Study of the Algorithmic Complexity of the Ensemble Kalman Filter and its Efficient Implementations

Jhon E. Hinestroza R.
PhD. Student in Mathematical Engineering

PhD. Olga L. Quintero M. and PhD. Angela M. Rendón P. Advisor and Co-Advisor

Universidad EAFIT Doctoral Seminar II

May 24, 2019

Outline

(1) Introduction: Linear and Non-Linear Data Assimilation
(2) Kalman and Ensemble Kalman Filter

- Kalman Filter
- Ensemble Kalman Filter (EnKF)
(3) Efficient Implementations
- SVD Implementation
- Cholesky Decomposition Implementation
- Sherman Morrison Implementation
(4) References

Introduction

Introduction

Gaussian

Ensemble Kalman Filter-EnKF

Variational Data Assimilation

Non-Gaussian

Particle Filters

Introduction

Gaussian

Ensemble Kalman Filter-EnKF

Current Work

Variational Data Assimilation

En 4DVar

Non-Gaussian

Particle Filters

UNIVERSIDAD
EAFIT

Foundation of the Problem

$$
p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{x}) \cdot p(\mathbf{x})}{p(\mathbf{y})}
$$

Kalman Filter

Kalman Filter

Assume we seek to estimate the state $\mathbf{x} \in \mathbb{R}^{n}$

$$
\mathbf{x}_{k+1}=\mathbf{M}\left(\mathbf{x}_{k}, t_{k}\right)+\mathbf{w}_{k}
$$

using the measurements $\mathbf{y} \in \mathbb{R}^{m}$

$$
\mathbf{y}_{k}=\mathbf{H}_{k} \mathbf{x}_{k}+\mathbf{v}_{k},
$$

with

$$
\begin{aligned}
\mathbf{w}_{k} & \sim \mathbf{N}\left(\mathbf{0}, \mathbf{Q}_{k}\right), \\
\mathbf{v}_{k} & \sim \mathbf{N}\left(\mathbf{0}, \mathbf{R}_{k}\right),
\end{aligned}
$$

$\mathbf{Q}_{k} \in \mathbb{R}^{n \times n}, \mathbf{R}_{k} \in \mathbb{R}^{m \times m}$.
$\mathbf{M}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathbf{H}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

Kalman Filter

1. Forecast Step:

$$
\begin{aligned}
\mathbf{x}_{k+1}^{f} & =\mathbf{M}_{k+1} \mathbf{x}_{k}^{a}, \\
\mathbf{P}_{k+1}^{f} & =\mathbf{M}_{k+1} \mathbf{P}_{k}^{a} \mathbf{M}_{k+1}^{T}+\mathbf{Q}_{k+1}
\end{aligned}
$$

2. Analysis Step:

$$
\begin{aligned}
\mathbf{K}_{k+1} & =\mathbf{P}_{k+1}^{f} \mathbf{H}^{T}\left(\mathbf{H} \mathbf{P}_{k+1}^{f} \mathbf{H}^{T}+\mathbf{R}_{k+1}\right)^{-1} \\
\mathbf{x}_{k+1}^{a} & =\mathbf{x}_{k+1}^{f}+\mathbf{K}_{k+1}\left(\mathbf{y}_{k+1}-\mathbf{H} \mathbf{x}_{k+1}^{f}\right) \\
\mathbf{P}_{k+1}^{a} & =\left(\mathbf{I}-\mathbf{K}_{k+1} \mathbf{H}\right) \mathbf{P}_{k+1}^{f}
\end{aligned}
$$

Ensemble Kalman Filter EnKF

Ensemble Kalman Filter EnKF

1. Forecast Step:

$$
\begin{aligned}
\mathbf{x}_{k+1}^{f} & =\mathbf{M}_{k+1}\left(\mathbf{x}_{k}^{a}\right) \\
\mathbf{P}_{k+1}^{f} & =\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{i}^{f}-\overline{\mathbf{x}}^{f}\right)\left(\mathbf{x}_{i}^{f}-\overline{\mathbf{x}}^{f}\right)^{T}
\end{aligned}
$$

with N, number of ensemble members and

$$
\overline{\mathbf{x}}^{f}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}^{f}
$$

2. Analysis Step:

$$
\begin{aligned}
\mathbf{K}_{k+1} & =\mathbf{P}_{k+1}^{f} \mathbf{H}^{T}\left(\mathbf{H} \mathbf{P}_{k+1}^{f} \mathbf{H}^{T}+\mathbf{R}_{k+1}\right)^{-1}, \\
\mathbf{x}_{k+1}^{a} & =\mathbf{x}_{k+1}^{f}+\mathbf{K}_{k+1}\left(\mathbf{y}_{k+1}-\mathbf{H} \mathbf{x}_{k+1}^{f}\right) .
\end{aligned}
$$

Efficient Implementation

- Advantage
(1) To reduce the computational cost, in terms of the number of operations, of assimilating large data sets.
(2) The resulting algorithms scale linearly with respect to the number of observations.

UNIVERSIDAD

ב A B

Efficient Implementation

- Advantage
(1) To reduce the computational cost, in terms of the number of operations, of assimilating large data sets.
(2) The resulting algorithms scale linearly with respect to the number of observations.
- Issues
(1) The computational cost of the subsequent matrix operations can become expensive.
(2) The additional operations may contribute significantly to the total computational cost of the implementation.

SVD Implementation

1: procedure (SVD-EnKF) $\left(\mathbf{X}, \mathbf{X}^{\prime}, \mathbf{H X}^{\prime}, \mathbf{D}, \mathbf{E}\right)$
2: $\quad[\Sigma, \mathbf{U}, \mathbf{V}] \leftarrow \operatorname{SVD}\left(\mathbf{H X}^{\prime}+\mathbf{E}\right)\left(m N^{2}\right)$
3: $\quad \Lambda \leftarrow \Sigma \Sigma^{T}(m)$
4: $\quad s \leftarrow \sum_{i} \lambda_{i, i}(m)$
5: $\quad p \leftarrow \max \left\{k \mid \sum_{k} \lambda_{k, k \mid s<0.99}\right\}$
6: $\quad \mathbf{X}_{1} \leftarrow \Lambda^{-1} \mathbf{U}^{T}(m p)$
7: $\quad \mathbf{X}_{2} \leftarrow \mathbf{X}_{1} \mathbf{D}(m n p)$
8: $\quad \mathbf{X}_{3} \leftarrow \mathbf{U} \mathbf{X}_{2}(m N p)$
9: $\quad \mathbf{X}_{4} \leftarrow\left(\mathbf{H} \mathbf{X}^{\prime}\right)^{T} \mathbf{X}_{3}\left(m N^{2}\right)$
10: $\quad \mathbf{X}^{a} \leftarrow \mathbf{X}+\mathbf{X}^{\prime} \mathbf{X}_{4}\left(n N^{2}\right)$
11: return \mathbf{X}^{a}
12: end procedure
Computational cost: $O\left(n N^{2}+m N^{2}+m N p+m N+m\right)$

Cholesky Decomposition Implementation

1: procedure $(\mathrm{CHOL}-E n K F)\left(\mathbf{X}, \mathbf{X}^{\prime}, \mathbf{H} \mathbf{X}^{\prime}, \mathbf{D}, \mathbf{E}\right)$
2: $\quad \mathbf{R} \leftarrow \frac{1}{N-1} \operatorname{diag}\left(\mathbf{E E}^{T}\right)$
3: $\quad \mathbf{Q} \leftarrow(N-1) \mathbf{I}+\left(H X^{\prime}\right)^{T} \mathbf{R}^{-1}\left(\mathbf{H} \mathbf{X}^{\prime}\right)\left(m N^{2}\right)$
4: $\quad \mathbf{L L}^{T} \leftarrow \mathbf{C H O L E S K Y M}(\mathbf{Q})\left(N^{3}\right)$
5: $\quad \mathbf{Z} \leftarrow\left(\mathbf{H} \mathbf{X}^{\prime}\right)^{T} \mathbf{R}^{-1} \mathbf{D}\left(m N^{2}\right)$
6: $\quad \mathbf{W} \leftarrow \mathbf{Q}^{-1} \mathbf{Z}\left(N^{3}\right)$
7: $\quad \mathbf{M} \leftarrow \mathbf{R}^{-1}\left[\mathbf{I}-\left(\mathbf{H} \mathbf{X}^{\prime} \mathbf{W}\right)\right]\left(m N^{2}\right)$
8: $\quad \mathbf{Z} \leftarrow\left(\mathbf{H X}^{\prime}\right)^{T} \mathbf{M}\left(m N^{2}\right)$
9: $\quad \mathbf{X}^{a} \leftarrow \mathbf{X}+\frac{1}{N-1} \mathbf{X}^{\prime} \mathbf{Z}\left(n N^{2}\right)$
10: return \mathbf{X}^{a}
11: end procedure
Computational cost: $O\left(N^{3}+n N^{2}+m N^{2}\right)$

Sherman Morrison Implementation

```
    1: procedure \((M F-E n K F)\left(\mathbf{X}, \mathbf{X}^{\prime}, \mathbf{H X}, \mathbf{D}, \mathbf{E}\right)\)
    2: \(\quad \mathbf{R} \leftarrow \operatorname{diag}\left(\mathbf{E} \mathbf{E}^{T}\right)\)
    3: \(\quad\) call \(\mathbf{S M}\left(\mathbf{R}, \mathbf{H X}^{\prime}, \mathbf{H X}^{\prime}, \mathbf{d}_{1}, \mathbf{z}_{1}\right)\left(m N^{2}\right)\)
    4: \(\quad \mathbf{w} \leftarrow \mathbb{X}^{\prime}\left(\mathbf{H} \mathbf{X}^{\prime}\right)^{T} \mathbf{z}_{1}(n N)\)
    5: \(\quad \mathbf{x}_{1}^{a} \leftarrow \mathbf{x}_{1}+\mathbf{w}(n)\)
    6: \(\quad\) for do \(i \leftarrow 2, \ldots N\) do
    7: \(\quad\) call SIMPLIFIED \(\left(\mathbf{R}, \mathbf{H} \mathbf{X}^{\prime}, \mathbf{d}_{i}, \mathbf{z}_{i}\right)(m N)\)
        \(\mathbf{w} \leftarrow \mathbf{X}^{\prime}\left(\mathbf{H} \mathbf{X}^{\prime}\right)^{T} \mathbf{z}_{i}(n N)\)
        \(\mathbf{x}_{1}^{a} \leftarrow \mathbf{x}_{i}+\mathbf{w}(n)\)
10: end for
11: return \(\mathbf{X}^{a}\)
12: end procedure
Computational cost: \(O\left(m N^{2}+n N+m N+n\right)\)
```


Thanks!

UNIVERSIDAD

References

目 Godinez，H．C．and Moulton，J．D．（2012）．An efficient matrix－free algorithm for the ensemble Kalman filter．Computational Geosciences， 16（3）：565－575．

目 Kalman，R．（1960）．A New Ap proach to Linear Filtering and Prediction Problems．Journal of Basic Engineering，21（2）：125－147．

国 Kalman，R．E．and Bucy，R．S．（1961）．New Results in Linear Filtering and Prediction Theory．Journal of Basic Engineering，83（1）：95．

R－Majda，A．J．and Tong，X．T．（2018）．Performance of Ensemble Kalman Filters in Large Dimensions．Communications on Pure and Applied Mathematics，71（5）：892－937．

目 Mandel，J．（2006）．Efficient Implementation of the Ensemble Kalman Filter．（231）：CCM Report 231.
Segers，A．（2002）．Data assimilation in atmospheric chenfistry）models using Kalman filtering．PhD thesis，Delft University，Netherlands．

Sherman-Morrison Solver

Sherman-Morrison solver as described in Evensen 1994 y Maponi 2007.

1: procedure $(\mathrm{SM})\left(\mathbf{A}_{0}, \mathbf{U}, \mathbf{V}, \mathbf{b}, \mathbf{x}\right)$
2: \quad Solve $\mathbf{A}_{0} \mathbf{x}_{0} \leftarrow \mathbf{b}$
3: \quad Solve $\mathbf{A}_{0} \mathbf{y}_{0, k} \leftarrow \mathbf{u}_{k}$ for $k \leftarrow 1, \ldots, N$
4: \quad for doi$\leftarrow 1 \ldots, N-1$
5:

$$
\mathbf{x}_{i} \leftarrow \mathbf{x}_{i-1}-\frac{\mathbf{v}_{i}^{\top} \mathbf{x}_{i-1}}{1+\mathbf{v}_{i}^{\top} \mathbf{y}_{i-1, i}} \mathbf{y}_{i-1, i}
$$

6: \quad for $\operatorname{do} k \leftarrow i+1, \ldots, N$
7:

$$
y_{i, k} \leftarrow y_{i-1, k}-\frac{\mathbf{v}_{i}^{\top} \mathbf{y}_{i-1, k}}{1+\mathbf{v}_{i}^{\top} \mathbf{y}_{i-1, i}} \mathbf{y}_{i-1, i}
$$

8: end for
9: \quad end for
10: $\quad \mathbf{x}_{N} \leftarrow \mathbf{x}_{N-1}-\frac{\mathbf{v}_{N}^{\top} \mathbf{x}_{N-1}}{1+\mathbf{v}_{N}^{\top} \mathbf{y}_{N-1, N}} \mathbf{y}_{i-1, i}$
11: return \mathbf{x}
12: end procedure

Simplified Sherman-Morrison Solver Subsequent Right-hand Sides

1: procedure (SIMPLIFIED) $\left(\mathbf{A}_{0}, \mathbf{V}, \mathbf{b}, \mathbf{x}\right)$
2: \quad Solve $\mathbf{A}_{0} \mathbf{x}_{0} \leftarrow \mathbf{b}$
3: \quad for do $i \leftarrow 1, \ldots, N$
4: $\quad \mathbf{x}_{i} \leftarrow \mathbf{x}_{i-1}-\frac{\mathbf{v}_{i}^{\top} \mathbf{x}_{i-1}}{1+\mathbf{v}_{i}^{\top} \mathbf{y}_{i-1, i}} \mathbf{y}_{i-1, i}$
5: end for
6: return \mathbf{x}
7: end procedure

