Inspire Create Transform

PH.D IN MATHEMATICAL ENGINEERING DOCTORAL SEMINAR IV

May 17, 2019

CRIME PREDICTION USING MAHALANOBIS DISTANCE APPLIED IN VILLAVICENCIO (META)

Andrés Pérez-Coronado

Thesis Advisor: Henry Laniado and Gustavo Canavire

EAFIT University
School of Sciences - Department of Mathematics Sciences
Ph.D in Mathematical Engineering
May 17, 2019

Outline

Research introduction

Data source

The Metropolitan Police of Villavicencio

Data collection

Mahalanobis distance

Formulation

Partial results

Outlook

Model adjustment

Next objectives

Research introduction

Criminal approach

- Crime: an action or omission which constitutes an offence and it is punishable by law.
- Criminal: an individual who has committed a crime.
- Organized crime: a structured network (criminals) whose primary objective is to obtain money through illegal activities (crimes).

Research question

Can a statistical model to predict criminal events, and the disruption of the criminal networks?

Research objectives

Main objective:

To design a non-parametric statistical model, for the space-time prediction of criminal events and the disruption of the criminal networks.

First specific objective:

To propose a non-parametric space-time model to predict the occurrence of criminal events, based on police data as calls to the emergency telephone number and documented crimes.

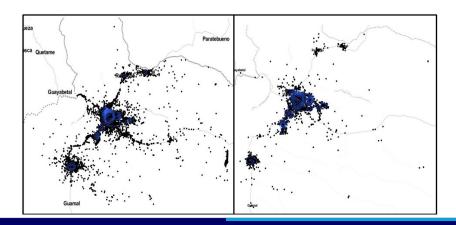
Data source: The Metropolitan Police of Villavicencio

Characteristics

- Gathers the municipalities of Villavicencio, Restrepo, Acacias and Cumaral.
- ▶ 452.472 population estimated.
- The main crime categories are thief, personal injuries, domestic violence, threats, burglary, illegal constraint, and shoplifting.

Information system of Statistics, Crime, Contravention and Operation (SIEDCO)

- SIEDCO is the biggest data source of reported crimes in Colombia.
- ► The data was collected information on all crimes documented between January 1, 2018 and February 3, 2019 (n = 39.951).
- Each crime record in our subset contained a time-stamp of occurrence, latitude/longitude coordinates of the crime at the city block level, and one of 32 types.



Information System for Case Tracking and Control (SECAD)

- It has the calls that report possible crime events or related issues about public safety.
- It is managed by Command Center of Citizen Control of the same city.
- ► The data was collected information on all crimes documented between October 1, 2018 and February 3, 2019 (n = 9.985).
- Each call records in our subset contained a time-stamp of occurrence, latitude/longitude coordinates of the crime at the city block level.

Crimes (SIEDCO) vs Calls (SECAD)

Model formulation

$$Pr(Label_p = T | f_1(p), ..., f_n(p)) = \frac{1}{1 + e^{-(\beta_0 + \prod_{i=1}^n \beta_i f_i(p))}}$$
 (1)

- T = type of crime.
- $f_1(p) = \text{density function}.$
- $ightharpoonup f_2(p), ..., f_n(p) =$ topic modeling.
- i = 1, f_i equals the KDE.
- ightharpoonup i > 1, f_i equals Pr(i-1|r).
- ightharpoonup r = is the unique topic neighborhood that spatially contains p.
- $\beta_i = \text{coefficients}.$

Definition

$$D_{Mh} = \sqrt{(x_i - x_j)^T \sum_{j=1}^{-1} (x_i - x_j)}$$
 (2)

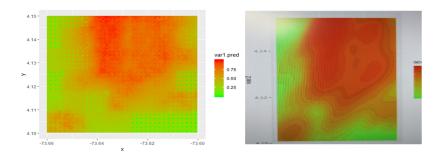
- ▶ x_i Known point
- ▶ x_j Unknown point
- ▶ \sum^{-1} Covariance matrix

Distance-weighted spatial interpolation (IDW)

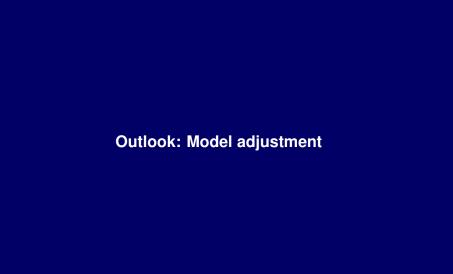
$$Pr_1(Label_p = T, W) =$$

$$\frac{\sum_{i=1}^{|N(p,W)|} (W - D_{Mh}) * Pr(Label_{n_i} = T)}{\sum_{j=1}^{|N(p,W)|} (W - D_{Mh})}$$
(3)

- Pr_1 = probability interpolation function.
- W = is a windowing parameter.
- N(p, W) =is the set of p's neighbors within a distance of W (this set includes p itself).
- $D(p, n_i)$ = is the straight-line distance between p and one of its neighbors n_i .
- \blacktriangleright (Label_{ni}) = T is the non-interpolated probability.


Advantages of the measure

- ► To reduce the outliers impact on the estimation.
- To include the dependence structure between variables longitude and latitude.
- This measure is invariant at scale.
- It is a statistical distance.


Mahalanobis distance: Partial results

Euclidean vs Mahalanobis

Calibration of the model

- To try different alternatives for estimating the covariance matrix.
- To make a spatial cluster of the crimes by concentration zones.
- Reduce computation times and memory use.
- ► To explore the use of the GPU for calculations.

Research objectives

Second specific objective:

To develop a predictive framework based on social network analysis to make disruption in criminal networks.

Third specific objective:

To propose a making decision process based on artificial intelligence for policing.

