
RESEARCH PRACTICE 1

Detection and Diagnosis of Breast Tumors using

Deep Convolutional Neural Networks
J. D. Gallego-Posada,: D. A. Montoya-Zapata,§ and O. L. Quintero-Montoya;

Research Group on Mathematical Modeling

School of Mathematical Sciences

Universidad EAFIT

Medellı́n, Colombia

{:jgalle29, §dmonto39, ;oquinte1} @eafit.edu.co

Abstract—We present an application of deep Convolutional
Neural Networks (CNN) for the detection and diagnosis of
breast tumors. The images used in this study have been
extracted from the mini-MIAS database of mammograms. The
proposed system has been implemented in three stages: (a)
crop, rotation and resize of the original mammogram; (b)
feature extraction using a pretrained CNN model (AlexNet and
VGG); (c) training of a Support Vector Machine (SVM) at the
classification task using the previously extracted features. In this
research, the goal of the system is to distinguish between three
classes of patients: those with benign, malign or without tumor.
Experiments show that feature extraction using pretrained
models provides satisfactory results, achieving a 64.52% test
accuracy. This outcome could be improved via fine-tuning of
the final layers or training the whole network parameters.
The results of additional experiments using a sample of the
Caltech-101 database, for which a 99.38% test accuracy was
obtained, exhibit the relevance of the similarity between the
data used to train the model and the particular application
intended. Additionally, it is worth noting the impact of the
data augmentation process and the balance of the number of
examples per class on the performance of the system.

Keywords—Breast tumor, classification, mammogram, convo-
lutional neural network, support vector machine

I. INTRODUCTION

Breast cancer is the most common cancer in women and is
commonly thought to be a disease of the developed world but
nearly 50% of breast cancer cases and 58% of deaths occur in
less developed countries. It is estimated that around the world
over 508.000 women died in 2011 due to this condition.
According to the World Health Organization, detection of

breast cancer in its early stages dramatically increases the
chances of establishing a successful treatment plan [1].

As part of the current efforts to control this condition, the
development of computer-aided diagnosis systems which can
assist medical personnel with the early detection of tumors
pose a crucial alternative. In such systems a high reliability
in the accuracy of the classifier is a top priority.

In this study, the diagnosis was performed employing a
SVM trained with features extracted using AlexNet and VGG
pretrained models fed with preprocessed mammograms. Our
data source is the database of the Mammographic Image
Analysis Society (MIAS) [2].

The paper is structured as follows: in Section II we
provide a review of the application of Deep Learning
techniques to the image classification problem. Section III
presents an outline of previous studies of breast cancer de-
tection and classification using Deep Learning and Artificial
Intelligence-based approaches. In Section IV, the employed
methodologies are described. In Section V, the results of the
application of the proposed methodology using an extract
of the Caltech-101 database are shown. Next, in Section VI
the specifications of the implemented system are presented.
Finally, Section VII contains the main conclusions of this
work and some possibilities for future improvements on this
research.

II. RELATED WORK

The study of computer-aided breast cancer diagnosis has
been addressed from several perspectives. The aim of this
section is to briefly illustrate the state of the art in this field
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using artificial intelligence and additionally using strictly
Deep Learning-related techniques.

A. Analysis of Breast Cancer using Artificial Intelligence
Techniques

Alolfe et al. in 2009 used a SVM and linear discriminant
analysis to distinguish between benign and malign tumors on
the MIAS database [3]. Using this approach, they classified
90% and 87.5% of benign and malignant images correctly,
respectively. A region of interest (ROI) of 32ˆ32 pixels was
selected from the images and 224 features were extracted.
These features were divided into five groups: wavelet, first
order statistics, second order statistics, shape and fractal
dimension data. Finally, 13 features were selected with the
forward stepwise linear regression method.

Wang et al. in 2013 used the mammographies from 482
patients to compare the accuracies from an extreme learning
machine (ELM) and a SVM to classify between images with
and without tumors [4]. In the preprocessing stage a median
filter was used to reduce the noise and the wavelet trans-
formation of local modulus maxima in conjunction with the
region growing algorithm were used as edge segmentation
method. Finally, five textural features and five morphological
features were extracted from the resulting image and these
were used at the classification task. The ELM classifier
exhibited better performance than the SVM classifier.

Dheeba et al. in 2014 obtained an accuracy of 93.67%

classifying between normal and abnormal tissues with an
optimized neural network using Particle Swarm Optimiza-
tion [5]. The experiment was carried out with their private
database of mammograms and the classification was done
with the Laws Texture Energy Measures extracted from a
ROI of dimension 15ˆ 15 pixels.

Peng, Mayorga and Hussein in 2015 obtained an accuracy
of 96% using an artificial neural network to classify the
mammograms from MIAS database [6]. They defined three
different categories to carry out the experiment: normal,
with presence of a benign tumor and with presence of a
malign tumor. A median filter and the seeded region growing
algorithm were used to remove the noise of the original
images. Then, they extracted 16 features related to the texture
properties of the images and five of them were selected. The
feature selection algorithm, which is based on the rough-set
theory, was developed by the authors.

Mahersia, Boulehmi and Hamrouni in 2015 achieved
recognition rates of 97.08% and 95.42% on the MIAS

database using a neural network with a Bayesian back-
propagation algorithm and an ANFIS system as classifiers,
respectively [7]. The breasts were classified into two cate-
gories: normal and cancerous. The mammograms from this
database were first enhanced, removing the noise and details
that may interfere with the recognition of the tumors. Then a
generalized Gaussian density model for wavelet coefficients
was used as feature extractor.

B. Analysis of Breast Cancer using Deep Learning

Ertosun and Rubin in 2015 used three different architec-
tures of CNNs to locate masses in mammography images [8].
They selected 2420 images from the DDSM dataset and
divided these images into training, validation and test sets,
containing 80%, 10% and 10% of the images, respectively.
They also used cropping, translation, rotation, flipping and
scaling techniques to get an augmented training set, in order
to improve the generalization ability of the system. The
experiment was divided into two stages: the first consisted
in the classification of a mammography as containing or not
masses and the second in the localization of masses in the
images.

Arevalo et al. in 2015 obtained 86% of area under the
Receiver Operating Characteristic (ROC) curve by classi-
fying mammography mass lesions using a CNN as feature
extractor and a SVM as classifier [9]. The data to carry out
the experiment was the BCDR-F03 dataset, which is part
of the BCDR database. This data was composed by 736
images, 426 containing benign mass lesions and the rest
containing malignant lesions. The data augmentation was
achieved by flipping and rotating the images. In addition, the
mammography images were normalized by the use of global
and contrast normalization. The CNN was trained using both
dropout and max-norm regularization techniques.

Jiao et al. in 2015 obtained an accuracy of 96.7% classi-
fying the breast masses between benign and malign from the
DDSM database using a CNN as feature extractor and a SVM
as classifier [10]. The images were previously normalized
and whitened. On the other hand, the CNN was trained with
a subset of ImageNet [11] and the features to perform the
classification were extracted from two different layers of the
CNN.

Abdel-Zaher and Eldeib in 2015 developed a classifier
using the weights of a previously trained deep belief network
as the initial parameters for a neural network with Liebenberg
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Marquardt learning function [12]. This model was tested on
the Wisconsin Breast Cancer Dataset, obtaining an accuracy
of 99.68%.

III. DEEP LEARNING FOR IMAGE CLASSIFICATION

This section is based on the works from Guo et al. [13]
and LeCun et al. [14].

Around 2006, the results obtained by a group of re-
searchers working together in parallel projects in the Cana-
dian Institute for Advanced Research renovated the interest
of the community for the deep neural networks. The main
four works [15–18], introduced unsupervised learning proce-
dures to pure supervised learning procedures. The objective
of each layer in the neural network was to learn the inputs
of the previous layer [14]. This approach performed well in
comparison with the existent artificial intelligence techniques
in tasks such as recognizing handwritten digits, specially
when the amount of labeled data was limited [19].

Since the rise of Deep Learning, the CNN model outper-
formed the fully connected neural networks in tasks related to
natural image classification. However, this approach was not
seriously used at classification problems until 2012. During
six years in which CNNs were laid aside, the methods based
on the Bag of Visual Words model, that were the state of the
art techniques for image classification, were improved by the
incorporation of spatial geometry, through the use of spatial
pyramids [20].

The turning point for image classification was 2012. In
this year, AlexNet, a CNN with five convolutional layers
and three fully connected layers developed by Krizhevsky
et al. [21], outperformed the existing methodologies and
won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012, almost halving the error rate of the
model in second place [11]. This success reflected the new
developments in graphic hardware and algorithms [14]: the
increased chip processing abilities (GPU units), the use of
Rectified Linear Unit (ReLU) as neural activation functions,
a novel regularization technique called dropout [22] and the
developments of algorithms for data augmentation.

Since the success of AlexNet in 2012, several improve-
ments of this model have been performed. In 2013, Zeiler
and Fergus established a technique to analyze the responses
of intermediate layers, what enabled them to implement
Clarifai, winning the ILSVRC [23].

In 2014, deeper architectures were finally used. VGG
[24] and GoogLeNet [25] networks obtained the second

and first place in ILSVRC, respectively. The VGG network
from Simonyan et al. [24] had 13-16 convolutional layers,
while GoogLeNet, developed by Szegedy et al. [25], had 21
convolutional layers.

In 2015, He et al. [26] proposed a model that surpassed
for the first time human-level performance on the ImageNet
2012 test dataset, with a network with the same architecture
of VGG [24]. In addition, He et al. also established a
new framework to train deeper networks called the residual
learning [27]. They developed ResNet, a 152-layers network
and won ILSVRC.

Currently, the researchers are focusing in three main
aspects to further improve the performance of Deep Learning
models [13]: (a) the implementation of larger networks:
ResNet, GoogLeNet and VGG models have shown that the
networks with a larger number of layers outperform the
simpler ones; (b) the use of multiple networks, where every
network can execute all the process independently, so the
responses of all the networks are combined in order to
obtain the final result; and (c) the introduction of external
information from other resources and the use of shallow
structures. In this aspect, one of the most important develop-
ments is Regions with CNN Features method [28], in which
the features extracted from a CNN feed a SVM.

Other research projects have focused their efforts on
getting a further understanding of what deep neural networks
learn, addressing the problem from both a theoretical and
a empirical perspective. For instance, Li et al. [29] have
recently studied convergent learning, aiming to analyze cases
in which different neural networks learn similar representa-
tions. In this work, they propose a method for quantifying
the similarity between deep neural networks and showed
that there exist basic features which are learned by multiple
networks with the same architectures but different random
initialization.

IV. THEORETICAL BACKGROUND

A. Convolutional Neural Networks

CNNs are a type of biologically-inspired feed-forward
networks characterized by a sparse local connectivity and
weight sharing among its neurons. A CNN can also be seen
as a sequence of convolutional and subsampling layers in
which the input is a set of H ˆW ˆD images, where H is
the height, W is the width and D is the number of channels
which, in the case of RGB images corresponds to D “ 3.
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Figure 1: EXAMPLE OF A CNN ARCHITECTURE. TAKEN FROM [30].

A typical convolutional layer (volume) is formed by K

filters (kernels) of size F ˆ F ˆ D, where F ď H and
F ďW . These filters are usually randomly initialized and are
the parameters to be tuned in the training process. Since the
size of the filter is generally strictly smaller than the dimen-
sions of the image, this leads to a local connectivity structure
among the neurons. Each of this convolutional volumes has
an additional hyper-parameter, S, which corresponds with the
stride that the filter is going to slide spatially in the image.

Let’s denote a particular training example as XHˆWˆD

and a convolution filter WFˆFˆD. As it is familiar from the
usual Multi-Layer Perceptron, it is customary to add a bias
term b to each of the linear combinations formed. Finally,
a (commonly non-linear) activation function, for example
ReLU, is applied to the convolution between the input image
and the kernels, which yields an activation map A of the
dimensions 1` N´F

S ˆ 1` N´F
S ˆ 1:

A “ fpX ˇW ` bq

where ˇ represents the valid convolution between the
operands and f is the activation function.

Appending the activation maps found by applying K

diferent kernels to the input example, an activation volume
of dimensions 1`N´F

S ˆ1`N´F
S ˆK is obtained. Note that

depending on the dimensions of the image, the filter and the
size of the stride, the resulting activation volume may reduce
its spatial dimensions very quickly. An alternative to control
this situation in advance is the use of padding techniques to
the original image [31].

Finally, in order to perform dimensionality reduction di-
rectly on the data, pooling layers are applied to an activation
volume or even the input image itself. These layers sub-
sample its inputs, typically with mean or max pooling, over
contiguous regions of size P ˆ P .

Figure 1 shows an example of a typical architecture for
a CNN in which two convolutional and two pooling layers

are applied to the original image. In this case, the extracted
features obtained as are fed into a fully connected layer to
perform the classification task. Note that it is possible to
change the classifier set up at the end of the network with,
for example, a SVM or a softmax classifier.

B. Back-propagation Algorithm

The summary presented in this section is heavily based
on the Unsupervised Feature Learning and Deep Learning
Tutorial [31]. For simplicity, we will illustrate the algorithm
assuming that we have a CNN with the input layer followed
by a convolutional volume, a pooling layer and finally a fully
connected layer.

Let’s denote by δpl`1q the error term in the pl`1q-th layer
in the network with labeled training data px, yq, parameters
pW, bq and cost function JpW, b;x, yq. If the l-th layer is
densely connected to the former, the error for this layer can
be computed by:

δplq “
´

pW plqqtδpl`1q
¯

¨ f 1pzplqq
where ¨ represents element-wise multiplication and f is the
activation function.

The gradients are:

∇W plqJpW, b;x, yq “ δpl`1qpaplqqt

∇bplqJpW, b;x, yq “ δpl`1q

If the l-th layer is a convolutional and subsampling layer,
then the error is propagated through as:

δ
plq
k “ upsample

´

pW
plq
k qtδ

pl`1q
k

¯

¨ f 1pzplqk q

where k indexes the filter number and the upsample function
propagates the error through the pooling layer by calculating
the error related to each input unit.
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Finally, the gradient for each filter map can be found by:

∇
W

plq

k

JpW, b;x, yq “
m
ÿ

i“1

pa
plq
i qˇ rot90pδ

pl`1q
k , 2q

∇
b

plq

k

JpW, b;x, yq “
ÿ

a,b

´

δ
pl`1q
k

¯

a,b

where aplq is the input to the l-th layer and rot90pA, kq

rotates the input array A counterclockwise by k˚90 degrees.

C. Linear Support Vector Machines

Suppose we are given a training data set of size n examples
of the form:

tpX1, y1q, pX1, y1q, ..., pXn, ynqu

where each yi is either 1 or ´1 and each Xi is a p-
dimensional vector. Thus, assuming that the data is linearly
separable, we want to find the hyperplane that separates the
group of tXiu for which yi “ 1 from those for which
yi “ ´1 so that the distance between the hyperplane and
the nearest point from either group is maximized. For that
reason, it is also called a maximum-margin classifier. This
can be formally expressed as:

minw‰0,b
1

2
||w||2

s.t. yipw
tXi ` bq ě 1 pi “ 1, 2, ..., nq

. Recall that b
||w|| represents the separation of the hyperplane

from the origin along the normal vector w when the hyper-
plane is expressed as wX ´ b “ 0.

D. Confusion Matrix

Consider a classification problem with only two classes:
positive (P) and negative (N). For every training example,
there are only four possible outcomes. If the training example
is positive and the prediction is positive, we call it a true
positive; and if the prediction is negative, it is called a
false negative. On the other hand, if the training example
is negative and it is classified as negative, it is called a true
negative; otherwise, it is a false positive. Table I displays an
example of a confusion matrix for a two-class problem.

Table I: CONFUSION MATRIX

Predicted Class

A
ct

ua
l

C
la

ss

P N

P
True

Positives

False

Negatives

N
False

Positives

True

Negatives

A confusion matrix is a tool that allows to visualize the
performance of a classifier in a supervised learning problem.
By means of this matrix it is possible to asses whether
the system is commonly confusing pairs of classes. In the
aforementioned problem, the confusion matrix summarizes
the four possible outcomes from the classifier [32].

V. PRELIMINARY EXPERIMENTS

Prior to the final implementation of our diagnosis system,
several experiments were carried out. The purpose of this
experiment was to evaluate the performance of a system with
a CNN as feature extractor and a SVM as classifier, previous
to the implementation of this strategy in our core problem.

A. Data and Data Augmentation

The images to carry out this experiment were retrieved
from the Caltech-101 database [33]. This database contains
pictures from 101 different categories. The intensity of every
pixel is between 0 and 255, in which 0 represents black and
255 represents white. For our purpose, only the images from
four categories were used: airplanes, faces, motorbikes and
watches. After the selection of these four categories, every
image belonging to these sets were flopped, so the length of
the dataset of interest was duplicated.

B. Experiment Description

From the dataset generated for the four categories of in-
terest, 100 images of each category were randomly extracted
and were divided into training (60 images) and test (40
images) sets. The extraction of the characteristics to carry out
the classification stage was done with two pretrained CNNs
on the ImageNet database [11]: AlexNet [21] and VGG-F
[34]. The features chosen were the activations of the last
convolutional layer. In addition, we selected a SVM as the
classifier, which was trained using the features obtained for
the pictures of the training set.
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Finally, the classification accuracy of the two trained
SVMs was evaluated with the 160 images (40 for each
category) corresponding to the test set.

C. Results

In Tables II and III the confusion matrices obtained using
pretrained feature extractors are presented. These confu-
sion matrices correspond to the results given by the SVM
classifier on the test set. The accuracies achieved using
VGG-F and AlexNet as feature extractors were 98.75% and
99.38%, respectively, which correspond to 158 and 159 well
classified examples, taking into account that the total number
of examples was 160. Results show that this approach of
using a SVM in conjunction with a CNN obtains a good
performs at classifying natural images.

Table II: CONFUSION MATRIX FOR CALTECH101 TEST SET
PREDICTIONS AND FEATURE EXTRACTION USING VGG.

Target

Airplanes Faces Motorbikes Watches Total

O
ut

pu
t

Airplanes 97.5 0 0 2.5 97.5

Faces 0 97.5 0 2.5 97.5

Motorbikes 0 0 100 0 100

Watches 0 0 0 100 100

Total 97.5 100 100 95.24 98.75

Table III: CONFUSION MATRIX FOR CALTECH101 TEST
SET PREDICTIONS AND FEATURE EXTRACTION USING
ALEXNET.

Target

Airplanes Faces Motorbikes Watches Total

O
ut

pu
t

Airplanes 97.5 0 0 2.5 97.5

Faces 0 100 0 0 100

Motorbikes 0 0 100 0 100

Watches 0 0 0 100 100

Total 97.5 100 100 97.56 99.38

VI. MAMMOGRAMS CLASSIFICATION

A. Data

The mammograms used for the commitment of this work
were retrieved from the database of the MIAS [2], which is
known as mini-MIAS since the images of the original MIAS
database has been reduced to 200 micron pixel edge and the
dimension of the mammograms has been fixed to 1024ˆ1024

pixels. This database contains 322 mammograms and the

intensity of every pixel is between 0 and 255. This database
also includes information about the class and the severity of
abnormalities that may be present in the mammograms, as
well as the coordinates of the center of these abnormalities.

It must be mentioned that we only used the mammogram
images and the required information to divide the mammo-
grams into three categories: patients with benign, malign or
without tumor.

B. Data Preprocessing

1) Mammogram Cropping: Mammograms contain black
zones in the borders which may difficult the classification
task. For this reason, we designed an algorithm to eliminate
these black zones based on the sum of the pixels over the
column. The algorithm finds the first column, say Cl, on
the left of the mammogram in which the sum of the pixels
exceeds a given threshold P . Now, from this point, the
algorithm finds the first column, Cr, in which the sum of
the pixels is not greater than P . Then, the new image is
the one enclosed between Cl and Cr. This algorithm was
applied to every mammogram of the 322 retrieved from the
aforementioned database, taking P “ 500. An example of
the images obtained at this stage is illustrated in Figure 2,
in which Figure 2a is an original mammogram of the mini-
MIAS database and Figure 2b is the resultant image after
the application of the cropping algorithm.

(a) Original. (b) Cropped.

Figure 2: MAMMOGRAMS OBTAINED AFTER THE CROP-
PING STAGE.

2) Data Augmentation: Due to the lack of mammograms
corresponding to malign tumors (51 out of 322), it was
necessary to perform a data augmentation operation in order
to get a balanced dataset with at least 600 mammograms. For
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this purpose, after the cropping procedure, every resultant
mammogram was rotated ´900, 900 and 1800. The label
assigned to the three artificially generated mammograms
corresponded with the label of the original image.

C. Feature Extraction

As mentioned in Sections II and III, CNNs are being
widely used to carry out image classification tasks because
of their outstanding performance in comparison with other
classification techniques. For this reason, they have become
an emerging alternative in the computer-aided diagnosis field.

In this work, two different experiments were carried out
using a CNN previously trained on the ImageNet database
as feature extractor. In the first experiment, the CNN used
was AlexNet [21] while in the second experiment the CNN
used was VGG-F [34]. The features selected to perform the
classification of mammograms were the activations of the
last convolutional layer of the CNN. Then, in both cases,
4096 features have been extracted for each image.

In order to feed both pretrained CNNs with the cropped
images, it was necessary to convert every mammogram into
a three channel image by repeating the single channel three
times. Then, the resulting image was resized depending on
the input dimension of the CNN (227 ˆ 227 pixels for
AlexNet and 224 ˆ 224 pixels for VGG-F). Finally, the
average image (which is included with the tuned parameters
of the pretrained models used) was subtracted from the
resized image.

D. Classification

The goal of the system was to distinguish between three
classes: patients with benign, malign or without tumor, then
based on the works [3, 9, 10], we decided to adopt a SVM
as our classifier.

In order to evaluate our methodology, 120 and 80 mammo-
grams of each category were selected from the augmented
dataset to define the training and test stages of the SVM,
respectively. Hence, our training set was composed by 360
mammograms and our testing set by 240 mammograms.

To carry out the training of the SVM, each of the 360
mammograms selected was given as the input for the CNN
and the features obtained at this step became the inputs for
the SVM. Then, using the Statistics and Machine Learning
Toolbox from MATLAB, the SVM was trained.

The classification accuracy of the trained SVM was eval-
uated with the 240 mammograms belonging to the test set,
following the same process described above for the extraction
of the features for every mammogram.

E. Results

In Table IV the confusion matrix obtained using AlexNet
as feature extractor without augmenting the dataset is shown.
This experiment was carried out with a training set of 30
mammograms per category and a test set of 20 per category.
This confusion matrix is based on the response of the system
on the test set and this low accuracy rate of only 35%, which
corresponds to 21 well classified mammograms of the 60
that conformed the test set, is an evidence of the necessity
of performing a data augmentation operation.

Table IV: CONFUSION MATRIX FOR MIAS TEST SET PRE-
DICTIONS AND FEATURE EXTRACTION USING ALEXNET.

Target

Benign Malign Normal Total
O

ut
pu

t
Benign 36.53 48.12 15.35 36.53

Malign 27.39 56.12 16.49 56.12

Normal 31.34 56.29 12.36 12.36

Total 38.35 34.96 27.97 35.01

In Tables V and VI the confusion matrices corresponding
to the response of the system when AlexNet and VGG-F
CNNs are used as feature extractors in conjunction with a
SVM as classifier are exhibited. Table V shows the accuracy
of the system on the test set after performing the data
augmentation when the CNN used is AlexNet.

Table V: CONFUSION MATRIX FOR AUGMENTED MIAS
TEST SET PREDICTIONS AND FEATURE EXTRACTION USING
ALEXNET.

Target

Benign Malign Normal Total

O
ut

pu
t

Benign 61.79 20.33 17.87 61.79

Malign 18.79 61.75 19.46 61.75

Normal 22.88 20.67 56.46 56.46

Total 59.73 60.10 60.20 60.01

On the other side, Table VI shows the response of the
system when VGG-F is the feature extractor. It can be noted
that the performance of the system has dramatically increased
after artificially augmenting the dataset: from 35% to 60.01%

and 64.52% using AlexNet and VGG-F, respectively.
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Table VI: CONFUSION MATRIX FOR AUGMENTED MIAS
TEST SET PREDICTIONS AND FEATURE EXTRACTION USING
VGG.

Target

Benign Malign Normal Total

O
ut

pu
t

Benign 63.63 18.45 17.92 63.63

Malign 17.86 64.37 17.77 64.37

Normal 16.91 17.54 65.55 65.55

Total 64.66 64.14 64.75 64.52

VII. CONCLUSIONS

Based on the results obtained in this work, the Deep Learn-
ing approach, particularly using pretrained CNNs as feature
extractors, is a promising methodology when addressing
the problem of diagnosing breast cancer with mammogram
images. Since in this context the reliability of the system
is highly relevant, it is desirable to increase the achieved
64.52% test accuracy. This outcome could be improved by
cropping the image to a specific ROI in which a tumor could
be located; via fine-tuning of the final layers or training
the whole network parameters. The results of additional
experiments using a subset of the Caltech-101 database,
for which a 99.38% test accuracy was obtained, exhibit the
relevance of the similarity between the data used to train the
model and the particular application intended. Additionally,
it is worth noting the impact of the data augmentation process
and the balance of the number of examples per class on the
performance of the system.

Future research could be focused on the evaluation of the
following techniques:

‚ To extract features from multiple layers of the CNN
instead of only using the activations obtained from the
last convolutional layer.

‚ To use different pretrained CNNs as feature extractors,
such as GoogLeNet [25] or ResNet [27].

‚ To include a feature selection phase in which the best
extracted features from a CNN could be selected to
perform the classification of the mammograms.

‚ To test other classifier structures: neural networks,
fuzzy inference systems or clustering techniques.
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