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Abstract—In this work we present the methodology and results
coming from the application of the Wavelet-Galerkin method on a
second order linear ordinary differential equation with constant
coefficients. The classical scaling and mother wavelet functions
are used to find a proper approximation for the studied case.
Through this article several algorithms are displayed in order
to make a posterior implementation of the method. Finally, the
approximate curve and errors for a particular case are analyzed
using the proposed methodology to show the method potential
and behavior.
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I. INTRODUCTION

The development of methods able to result into approxima-
tions of differential equations, ordinary and partial, is certainly
a subject of general interest in the industry and academic
society since usually they describe processes underlying real
phenomena whose mathematical description and simulation are
generally use to increase its profitableness or to understand
its behavior; nevertheless, these approximations usually seek
to satisfy certain conditions related to the good behavior
of the solution as the time increases or to the initial and
boundary conditions imposed. Therefore, these methods must
be improved or new others introduced so that an equilibrium
between performance accuracy and computational resources
can be reached.

The wavelets are a mathematical object whose properties,
such as orthogonality, compact support, good representation
of polynomials and ability to represent functions at different
levels of resolution [2] are desirable and useful when deal-
ing with basis for a Galerkin approach to solve differential
equations. The study of techniques based on wavelets has
let the introduction of a new family of numerical methods
whose computational requirements are considerably less than
those by finite differences and finite elements; nonetheless, the
implementation of such methods is not arbitrary and depends
upon whether it is computable or not and the quality of the
discretized scheme. By the exploitation of the properties of the
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wavelet basis functions one wants to find simpler ways to solve
the integral operations associated to the method [10] coming
from the need to determinate the values of inner products
required to evaluate the method results.

The wavelet yield to the construction of mathematical models
similar to those coming from the variational calculus, which
deals with maximization or minimization of functionals, and
have generated a great interest due to its properties. On one
side, the theorical research on this subject has increased widely
since the introduction of the Haar system [3], due to the
Hungarian mathematician Alfred Haar around 1910, which
allowed to represent a target function over an interval in
terms of an orthogonal function basis, but it had the disad-
vantage of not being continuous and therefore not differential,
both essential conditions to be satisfied in further and more
complex analysis. Later in 1988, the Belgian physicist Ingrid
Daubechies proposed the construction of orthogonal wavelets
with compact support and proves some of their most relevant
properties, including the possibility to compute their connec-
tion coefficients. In terms of the Galerkin method, wavelet
basis functions are considerably practical as a result of their
characteristics and therefore the test function is considered as
a linear combination of a wavelet basis.

On the other hand, as a mathematical tool, wavelets can be
used to extract information from many different kinds of data,
to compress it and are also used to represent a wide variety
of curves and surfaces in CADD (computer-aided design and
drafting) softwares, hence are of great interest in Applied
mathematics and Engineering [9]. Thus, in terms of practical
applications and theorical use potential the improvement and
exploration of this method, especially as capable to produce
enhancement on the numerical methods to approximate the
solution of differential equations, is of high significance.

When applying this last method to solve ordinary or partial dif-
ferential equations some improper integrals, known as connec-
tion coefficients, result as terms in its equations, but when it is
related to a bounded interval then produces proper connection
coefficients [10]. Either way, it is necessary to compute these
coefficients, whose analytical solution has not been found and
whose numerical one requires the use of complex algorithms
in order to approximate them. Thus, several techniques have
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been proposed, which take advantage of the nature of the basis
functions to build series approximations for later calculations
via algorithms for several functionals. In a first stage, Latto
et al. [4], give a first approach to the calculation of these
coefficients by imposing periodic boundary conditions and
deriving a formula to compute the moments by induction but
he provides connection coefficients only for two cases. Later,
Mishra [7], Lin [5], Popovici [8] and others worked on the
same subject and were able to extend the computations for all
the cases under different techniques.

II. PROBLEM STATEMENT

Let L be a differential operator defined on the real numbers
set over the L2([0, 1]) space, which denotes the Hilbert space
of square integrable functions on [0, 1] and f a given function.
The problem is to find an approximate solution of the equation

Lu = f on R,
with Dirichlet boundary conditions
u(0) = a, u(1) = b, {a, b} ∈ R

(1)

The Galerkin technique consists of considering φi as a base
of L2([0, 1]) and every φi satisfying C2 on [0, 1] such that
φi(0) = a, φi(1) = b, u0 with Λ as a finite set of indices i
and S the subspace span{φi : i ∈ Λ} so that

〈Lu0 − f, φi〉 = 0, ∀i ∈ Λ (2)

then it follows that Lu0−f = 0 in L2([0, 1]) and therefore u0

is a solution for the problem (1). Letting ũ be the approximate
solution of the given problem of the form (3) such that (2)
is satisfied, that is to make the residue R = Lũ − f to be
orthogonal to the chosen base on R.

ũ =
∑
k∈Λ

akφk (3)

The Galerkin-Wavelet method takes Ψj,k(x) = φ(x) =
2j/2Ψ(2jx − k) as a wavelet basis for L2([0, 1]) satisfying
the boundary conditions Ψj,k(0) = Ψj,k(1) = 0,∀j, k ∈ Λ.
Such Ψj,k ∈ R is defined as a family of functions through
scaling by a certain factor of a function Ψ ∈ L2(R). Now,
replacing the last expression into (3) then

ũ =
∑
j,k∈Λ

aj,kΨj,k. (4)

Notice that (2) can also be written as

〈Lũ, φi〉 = 〈 f, φi〉, ∀i ∈ Λ, substituing ũ∑
j,k∈Λ

〈LΨj,k,Ψl,m〉aj,k = 〈 f,Ψl,m〉, ∀l,m ∈ Λ

As commented before, the Daubechies wavelets play a fun-
damental role in the construction of aj,k and Ψj,k since they
form a compactly supported orthonormal base which includes
members from highly localized to highly smooth frequency.

Such wavelets are determined by a set of N coefficients (genus
of Daubechies wavelet) {pk : k = 0, 1, . . . , N−1}, pk denoted
as wavelet filter coefficients, through the relation

ϕ(x) =

N−1∑
k=0

√
2akϕ(2x− k), supp(ϕ) = [0, N − 1] (5)

and the equation

Ψ(x) =

1∑
k=2−N

(−1)k
√

2a1−kϕ(2x−k), supp(Ψ) = [1−N2 ,
N
2 ]

(6)
where ϕ(x) and Ψ(x) are called scalling function and mother
wavelet respectively. The factor

√
2 is conventionally used to

assure that both (5) and (6) are normalized to have sum
√

2
by taking

∑N−1
i=0 ai =

√
2.

In order to compute this last pair of functions for k ∈ [0, N−1]
and k ∈ [2 − N, 1] respectively it is necessary, in both
cases, to count with the aaa = {a0, a1, . . . , aN−1} Daubechies
coefficients and N initial values for ϕ(x), specifically in
x = 0, 1, 2, . . . , N−1. These initial values are the components
of the corresponding eigenvector for the eigenvalue 1 coming
from the system formed after evaluating the scaling function
for those values.

For instance, for N = 6, then (5) and (6) assume the folowing
recursive form:

ϕ(x) =

5∑
k=0

√
2akϕ(2x− k),

Ψ(x) =

1∑
k=−4

(−1)k
√

2a1−kϕ(2x− k),

supp(ϕ) = [0, 5]

supp(Ψ) = [−2, 3]

Evaluating for different values of x in the ϕ−support and
having in mind that in this case ϕ(x) = 0 for x 6∈ supp(ϕ)
then:

x = 0, ϕ(0) =
√

2(a0ϕ(0))

x = 1, ϕ(1) =
√

2(a0ϕ(2) + a1ϕ(1) + a2ϕ(0))

x = 2, ϕ(2) =
√

2(a0ϕ(4) + a1ϕ(3) + a2ϕ(2)

+a3ϕ(1) + a4ϕ(0))

x = 3, ϕ(3) =
√

2(a2ϕ(5) + a3ϕ(4) + a4ϕ(3)

+a5ϕ(2))

x = 4, ϕ(4) =
√

2(a3ϕ(5) + a4ϕ(4) + a5ϕ(3))

x = 5, ϕ(5) =
√

2(a5ϕ(5))

(7)

This way the system of linear equations with the vector ϕϕϕ =
[ϕ(0), ϕ(1), . . . , ϕ(5)] as unknown variables is formed:
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ϕϕϕ =
√

2


a0 0 0 0 0 0
a2 a1 a0 0 0 0
a4 a3 a2 a1 a0 0
0 a5 a4 a3 a2 a1

0 0 0 a5 a4 a3

0 0 0 0 0 a5

ϕϕϕ
⇒ λϕϕϕ = Aϕϕϕ

This system corresponds to an eigenvalue problem with λ = 1
and A as the coefficients matrix, thus by solving it further
values of the scaling and mother wavelet function can be
computated.

This way, depending on the scale and wavelet order, the
scaling and mother wavelet function acquires different shapes;
nevertheless, the Daubechies wavelets are not possible to write
down in a closed form, hence it is required to implement a
recursive method as the following to computate them.

Algorithm 1 ϕ and Ψ computation

1: Read N , scale
2:
3: aaa ← daubechiesCoffs
4: ϕϕϕ0 ← initialValues
5: x ← 0
6: cont ← 1
7: while x ∈ supp(ϕ) do
8: ϕϕϕcont ← varPhi(x,N,ϕϕϕ0, a)
9: cont ← cont+1

10: x ← x+ scale
11: end while
12:
13: y ← 1−N/2
14: cont ← 1
15: while y ∈ supp(Ψ) do
16: ΨΨΨcont ← Psi(x,N,ϕϕϕ0, aaa)
17: cont ← cont+1
18: y ← y + scale
19: end while

Algorithm 2 Psi delivers value

1: Read N , y, aaa, ϕϕϕ0

2:
3: temp ← 0
4: k ← 2−N
5: while k ∈ supp(Ψ) do
6: temp← temp+

√
2∗(−1)k+1∗aaa(2−k)∗varPhi(2y−

k,N,ϕϕϕ0, aaa)
7: k ← k+1
8: end while
9: value ← temp

Algorithm 3 varPhi delivers value

1: Read N , x, aaa, ϕϕϕ0

2:
3: temp ← 0
4: conj ← [0, N − 1] ∩ Z
5: if x ∈ conj then
6: varPhi ← aaa(x)
7: else
8: k ← 0
9: while k ∈ supp(ϕ) do

10: if 2x− k ∈ supp(ϕ) then
11: temp ← temp+

√
2 ∗aaa(k+ 1) ∗ varPhi(2x−

k,N,ϕϕϕ0, aaa)
12: end if
13: k ← k+1
14: end while
15: end if
16: value ← temp

A series of graphs of the scaling and mother wavelet function
gotten using the previous algorithms are given in the Figures
for N = 6, N = 12 and N = 20, respectively, setting the
“scale” parameters as 2−3.

Fig. 1: Scaling and Wavelet functions for DN6

Figures 1, 2 and 3 show how, after fixing the “scale” parameter,
the curves get smoother and the vanishing moments increase
with the wavelet genus.
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Fig. 2: Scaling and Wavelet functions for DN12

Fig. 3: Scaling and Wavelet functions for DN20

Now, if the differential operator in (1) is nonlinear with
possible variable coefficients it is highly probable that the n-
term connection coefficients [1], denoted as Ωd1,...,dnk1,...,kn

, come
out as

Ωd1,...,dnk1,...,kn
:=

∫ ∞
−∞

ϕd1
k1 · · ·ϕ

dn
kn
dx =

∫ ∞
−∞

n∏
i=1

ϕdikidx (8)

where the super indices d1, . . . , dn denote n derivatives of (5)
and ϕk(x) = ϕ(x−k) was introduced to improve the notation;
however, in this article only the case where L is a second order
linear differential operator with constant coefficients will be
studied. Therefore, (8) turns into

Ωd1,d2k1,k2
:=

∫ ∞
−∞

ϕd1
k1ϕ

d2
k2
dx =

∫ ∞
−∞

ϕd1(x− k1)ϕd2(x− k2)dx

(9)
Notice that this integral can be taken into a simpler form by
making a change of variables. Let z = x− k1 in the first term
in the integral, so that x− k2 = z − (k1 − k2) and dz = dx.

Ωd1,d2k1,k2
=

∫ ∞
−∞

ϕd1(z)ϕd2(z − (k1 − k2))dz

=

∫ ∞
−∞

ϕd1(z)ϕd2(z − l)dx, l = k1 − k2

= Ωd1,d20,l

(10)

In order to calculate the 2-term connection coefficients for
unbounded intervals Latto et. al [4] proposed a procedure to
do so. Relying on it the bounded case is also provided on
expanding the domain by adding 1 − N points to the left
and N − 1 to the right. Such technique creates “Fictitious
Boundaries” [6] leaving the original interval unaffected.

On one hand, let Λd1,d2 be the column vector with the 2N−3
connection coefficients from (10). On the other hand, taking
the respective d derivatives of (5) then

ϕd =

(N−1∑
k=0

√
2akϕk(2x)

)(d)

=

(
2

N−1∑
k=0

√
2akϕ

′

k(2x)

)(d−1)

= · · ·

= 2d
N−1∑
k=0

√
2akϕ

(d)
k (2x)

(11)

Replacing this last equation into (10) and making the proper
simplifications gives the system of linear equations:(

T − 1
2d−1 I
Md

)
Λd1,d2 =

(
000
d!

)
(12)

where d := d1 + d2, Tl:q =
∑
i aiaq−2l+i, Md a row vector

with all the M j
i , which are the moments of ϕi defined as
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M j
i =

∫ ∞
−∞

xjϕi(x)dx

=
1

2(2j − 1)

j∑
k=0

a

(
j

k

)
ij−k

k−1∑
l=0

(
k

l

)
M l

0

(N−1∑
i=0

aii
k−l

)
(13)

satisfying M0
0 = 1 and d! = (−1)d

∑
lM

d
l Λ0,d

l .

Notice how the connection coefficients can also be computed
over the dilated and translated scaling, thus mother wavelet
function by ϕj,k(x) = 2j/2ϕ(2jx − k). In such case the
parameter “j” is called the wavelet resolution.

In order to find the vector Λd1,d2 the following Algorithm
based on Jordi [1] is executed.

Algorithm 4 Λd1,d2 computation

1: Read N , j, d1, d2

2: aaa ← daubechiesCoffs
3: L ← [2−N,N − 2] ∩ Z
4: T ← null matrix of order (2N − 3)
5: l ← 1
6: for l = 1 : 2N − 3 do
7: for q = 1 : 2N − 3 do
8: for p = 1 :≤ N do
9: index ← L(q)− 2L(l) + p

10: if index ∈ [1, N ] then
11: Tl,q ← Tl,q + aaa(p) ∗ aaa(index)
12: end if
13: end for
14: end for
15: end for
16: Complete T with − 1

2d−1 ∗ I
17: for i = 1 : 2N − 3 do
18: Md,j

i ← 1
2(2j−1)

∑j
k=0 a

(
j
k

)
ij−k

∑k−1
l=0

(
k
l

)
M l

0

(∑N−1
i=0 aii

k−l
)

19: end for
20: A ←

(
T − 1

2d−1 I
Md

)
21: Λd1,d2 ← A−1

(
000
d!

)

The Tables I, II and III give us the 2-term connection coeffi-
cients for different instances. It is clear that as N increases,
then the dimension of the vector increases as well, therefore we
only present the cases N = 6, N = 12 and N = 20 making
variations on the wavelet resolution j and on d in order to
build a correspondence with the Figures (1), (2) and (3), and
further applications of the method.

Λ0,2 N = 6, j = 0 N = 6, j = 7

Ω−4 5.357142857141725e− 03 8.777142857143009e+ 01
Ω−3 1.142857142857160e− 01 1.872457142857140e+ 03
Ω2 −8.761904761904885e− 01 −1.435550476190474e+ 04

Ω−1 3.390476190476218e+ 00 5.554956190476182e+ 04
Ω0 −5.267857142857142e+ 00 −8.630857142857110e+ 04
Ω1 3.390476190476168e+ 00 5.554956190476169e+ 04
Ω2 −8.761904761904653e− 01 −1.435550476190469e+ 04
Ω3 1.142857142857138e− 01 1.872457142857137e+ 03
Ω4 5.357142857143558e− 03 8.777142857143159e+ 01

TABLE I: 2-term Connection Coeffi-
cients holding N = 6, and d = 2

Λ0,2 N = 12, j = 0 N = 6, j = 4

Ω−10 −1.264106326542370e− 11 −3.23591924701283e− 09
Ω−9 2.629981125547020e− 08 6.73275165333709e− 06
Ω−8 −3.466086045922270e− 06 −8.87318028238585e− 04
Ω−7 −5.436337907592100e− 05 −1.39170250435023e− 02
Ω−6 −6.569629078471730e− 05 −1.68182504410154e− 02
Ω−5 6.478061041939120e− 03 1.65838362673747e+ 00
Ω−4 −4.936161063949490e− 02 −1.26365723237153e+ 01
Ω−3 2.049054694327110e− 01 5.24558001747858e+ 01
Ω−2 −6.307332429628940e− 01 −1.61467710198545e+ 02
Ω−1 2.311866563670020e+ 00 5.91837840299610e+ 02
Ω0 −3.686063482147190e+ 00 −9.43632251429710e+ 02
Ω1 2.311866563670230e+ 00 5.91837840299530e+ 02
Ω2 −6.307332429630140e− 01 −1.61467710198498e+ 02
Ω3 2.049054694327380e− 01 5.24558001747739e+ 01
Ω4 −4.936161063950230e− 02 −1.26365723237108e+ 01
Ω5 6.478061041938850e− 03 1.65838362673669e+ 00
Ω6 −6.569629078488790e− 05 −1.68182504409452e− 02
Ω7 −5.436337907648730e− 05 −1.39170250435045e− 02
Ω8 −3.466086045906120e− 06 −8.87318027686452e− 04
Ω9 2.629981090495320e− 08 6.73275165380982e− 06
Ω10 −1.264104968290450e− 11 −3.23605654884550e− 09

TABLE II: 2-term Connection Coeffi-
cients holding N = 12, and d = 2

III. TEST PROBLEM

Consider the differential operator in (1) of the form

Lu := u′′ + p1u
′ + p2u = 0

u(0) = a, u(1) = b, x ∈ [0, 1]
(14)

where {p1, p2, a, b} ∈ R.

Λ0,2 N = 12, j = 0 Λ0,2 N = 6, j = 4

Ω−18 3.928343e− 15 Ω1 2.175217e+ 00
Ω−17 −3.486099e− 16 Ω2 −6.066894e− 01
Ω−16 2.858395e− 15 Ω3 2.546974e− 01
Ω−15 −2.399663e− 13 Ω4 −1.054297e− 01
Ω−14 −5.015915e− 11 Ω5 3.758004e− 02
Ω−13 −2.219929e− 09 Ω6 −1.078072e− 02
Ω−12 6.114256e− 09 Ω7 2.357271e− 03
Ω−11 1.222971e− 07 Ω8 −3.693880e− 04
Ω−10 −2.579303e− 06 Ω9 3.852452e− 05
Ω−9 3.852452e− 05 Ω10 −2.579303e− 06
Ω−8 −3.693880e− 04 Ω11 1.222971e− 07
Ω−7 2.357271e− 03 Ω12 6.114256e− 09
Ω−6 −1.078072e− 02 Ω13 −2.219929e− 09
Ω−5 3.758004e− 02 Ω14 −5.015874e− 11
Ω−4 −1.054297e− 01 Ω15 −2.399884e− 13
Ω−3 2.546974e− 01 Ω16 2.821739e− 15
Ω−2 −6.066894e− 01 Ω17 −3.799108e− 16
Ω−1 2.175217e+ 00 Ω18 −3.640745e− 16

Ω0 −3.493238e+ 00

TABLE III: 2-term Connection Coeffi-
cients with N = 20, and d = 2
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Letting ũ be an approximate solution of homogeneous second
order linear ordinary differential equation (14) of the form (4)
and using the wavelet basis of level N and resolution j for
such approximation then

ũ(x) =

2j∑
k=1−N

ck2j/2ϕ(2jx− k) =

2j∑
k=1−N

ckϕj,k(x), (15)

where the ck coefficients are unknown. Therefore, letting ũ =
u and putting this last expression into (14) then

d2

dx2

( 2j∑
k=1−N

ckϕj,k(x)

)
+ p1

d

dx

( 2j∑
k=1−N

ckϕj,k(x)

)

+ p2

2j∑
k=1−N

ckϕj,k(x) = 0

(16)

2j∑
k=1−N

ck22jϕ′′j,k(x) + p1

2j∑
k=1−N

ck2jϕ′j,k(x)

+p2

2j∑
k=1−N

ϕj,k(x) = 0

Multiplying this last expression by ϕj,n(x) and taking inner
product on both sides then

2j∑
k=1−N

ck22j

∫ ∞
−∞

ϕj,nϕ
′′
j,kdx+ p1

2j∑
k=1−N

ck2j
∫ ∞
−∞

ϕj,nϕ
′
j,kdx

+ p2

2j∑
k=1−N

ck

∫ ∞
−∞

ϕj,nϕj,kdx = 0

(17)

Since supp(ϕ) = [0, N − 1] the integral turns into∫ ∞
−∞

ϕj,nϕ
d
j,kdx =

���
���

��:0∫ 0

−∞
ϕj,nϕ

d
j,kdx+

∫ N−1

0

ϕj,nϕ
d
j,kdx+

���
���

��:0∫ ∞
N−1

ϕj,nϕ
d
j,kdx =

Ω0,d
k,n := Ω0,d

0,k−n
(18)

Define δk,n(x) as δk,n(x) =
∫∞
−∞ ϕj,kϕj,ndx =∫ N−1

0
ϕj,kϕj,ndx as the Kronecker delta. This way we

arrive at

2j∑
k=1−N

ck22j

∫ N−1

0

ϕ′′j,kϕj,ndx+ p1

2j∑
k=1−N

ck2j

∫ N−1

0

ϕj,nϕ
′
j,kdx

+ p2

2j∑
k=1−N

ck

∫ N−1

0

ϕj,nϕj,kdx = 0⇒

2j∑
k=1−N

ckΩ0,2
0,k−n + p1

2j∑
k=1−N

ckΩ0,1
0,k−n + p2

2j∑
k=1−N

ckδk,n = 0

(19)
Making use of the boundary conditions u(0) = a and u(1) = b
under (15) then

u(0) =

2j∑
k=1−N

ck2j/2ϕ(−k) = a →

u(1) =

2j∑
k=1−N

ck2j/2ϕ(2j − k) = b→

2j∑
k=1−N

ck2j/2δk,n(0) = a

2j∑
k=1−N

ck2j/2δk,n(1) = b

(20)

Notice that for each k, n with k − n = −N + 2,−N +
3, . . . , 0, . . . , N − 3, N − 2 we can build a linear system
TC = B where T is a squared 2N − 3 diagonal matrix of
size 2j + (N − 1), whose elements are the values of Λ0,2 (2-
term connection coefficients) along with the parameters p1 and
p2 depending on k and n, CT = [c1−N , c2−N , . . . , c2j−1, c2j ]
and B is a vector with almost all of its elements as zero but
those corresponding to the boundary conditions, i.e., BT =
[a, 000︸︷︷︸

1 x 2j+(N−3)

, b].

It is clear that the wavelet resolution determines how many
points will be deployed in the approximation. This way, the
interval [0, 1] of length 1 will be partitioned by sub-intervals
of length 1/2j . Now, as j is incremented then

lim
j→∞

(
1− 1

2j

)
= 1−HHH

HHj0

lim
j→∞

(
1
2j

)
= 1

Therefore we need at least the parameter “j” to be 7 to obtain
an adequate representation of the exact solution for Equation
14, which relies on the equation parameters p1 and p2. Such
closed-form solution hangs on whether the discriminant of the
corresponding characteristic equation r2 + p1r + p2 = 0 is
positive, negative or zero, i.e, p2

1 − 4p2 > 0, < 0,= 0.

As an example of the Wavelet-Galerkin method develop so far
we perform the simplest case j = 0 and N = 6, in which
instance the system TC = B follows the below handmade
structure, where the first part of (20) has been used to introduce
the first and last row of T .

Setting j = 0 and N = 6, we seek for an approximation of
the form

u =

20∑
k=1−6

ck20/2ϕ(20x− k) =

1∑
k=−5

ckϕ(x− k) (21)

and therefore for T , C and B satisfying the mentioned condi-
tions concerning dimensionality and building. In this fashion
we get
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T =



0 ϕ(4)
Ω0,2

1 + p1Ω0,1
1 Ω0,2

0 + p1Ω0,1
0 + p2

Ω0,2
2 + p1Ω0,1

2 Ω0,2
1 + p1Ω0,1

1

Ω3 + p1Ω0,1
3 Ω0,2

2 + p1Ω0,1
2

Ω4 + p1Ω0,1
4 Ω0,2

3 + p1Ω0,1
3

Ω0,2
5 + p1Ω0,1

5 Ω0,2
4 + p1Ω0,1

4

0 0

(22)

ϕ(3) ϕ(2)
Ω0,2
−1 + p1Ω0,1

−1Ω0,2
−5 + p1Ω0,1

−5 Ω0,2
−2 + p1Ω0,1

−2

Ω0,2
0 + p1Ω0,1

0 + p2Ω−4 + p1Ω0,1
−4 Ω0,2

−1 + p1Ω0,1
−1

Ω0,2
1 + p1Ω0,1

1 Ω−3 + p1Ω0,1
−3 Ω0,2

0 + p1Ω0,1
0 + p2

Ω0,2
2 + p1Ω0,1

2 Ω0,2
−2 + p1Ω0,1

−2 Ω0,2
1 + p1Ω0,1

1

Ω0,2
3 + p1Ω0,1

3 Ω0,2
−1 + p1Ω0,1

−1 Ω0,2
2 + p1Ω0,1

2

ϕ(4) ϕ(3)

ϕ(1) 0 0
Ω0,2
−3 + p1Ω0,1

−3 Ω0,2
−4 + p1Ω0,1

−4 Ω0,2
−5 + p1Ω0,1

−5

Ω0,2
−2 + p1Ω0,1

−2 Ω0,2
−3 + p1Ω0,1

−3 Ω−4 + p1Ω0,1
−4

Ω0,2
−1 + p1Ω0,1

−1 Ω0,2
−2 + p1Ω0,1

−2 Ω−3 + p1Ω0,1
−3

Ω0,2
0 + p1Ω0,1

0 + p2 Ω0,2
−1 + p1Ω0,1

−1 Ω0,2
−2 + p1Ω0,1

−2

Ω0,2
1 + p1Ω0,1

1 Ω0,2
0 + p1Ω0,1

0 + p2 Ω0,2
−1 + p1Ω0,1

−1

ϕ(2) ϕ(1) 0


with CT = [c−5 c−4 c−3 c−2 c−1 c0 c1] and

BT = [1 0 0 0 0 0 0]. Solving C = T−1B we get

C =



−0.9972
−0.8776

0.1279
1.0543
1.0870
0.2479
−0.5059

 (23)

This particular case has the exact solution u(x) = cos(x) −
cot(1) sin(x), hence the absolute error can be computed. We
showthe the results in Figure 4.

Nevertheless, for more complex cases the matrices 22 and 23
cannot be displayed since their sizes is considerably large.
Besides, it is reasonable to think that they might not be well
conditioned for several instances; in such cases, the parameters
should be changed to achieve more reliable solutions.

Next, further results obtained via computational computation
after fixing “j” as 8, letting N = 6 are presented in Figures 5,
6, ?? and 9. Several runs are executed with different Dirichlet
conditions and p−coefficients in order to explore the method
capability.

The studied cases applying the method are the following. These
instances are the most representative since for case 1, 3 and 2,
and 4 the discriminant satisfies > 0,= 0, < 0 correspondingly.

Case p1 p2 a b

1 1 −1 2 −1
2 0 (9.5π)2 2 −1
3 5 6 1 1
4 3 25 1 1

TABLE IV: Computated cases

Fig. 4: Scaling and Wavelet functions for DN6

Fig. 5: Method results for case 1
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Fig. 6: Method results for case 2

Fig. 7: Method results for case 3

Fig. 8: Method results for case 4

Fig. 9: Method results for case 2 with j = 6
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In general the approximate solutions are well posed and their
behavior or shape is similar to the exact one. On one hand, for
instance, for the case results displayed in Figures 5 and 6 we
see that the error has a scale of ∗10−5, hence providing a good
approximation for the differential equation. On the other hand,
regarding the non-positive discriminant, the errors between the
approximate and exact solutions present a decreasing error
for every minimal (valley). Such consequence of the method
performance is better observed in Figures 7 and 8, where the
sinusoidal component is softer and hence the error smaller.

Now, for the case 3, we see how the deviation takes the
exact solution form in the temporal interval. As we modify the
wavelet resolution it is expected to get worse approximations
with greater error and possible shifts, as seen in Figure 9,
where the resolution parameter was settled to 6. Nevertheless,
possible fluctuations over the wavelet level N will not im-
prove the method results since less points are considered, but
enhancing the approximations in these points for differential
equations with non-polynomial independent term f .

IV. CONCLUDING REMARKS

The Wavelet-Galerkin method was applied on the homoge-
neous second order ordinary differential equation with con-
stant coefficients with Dirichlet boundary conditions, getting
reliable results with low absolute error. The variations effect
on the method parameters was studied for that particular case,
making the proper distinctions between them. Although any
convergence or stability were introduced in this work, the low
quantity of parameters, as well as their explanation, let set
a pair of boundedness conditions concerning the parameters.
About the consistency aspect of the method we can say that
such condition is satisfied since the method seems not to
have any contradictions. In general, the method also provides
good approximations with simple forms for the L differential
operator; nonetheless, using the methodology here introduced
and developed it is possible to computate more complex cases
and even consider independents terms that can be represented
using series expansion and taking advantage of the moments
function M (13).

Finally, we can introduce Neumann, mixed or even Robin
boundary conditions in the problem (1) and exploit the method
adequacy. Additionally, we are able to computate the con-
nection coefficients for greater values of d1 and d2, letting
solve non-linear combinations of the unknown function in the
initial value problem. Despite of this, a further study of the
conditionality of T is possible in (12) with regard to the system
solution related to these coefficients.
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