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1 Introduction

Ordinary differential equations (ODEs) are a common tool for modelling physical systems. Such
models represent idealized versions of real systems, as they are purely deterministic. Stochastic
differential equations (SDEs) are the instrument for building more realistic models, as they include
the random elements. SDEs are used in many areas of applications, including investment finance,
economics, insurance, signal processing and filtering, several fields of biology and physics, popula-
tion dynamics and genetics.

Since there are very few SDEs for which exact analytical solutions are known, numerical tech-
niques have to be used in the solution of SDEs. Unlike in the solution of ODEs, SDEs can be
approximated in two senses: strong and weak. We refer to strong approximations when we want
to approximate the trajectory of the solution. When we do not require the whole trajectory, but
a function from the solution, for instance a moment, we talk about weak approximations. Some
introductions to numerical methods for SDEs are given in [3, 15]

A general Stratonovich SDE has the form

dX(s) = a(X, s)ds + σ(X, s) ◦ dW (s) X(t0) = X0 X0 ∈ Rn (1)

where a(X, t) ∈ Rn, σ(X, t) ∈ Rn×d , and W (t) is a d-dimensional Brownian motion. Commonly,
a(·) and σ(·) are called the drift and the diffusion term, respectively.

The aim of this project was the development and implementation of some numerical schemes for
the strong approximation of the above equation. The implementation of this numerical schemes
implies the solution some common computational mathematics problems, such as: linear algebra
problems, random number generation and ODE solution. The importance and the approach we
have taken to solve this problems are explained in the following sections.

This document also includes a brief explanation of the proposed numerical methods and an example
of the numerical experiments carried out during this project.

2 Linear Algebra ( BLAS - LAPACK)

The simulation of stochastic differential equations (SDE) can be extremely time consuming [4]. It
is our goal to implement, in a vectorized way, some algorithms for the numerical simulation of SDE
and hence produce efficient algorithms. Since in a vectorized implementation a significant amount
of execution time may be spent computing basic vector and matrix operation, we need a library
that provides us with efficient implementations of the most common linear algebra routines. We
have chosen to use BLAS and LAPACK in the implementations because they are the standard for
linear algebra computations.

The BLAS (Basic Linear Algebra Subprograms) are high quality ”building block” routines for
performing basic vector and matrix operations [2]. LAPACK is a library of Fortran 77 subrou-
tines for solving the most commonly occurring problems in numerical linear algebra. They have
been designed to be portable and efficient on a wide range of modern high performance comput-
ers [1]. For further information about BLAS and LAPACK visit http://www.netlib.org/blas/
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http://www.netlib.org/lapack/ or see [2, 1].

3 Random Number Generators

Random numbers are the source of all the randomness required in stochastic simulation. The
most reliable way of generating random numbers is through deterministic algorithms that produce
sequences whose properties resemble those of sequences of independent and identically distributed
U(0, 1) random variables , (i.e., deterministic sequences that seem to behave like random numbers).
Such an algorithm is called a random number generator (RNG).

The quality of simulation results is strongly determined by theoretical and statistical properties
of the RNG used. Some of the properties that a good RNG should have are: long period, low
serial correlation, efficiency (run fast and use only a small amount of memory) and repeatability
(reproduce exactly the same sequence as many times as we want). A complete review on random
number generators can be seen in [11]

We built a common interface to random number generators, in order to follow the vectorization
fashion of our library. This allows us to use use in the library any random number generator, that
follows the interface, without having to make substantial changes to the code. The details of this
interface can be seen in the library documentation [17].

In our research we use adapted version of the combined multiple recursive generator of L’Ecuyer
and the Mersenne twister of Matsumoto and Nushimura. This two generator were adapted to the
proposed interface. We have chosen these RNGs because they have fairly solid theoretical support
and have been extensively tested [9]. For more information about this two generators see [9, 10]
and [13, 14], respectively.

We also tried to vectorize the algorithm of L’Ecuyer’s combined multiple recursive generator but
the final vectorize implementation was less efficient, in terms of running time, that the original
implementation, given in [9]

4 Ordinary differential equations solver - CVODE

The solution of systems of ordinary differential equation (ODE) plays an important role in the
methods of solution of stochastic differential equations that were studied during the research.
Particularly, we are interest in the solution of ODE initial value problems. An ODE initial value
problem can be written as

dy

dt
= f(y, t), y(t0) = y0, y ∈ RN (2)

When solving ODE problems almost always numerical techniques must be used since the available
analytical techniques are not powerful enough to solve any ODE problem except the simplest. ODE
problems are generally divided into two categories, stiff and nonstiff problems. Stiffness is not easy
to define, but roughly speaking, if a problem is stiff it will be harder to solve than a nonstiff one.
That is why, the numerical methods for solving stiff equations are different from those for solving
nonstiff equations. The methods used for solving nonstiff ODEs are based on the Runge-Kutta,
Adams, or extrapolation methods. This methods are usually not suitable for solving stiff problems.
The interested reader may refer to [6] for a survey on numerical methods for ODEs.

As well as with RNGs a common interface to ODE solvers was written. This interface permits
the integration of any ODE solver to our library. The only restriction on the ODE solver is that
it is able to solve both stiff and nonstiff problems. The details of this interface can be seen in the
library documentation [17].
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The ODE solver that we used in our research is called CVODE. CVODE is a solver, written in
C, for stiff and nonstiff initial value problems for systems of ordinary differential equations [5].
The underlying integration methods used in CVODE are variable-coefficient forms of the Adams
and BDF (Backward Differentiation formula) methods, for nonstiff and stiff problems, respectively.
This solver can be downloaded from http://www.netlib.org/ode/cvode.tar.gz.

We adapted CVODE, so that it could work with the generic interface for ODE solvers. Since the
solution of ordinary differential equations is a very important building block for the numerical
methods studied during the research, CVODE was also modified to use BLAS and LAPACK. In-
side CVODE, many vector-matrix operations and the solution of systems of linear equations are
involved. In this modified version, all the vector and matrix computations are made with BLAS
and the solution of linear systems is made with LAPACK. The objective of these changes is to
take advantage of the high performance and portability of BLAS and LAPACK. The run-times of
the original and the modified versions of CVODE were compared and the version using BLAS and
LAPACK showed to be more efficient than the original version.

Taking into account that most of the run-time of the proposed algorithms is spent solving systems
of ODE, a possible area for future research would be the development and implementation of
algorithms for the solution of ODE. The methods for ODEs would be implemented focusing on
the particular characteristics of the ODE systems arising in the solution of stochastic differential
equations.

5 Linear Stochastic Differential Equations Solver

Linear Stochastic Differential Equations are an important particular case of SDE. We implement a
set of routines to simulate trajectories of a particular type of linear stochastic differential equations.
For details on its usage see the library documentation [17]. The general form of a n-dimensional
linear SDE of this type with d sources of randomness is

dX(s) = [A(s)X(s) + a(s)]ds + σ(t)dW (s) X(t0) = X0 X0 ∈ Rn (3)

where A(t), a(t) and σ(t) are continuous n× n, n× 1, and n× d valued matrices respectively, and
W (t) is a d-dimensional Brownian motion.

A detailed explanation of the implemented method is given below. It is known that the exact
solution of (3) equation is

X(t) = Φ(t)
[
x +

∫ t

t0

Φ−1(s)a(s)ds +
∫ t

t0

Φ−1(s)σ(s)dW (s)
]

where Φ(t) = (Φ1(t), Φ2(t), . . . , Φn(t)) are the solution of the system of ordinary differential equa-
tions

Φ′i(t) = A(t)Φi(t)ds Φ(t0) = ei for 1 ≤ i ≤ n (4)

, where ei is the i-esim vector of the canonical base. A formal proof of the above result is given in
[7]. It is also known that

δ(t) =
∫ t

t0

Φ−1(s)σ(s)dW (s)

is a Gaussian process with mean 0, and covariance

V [δ(t)] =
∫ t

t0

Φ−1(s)σ(s)(Φ−1(s)σ(s))′ds

Then

h(t) =
∫ t

t0

Φ−1(s)a(s)ds +
∫ t

t0

Φ−1(s)σ(s)dW (s)
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is also Gaussian and has mean

E[h(t)] =
∫ t

t0

Φ−1(s)a(s)ds

and covariance

V [h(t)] =
∫ t

t0

Φ−1(s)σ(s)(Φ−1(s)σ(s))′ds

In order to simulate X(t) we just have to calculate

X(t) = Φ(t)[X0 + Nh] (5)

where Nh is a realization of h(t). Thus the simulation of X(t) is reduced to to estimate Φ(t),
E[h(t)] and V [h(t)].

To calculate the integral I(t) =
∫ t

t0
f(s)ds is equivalent to solve the initial value problem

dI(t) = f(t)dt I(t0) = 0

where f : [t0, t] −→ Rn. Hence E[h(t)] is the solution of

dE[h(t)] = Φ−1(t)a(t)dt E[h(t)] = 0 (6)

and V [h(t)] = [V1[h(t)], V2[h(t)], . . . , Vn[h(t)]] are the solutions of the system of ordinary differential
equations

dVi[h(t)] = ci(t)dt Vi[h(t0)] = 0 for 1 ≤ i ≤ n (7)

where ci(t) is the i-esim column of Φ−1(t)σ(t)(Φ−1(t)σ(t))′.

Φ(t), E[h(t)] and V [h(t)] can be calculated simultaneously solving a system of ordinary differential
equations that contains the systems defined in (4), (6) and (7). The system to be solved is




dΦ1(t)
dΦ2(t)

...
dΦn(t)
dE[h(t)]
dV1[h(t)]
dV2[h(t)]

...
dVn[h(t)]




=




A(t)Φ1(t)
A(t)dΦ2(t)

...
A(t)dΦn(t)
Φ−1(t)a(t)

c1(t)
c2(t)

...
cn(t)







Φ1(t0)
Φ2(t0)

...
Φn(t0)
E[h(t0)]
V1[h(t0)]
V2[h(t0)]

...
Vn[h(t0)]




=




e1

e2

...
en

0
0
0
...
0




(8)

Once this system is solved, the estimation of X(t) is straightforward using equation (5).

6 Stochastic Differential Equations with multiplicative Noise

We consider the class of Stratonovich stochastic differential equations where the noise term is a
function of the state variables. That is

dX(s) = a(X, s)ds + σ(X) ◦ dW (s) X(t0) = X0 X0 ∈ Rn (9)

For this type of equations a Wong-Zakai type numerical solution method was developed and im-
plemented. Wong-Zakai type approximations were first introduced in [19]. The proposed method
will be explained below.

Assume that we wish to approximate the above equations at points t0 = 0 < t1 < t2 < · · · < tk = T
of the interval [0, T ]. Let Xj be the numerical approximation of X(tj). For each subinterval
[tj , tj+1] ,j = 0, 1, . . . , k − 1, the solution of equation (9) will be approximated by the solution of
the following ordinary differential equation:
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dX∗

dt
= a(X∗, t) +

1√
tj+1 − tj

σ(X∗)Z X∗(tj) = Xj (10)

where Z is a realization of a Gaussian distributed variable with mean 0 and variance the identity
matrix. From the solution of this equation we get Xj+1 = X∗(tj+1). Following this scheme we get
all the Xj , j = 1, . . . , k. A detailed explanation of this numerical method and a formal proof of
its correctness are given in [12]. For further information on the usage of the implemented methods
see the library documentation [17].

When developing numerical algorithms it is necessary to check its accuracy through numerical ex-
periments. Some experiments where made to get an idea of the behavior of the numerical method
derived during the research. These numerical experiments can be seen in [18].

In order to illustrate the type of experiments that were run, an example will be shown. Consider
a one-dimensional nonlinear problem whose Stratonovich form is,

dy = −α(1− y2)dt + β(1− y2) ◦ dW (t), y(0) = 0.5, t ∈ [0, 1] (11)

According to [8] the exact solution of this equation is

y(t) =
(1 + y0) exp(−2αt + 2βW (t)) + y0 − 1
(1 + y0) exp(−2αt + 2βW (t))− y0 + 1

We compute the mean absolute error

M(h) =
1
K

K∑

i=0

|y(i)
N − y(i)(tN )|

for 2000 trajectories, α = −5 and different β, ranging from 1 to 5. Table 1 presents the simulation
results for the first test equation. The mean errors are very small in contrast to those reported in
[16], where they use Runge-Kutta type methods. This results suggest that the method obtains the
exact solution.

Table 1: Error and convergence rate of (11) for α = −5.0 and differtent β and with h = 1
β M(h)
1 6.72943e-12
2 9.45192e-12
3 7.41739e-11
4 8.03285e-11
5 8.57892e-11

The results obtained until now suggest that the proposed method is very promising. Future research
include the extension of this method to the general case (where there is no restriction on the noise
term) and the development of new methods.
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