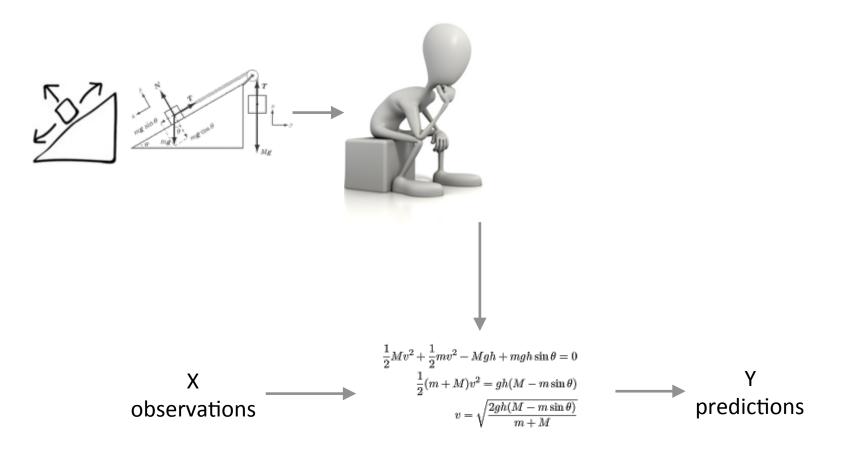
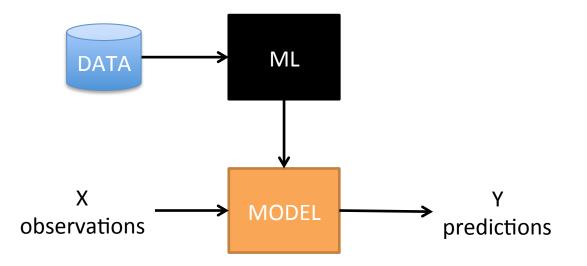
raul ramos - UdeA

TensorFlow symbolic computing for machine learning

ANALYTIC MODELS



MACHINE LEARNING



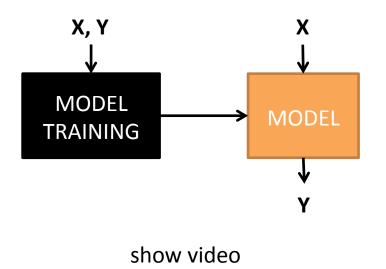
SUPERVISED LEARNING

Χ

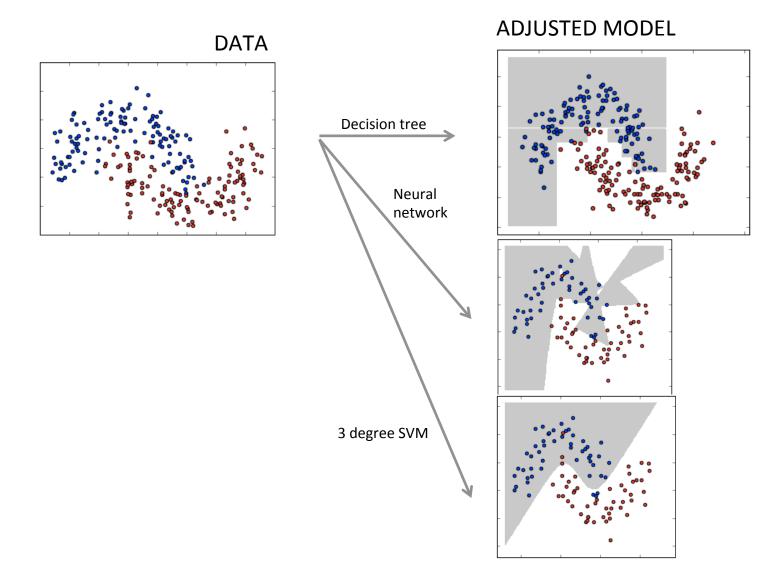
Patient data Images Finacial data Robot sensors Flight history Movies watched Recorded voice Driving data

Y

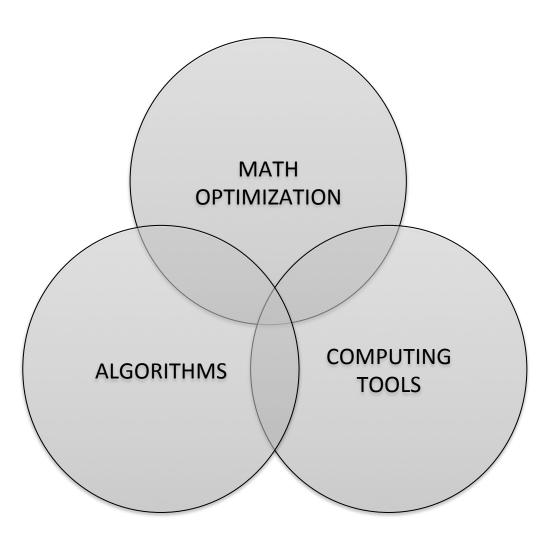
Presence of pathology Objects present Next price Steering action Landing time Movies to suggest Words transcripted Driver profile



FAMILIES of MODELS



MACHINE LEARNING



STANDARD FORMULATION

Tenemos un dataset de entrenamiento $\{(x^{(i)}, y^{(i)})\}$ con $i \in \{1...m\}$ (es decir, con m puntos), $x^{(i)} = [1 \ x_1^{(i)} \ x_2^{(i)} \ ... \ x_j^{(i)} \ ... \ x_n^{(i)}]^T \in \mathbb{R}^{n+1}$ y $y^{(i)} \in \{0, 1\}$ para clasificación binaria. La matriz **X** recoge todos los $x^{(i)}$ y el vector **y** todos los $y^{(i)}$

 $\hat{y}^{(i)} = f(x^{(i)})$ where f is our model

m: número de datos n: número de descriptores por dato

STANDARD FORMULATION

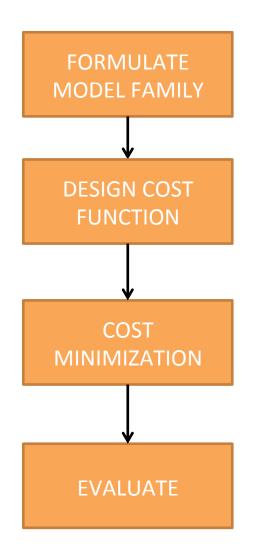
Tenemos un dataset de entrenamiento $\{(x^{(i)}, y^{(i)})\}$ con $i \in \{1...m\}$ (es decir, con m puntos), $x^{(i)} = [1 \ x_1^{(i)} \ x_2^{(i)} \ ... \ x_j^{(i)} \ ... \ x_n^{(i)}]^T \in \mathbb{R}^{n+1}$ y $y^{(i)} \in \{0, 1\}$ para clasificación binaria. La matriz **X** recoge todos los $x^{(i)}$ y el vector **y** todos los $y^{(i)}$

$$\mathbf{X} = \begin{bmatrix} \dots & x^{(1)} & \dots & \\ & \dots & x^{(2)} & \dots \\ & & \dots & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$$

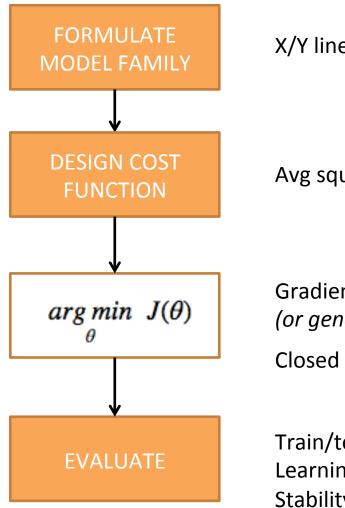
$$y^{(i)} \in \mathbb{R} \rightarrow Regression$$

 $y^{(i)} \in [0, 1] \text{ or } [-1, 1] \rightarrow Classification$

STANDARD WORKFLOW



LINEAR REGRESSION



X/Y linear relation

$$\hat{y}^{(i)} = \theta^T x^{(i)}$$

Avg squared error

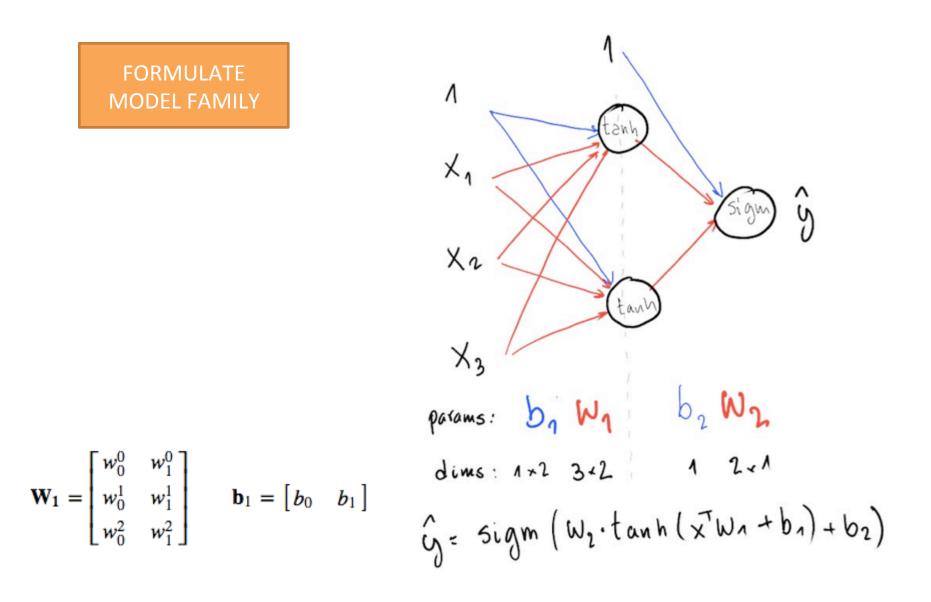
$$J(\theta) = \frac{1}{m} \sum_{i=0}^{m-1} (\hat{y}^{(i)} - y^{(i)})^2$$

Gradient descent (or generic optimizer) Closed form $\nabla J = \frac{2}{m} X^T \cdot (X \cdot \theta - Y)$ $\theta = (X^T X)^{-1} X^T Y$

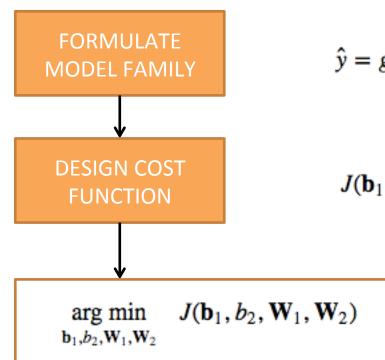
Train/test split Learning curves, Stability of models, etc.

show notebook part 1

PERCEPTRON



PERCEPTRON



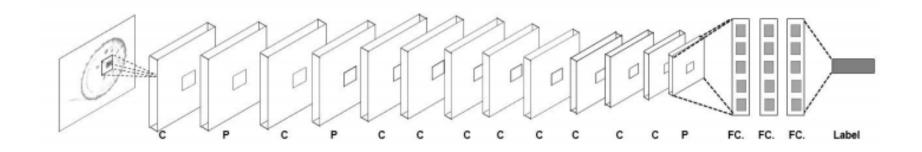
$$\hat{y} = g(\mathbf{W}_2 \cdot \tanh(\mathbf{x}^{\mathbf{T}} \cdot \mathbf{W}_1 + \mathbf{b}_1) + b_2)$$

$$J(\mathbf{b}_1, b_2, \mathbf{W}_1, \mathbf{W}_2) = \frac{1}{m} \sum_{i=0}^{m-1} (\hat{y}^{(i)} - y^{(i)})^2 \cdot$$

Gradient descent (or generic optimizer)
BACKPROPAGATION

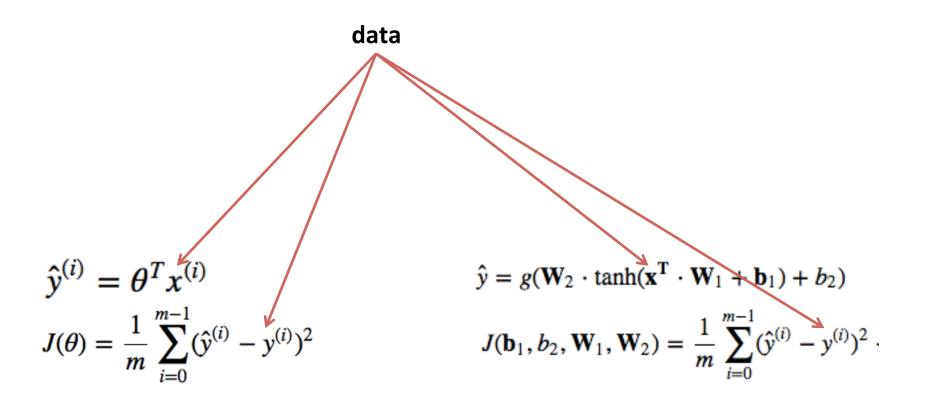
CONVOLUTIONAL NETWORKS

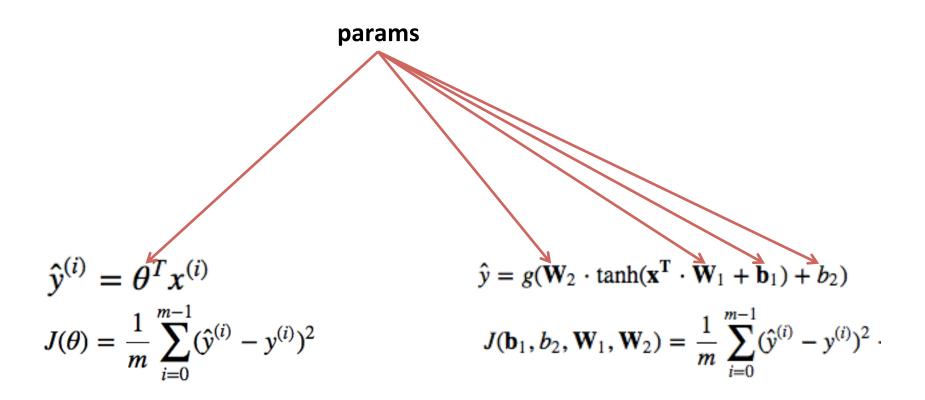
ml4a.github.io/dev/demos/demo_convolution.html

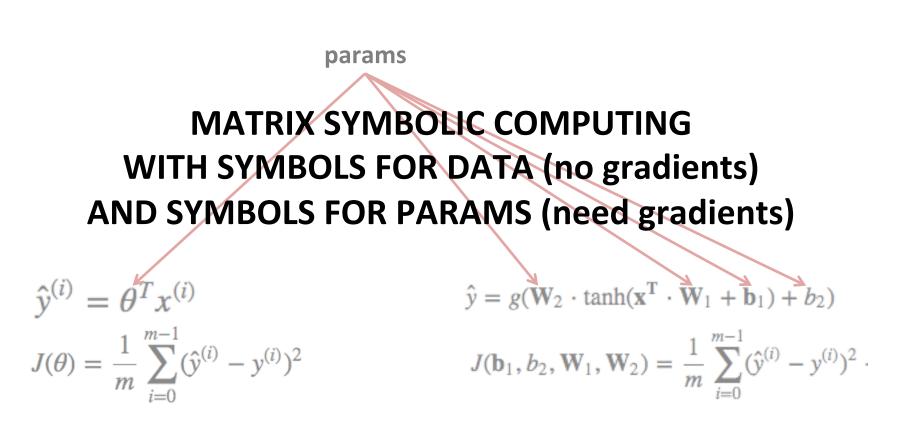


$$\hat{y}^{(i)} = \theta^T x^{(i)} \qquad \hat{y} = g(\mathbf{W}_2 \cdot \tanh(\mathbf{x}^T \cdot \mathbf{W}_1 + \mathbf{b}_1) + b_2)$$

$$J(\theta) = \frac{1}{m} \sum_{i=0}^{m-1} (\hat{y}^{(i)} - y^{(i)})^2 \qquad J(\mathbf{b}_1, b_2, \mathbf{W}_1, \mathbf{W}_2) = \frac{1}{m} \sum_{i=0}^{m-1} (\hat{y}^{(i)} - y^{(i)})^2 \cdot \mathbf{b}_1 \cdot \mathbf{b}_2$$

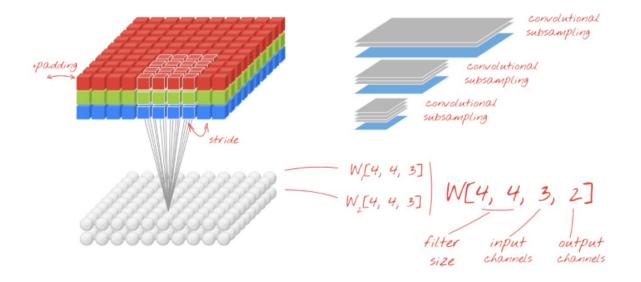


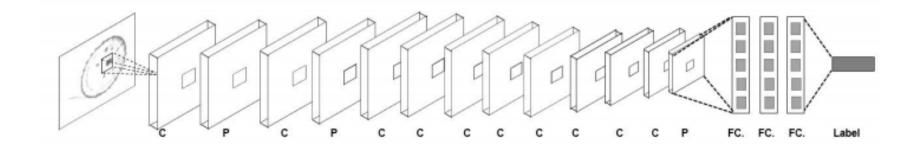




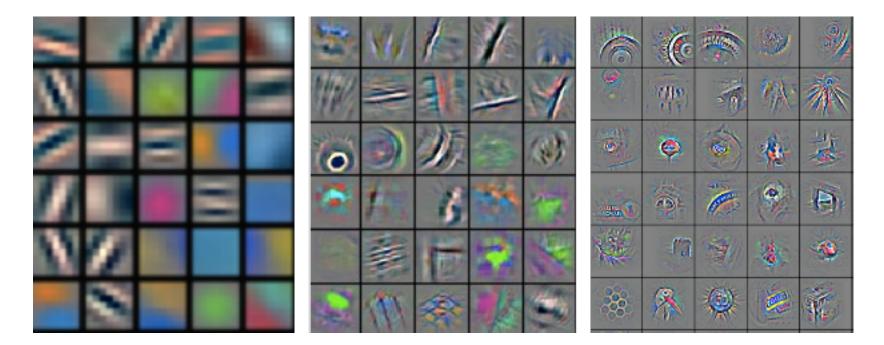
show notebook part 2

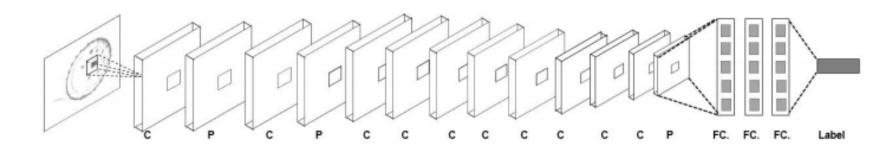
CNN





CNN





"small" CNN

layer	input_size	output_size	filter_size	stride	n_filters	activation	W_size from previous
conv1	28x28x1	28x28x9	5x5	1	16	relu	W1 = [5,5,1,16]
conv2	28x28x16	14x14x8	5x5	2	8	relu	W2 = [5,5,16,8]
conv3	14x14x8	7x7x12	4x4	2	12	relu	W2 = [4,4,8,12]
fc	7x7x12	200				relu	W3 = [588,200]
output	200	10				softmax	W4 = [200,10]

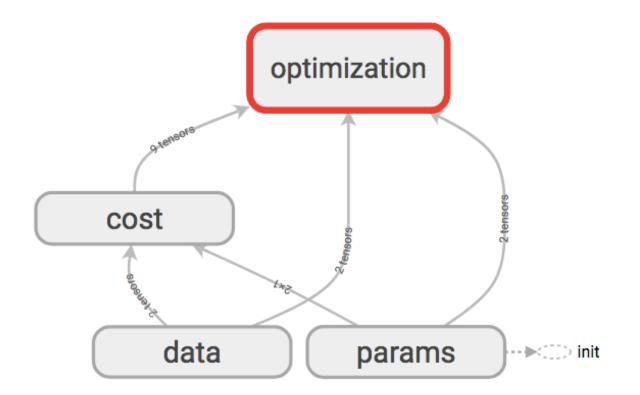
400 + 3600 + 1536 + 117600 + 2000 = 125136 tunnable params!!!

show notebook Notes 04

show logdir in tensorboard

device placement

show graph in tensorboard from last CNN



device placement

- individual ops have parallel implementations (multi core CPU or multi thread GPU)
- can specify device placement of components of the computation graph (data and/or operations)
- tensorflow will move data around to comply

```
# Creates a graph.
with tf.device('/device:GPU:2'):
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
    c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(c))
```

device placement

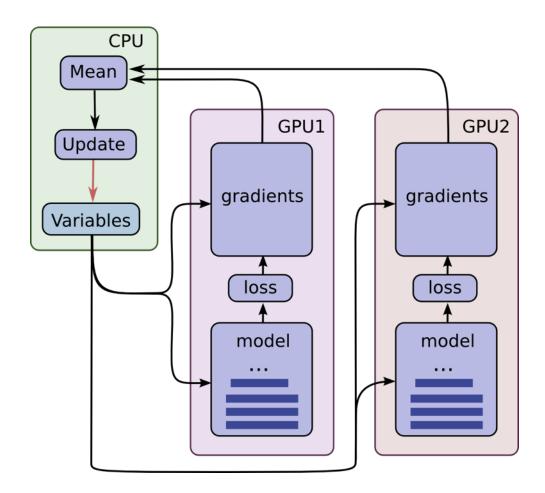
- types of devices
- not all operations can be done in GPU (ops vs. kernels)

```
# Creates a graph.
c = []
for d in ['/device:GPU:2', '/device:GPU:3']:
    with tf.device(d):
        a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])
        b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])
        c.append(tf.matmul(a, b))
with tf.device('/cpu:0'):
    sum = tf.add_n(c)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(sum))
```

recall that GPUs are co-processors, everything exists first in RAM

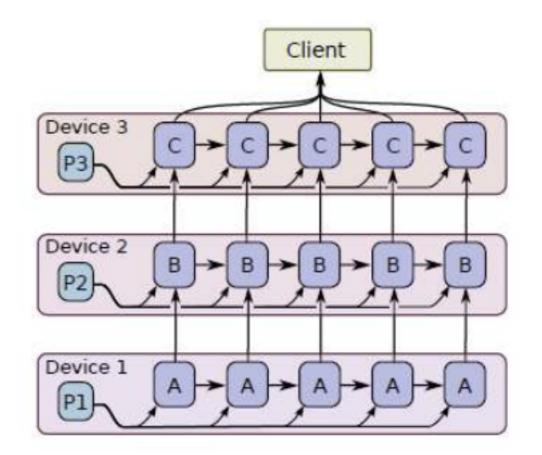
data parallelism

- data parallelism through batchs of data
- model + batch needs to fit in GPU memory



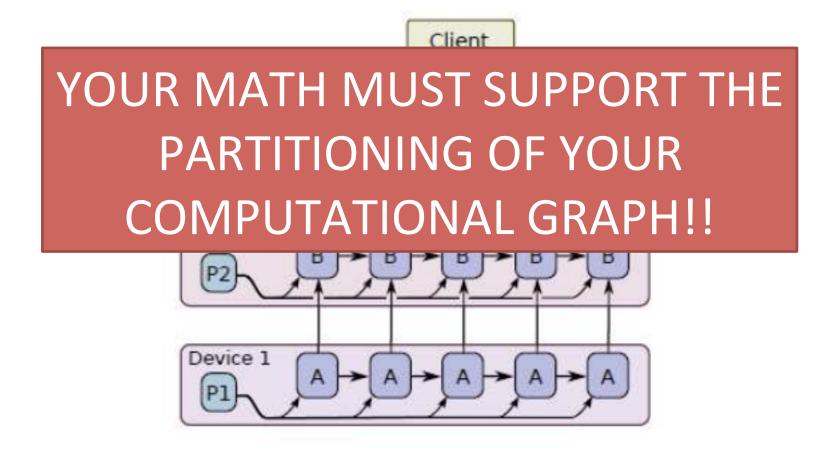
model parallelism

- harder to program
- needs sync
- GPU mem holds partial model and data batches



model parallelism

- harder to program
- needs sync
- GPU mem holds partial model and data batches



distributed computing

data is expensive to move!!!!

in/between graph replication, asynch/synch, etc.

```
with tf.device("/job:ps/task:0"):
  weights_1 = tf.Variable(...)
  biases_1 = tf.Variable(...)
with tf.device("/job:ps/task:1"):
 weights_2 = tf.Variable(...)
  biases_2 = tf.Variable(...)
with tf.device("/job:worker/task:7"):
  input, labels = ...
  layer_1 = tf.nn.relu(tf.matmul(input, weights_1) + biases_1)
  logits = tf.nn.relu(tf.matmul(layer_1, weights_2) + biases_2)
 # ...
 train_op = ...
with tf.Session("grpc://worker7.example.com:2222") as sess:
 for _ in range(10000):
   sess.run(train_op)
```

distributed computing

data is expensive to move!!!!

in/between graph replication, asynch/synch, etc.

with tf.device("/job:ps/task:0"):
 weights 1 = tf.Variable(....)

THINK ON HOW DATA FLOWS WITHIN YOUR COMPUTATIONAL GRAPH

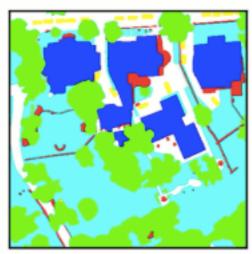
```
with tf.device("/job:worker/task:7"):
    input, labels = ...
    layer_1 = tf.nn.relu(tf.matmul(input, weights_1) + biases_1)
    logits = tf.nn.relu(tf.matmul(layer_1, weights_2) + biases_2)
    # ...
    train_op = ...
with tf.Session("grpc://worker7.example.com:2222") as sess:
    for _ in range(10000):
        sess.run(train_op)
```

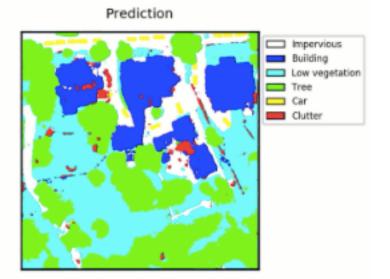
CNN applications

CNN applications

RGB

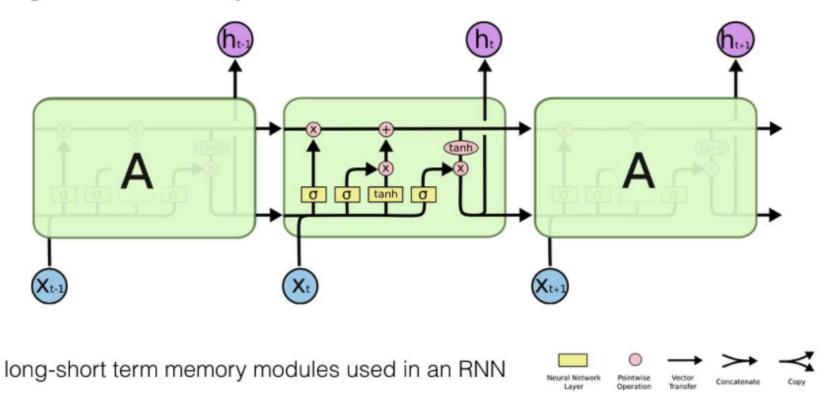
Ground Truth



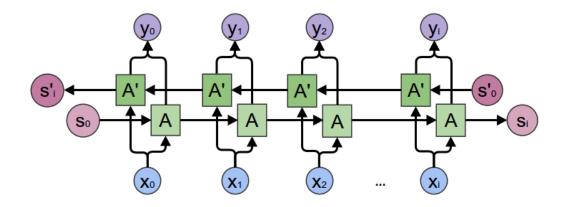


RNNs

Long-Short Term Memory module: LSTM



RNN applications



signal patterns (finance, speech, etc.) text generation, translation

See http://karpathy.github.io/2015/05/21/rnn-effectiveness/

other stuff

- High Level API (tflearn, Keras)
- TPUs (tensor processing units)
- Theano and Torch

https://s3.amazonaws.com/rlx/streetview_detection/madrid_centro/dboard.html

https://s3.amazonaws.com/rlx/eafit_edificios/dboard_clean.html

RISE study group on TF

- Learn and discuss on TF
- Understand its applicability
- Approach problems and practical solutions
- Compete in challenges!!!!
- Open to anybody
- Python programming encouraged

https://goo.gl/Vf6v4A

