}(t) = u_{1}(t)\cos(x_{3}(t)),$$

$$\dot{x}_{2}(t) = u_{1}(t)\sin(x_{3}(t)),$$

$$\dot{x}_{3}(t) = u_{2}(t),$$

$$x(0) = \begin{bmatrix} 15 & 15 & 180 \end{bmatrix}^{T}.$$

$$J(u(\cdot)) = \frac{1}{2} \int_0^1 \left(x_1^2(t) + x_2^2(t) + x_3^2(t) \right) dt \text{ and}$$

$$\mathscr{Q} = \{-50, -49, -48, \dots, 48, 49, 50\}.$$

ヘロト 人間 ト イヨト イヨト

≡ nar

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Numerical Treatment of the Initial OCP

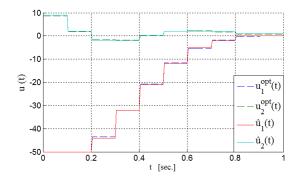


Figure: Optimal controls for the original and weakly relaxed OCPs

< ロ > < 同 > < 回 > < 回 > < 回 >

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Numerical Treatment of the Initial OCP

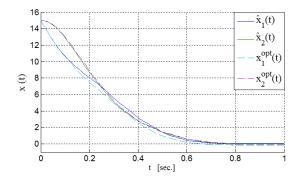
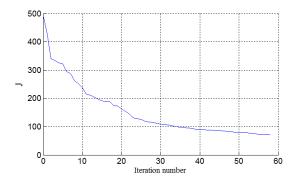


Figure: Optimal trajectories for the original and weakly relaxed OCPs

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

Numerical Treatment of the Initial OCP

numerical evaluation of the cost functional $J(\hat{u}(\cdot))$



< ロ > < 同 > < 回 > < 回 > < 回 >

Problem Formulation Classic (Excessive) Relaxations and PGs Some Comments Infimal Convolution Based Relaxation and PGs Numerical Treatment of the Initial OCP

THANKS!

・ロン・雪と・雪と・ ヨン・

≡ nar