Numerical performance of some Wong-Zakai type
approximations for stochastic differential equations

Jaime Alberto Londono Londonio, Andrés Mauricio Villegas Ramirez

Abstract
A Wong-Zakai type numerical method for the strong solution of stochastic differential equa-
tions is introduced and developed. The main feature of the method is that it takes advantage
of the well developed techniques for solution of ordinary differential equations. Focus is given
to the evaluation of the numerical performance of the method.
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1 Introduction

Ordinary differential equations (ODEs) are a common tool for modelling physical systems. Such
models represent idealized versions of real systems, as they are purely deterministic. Stochastic
differential equations (SDEs) are the instrument for building more realistic models, as they include
the random elements. SDEs are used in many areas of applications, including investment finance,
economics, insurance, signal processing and filtering, several fields of biology and physics, popula-
tion dynamics and genetics.

Since there are very few SDEs for which exact analytical solutions are known, numerical tech-
niques have to be used in the solution of SDEs. Unlike in the solution of ODEs, SDEs can be
approximated in two senses: strong and weak. We refer to strong approximations when we want
to approximate the trajectory of the solution. When we do not require the whole trajectory, but
a function from the solution, for instance a moment, we talk about weak approximations. Some
introductions to numerical methods for SDEs are given in [1, 6, 10]

A general Stratonovich SDE has the form

dX, = b(X,,s)ds + o(X,,8) 0 dW, X, =Xo Xo€R" (1)

where b : R" x [tg, T] — R™ is a d-dimensional vector valued function, o : R™ x [to, T] — R™*? is
n X d-matrix valued function, and Wy is a d-dimensional Brownian motion. Commonly, b and o
are called the drift and the diffusion coefficient, respectively.

It its the goal of this paper to present a Wonk-Zakai type numerical method for the strong so-
lution of SDEs, whose main feature is that it uses the well developed techniques of solution of ODEs.

The remainder of this paper is organized as follows. In section 2 the proposed numerical technique
is described. In section 3 it is shown that proposed method might be reduced to the Milstein
scheme. In section 4 a sufficient and necessary condition for the method to be exact is derived. In
section 5 some implementation issues are discussed. Finally, in section 6 some numerical results
are presented.



2 The solution method

We consider the class of Stratonovich stochastic differential equations where the diffusion coefficient
is a function of the state variables. That is

dX, = b(X,,s)ds + o(X,) 0 dWs X,y =Xo Xo€R" (2)

For this type of equations a Wong-Zakai type numerical solution method is proposed. Wong-Zakai
type approximations were first introduced in [13].

Assume that we wish to approximate the solution to the above equations at points 0 =ty < t1 <
ty < --- <ty =T of the interval [to,T]. Let X, be the numerical approximation of Xi,. For each
subinterval [t;,t;11] ,j = 0,1,...,k — 1, X1, shall be calculated as the solution at time ¢, to
the following ordinary differential equation initial value problem:

dX, . 1 .

= b(X,,5) + —o0(Xs)AW; Xi, = X; X; eR"” (3)
ds Aj J
where A; =t —t; and AW, = W, ., — W, are the discrete time approximations of ds and
dWy, respectively.

Equation (3) may be rewritten in integral form to obtain the following numerical scheme

tit1 tit1 1
Xjt1=X; +/ b(Xs, s)ds +/ A—J(XS)AWde (4)
7] ty J

3 Reduction to the Milstein scheme

We shall now make some remarks on the 1-dimensional case n = d = 1.

The Milstein scheme is one of the simplest discrete time approximations derived from stochastic
Taylor expansions. In the 1-dimensional case this scheme has the form

1
Xjr1 = X +b(Xj,t5)A; + o(X;,t;) AW, + §U(Xj7tj>UI(vatj)(AWj)2 (5)

do
where o/(z,t) = —. Under the assumption that b is once and o twice continuously differentiable

x
it can be shown that the Milstein scheme has the order of strong convergence v = 1.0. A detailed
explanation of the Milstein scheme is found in [6].

We shall see that that scheme given in (4) becomes the Milstein scheme if some particular methods
are used to approximate the Riemann-Stieltjes integrals

tjt1
/ b(Xs, s)ds
¢

J

and

ti+1 1
/t A—J(XS)AWjds

j J

The first integral may be approximated using the Euler method, which gives

tj+1
/ B(Xa. 8)ds = b(X; ) (i — 1) = BX; £5)A, (6)
t

J



In the other hand, the second integral may be approximated using the 2nd order truncated Taylor
method, which uses the approximation

/tj+1 F(Xs,8)ds ~ f(X;,t;)A; + %f(Xij)f'(Xj’ti)(Aj)Z)

J

Taking f(z,t) = (A;) " 'o(x)AW; we have

titr 1
/ o (X)AW;ds ~ o(X,)AW; + Lo(X,)0' (X;)(ATW;)? (7
t; J

Replacing (6) and (7) in (4) we obtain
1 /
Xjp1 = X+ b(X;,1))A; + o (X, 1) AW + So(X;5)0" (X;) (AW;)?

which is the Milstein scheme for o(z,t) = o(x)

4 Particular cases where the solution is exact

We shall find a sufficient and necessary condition on b and o, for which the proposed numerical
scheme yields the exact solution to (8), given that we are able to solve analytically the ODEs
problems given by (3). We consider the class of scalar stochastic differential equation given by

dX, = b(X,)ds + o(X,) o dW, (8)

From equation (3) we may approximate X; as the solution at time ¢ to,

dX, N 1 .
ke b(Xs) + ;U(Xs)Wt (9)

with initial value Xy at s = 0. The successive solution of (9) for each ¢ € [0,T) defines a function
u(t,z) € C%([0,T) x R) such that u(t, W) is the approximation to X;.

Suppose that the numerical method produces the exact solution to (8), i.e., X; = u(t, W;). Since
Stratonovich integrals follow the classical chain rule formula, we conclude that

ou ou
dXs = E(s, Ws)ds + £(s, W) o dWs
Since X; is also the solution to (8), we see that
ou
3¢ (6 2) = blu(t, ) (10)
and 5
u
%(Lx) = o(u(t,)) (11)
We obtain from (10) and (11) the identities
0%u ,
T 1,2) =V (ult,2))o(u(t, ) (12)
and
O 1) = o (ult, )t ) 13
T A 7
where f’(z) denotes %(w). Since u(t,z) € C%([0,T) x R) we have



0%u (t,2) = 0%
azot " T otox

(t,2)
Hence

b (u(t, ))o(ult, x)) — o' (u(t, z))b(u(t, x)) = 0

Notice that for this equation to be satisfied the functions b and o must be such that

This implies that Z((fc)) = a, where « is an arbitrary constant. Thus

b(z) = ao(z) (14)

This is a necessary condition for the numerical method to produce the exact solution to (8). We
shall now see that (14) is also sufficient. We shall then prove that for the class of Stratonovich
differential equations given by
dXs = af<Xs)ds + f(Xs) o dWs (15)
with initial value Xy at ¢t = 0, the numerical method is exact. In [6] it is proved that the general
solution to (15) is
Xy = h™ (at + W, + h(X))) (16)

where h is given by

T ds
hz)= | -5
(s)
For this particular type of stochastic differential equations, approximation (9) becomes
dX,
ds
You can use the principle of separation of variables to solve this equation at ¢:

dX, < Wt>
- = a+— |ds
F(Xs) ¢

X dX, /t( Wt>
~ = a+— |ds
XO f(Xs) 0 t

h(Xt) — h(XQ) = at+ Wt

= af(X) + 1 F(XW, a7)

Since XO = X we obtain

X; = h~Yat + Wi + h(Xy)) (18)
which is precisely (16), the solution to (15).
We have proved that condition (14) is sufficient and necessary for the proposed numerical method

to produce the exact solution to (8). Geometric Brownian motions are an important type of pro-
cesses which satisfies this condition.



5 Implementation issues

We shall now focus on the computer implementation of the described numerical method. First, we
will rewrite equation (3) into a form that may be easier to implement.

Recall that the increments W; —W; of a d-dimensional Brownian motion are N (0, (t—s)I) Gaussian
distributed for 0 < s < t, where I is the d-dimensional identity matrix. Thus, AW; is N(0,A;I)
Gaussian distributed. Then in (3), we can replace AW; with \/A;Z, to obtain

dX,
ds

= b(X,,s)+ o(X)Z Xy, =X; X;ER" (19)

1
VA,
where Z is a Gaussian distributed random variable with mean 0 and covariance the d-dimensional
identity matrix.

From equation (19), it becomes clear that the implementation of the numerical technique requires
the generation of Gaussian distributed random variables and the solution of ODEs. Particularly,
it is necessary to solve ODE initial value problems.

An ODE initial value problem can be written as

dXx
th = f(X,, 1), Xy, = Xo, X, e RN (20)

When solving ODE problems almost always numerical techniques must be used, since the available
analytical techniques are not powerful enough to solve any ODE problem except the simplest.
However, numerical methods for ODEs are rather more developed and available than numerical
methods for SDEs.

ODE problems are generally divided into two categories, stiff and nonstiff problems. A proposed
definition for stiffness is found in [11]. Generally a stiff problem is harder to solve than a nons-
tiff one. Therefore, the numerical methods for solving stiff equations are different from those for
solving nonstiff equations. The methods used for solving nonstiff ODEs are based on the Runge-
Kutta, Adams, or extrapolation methods. These methods are usually not suitable for solving stiff
problems. The interested reader may refer to [5] for a survey on numerical methods for ODEs.

All the hard work of the proposed method relies on the numerical method used to solve the ODE
initial value problems stated in (19). Therefore, the accuracy of the described numerical method
depends on the accuracy of the ODE initial value problem solver. For instance, if the Euler method
is used as the ODE solver, the propose method becomes the well known Euler-Maruyama method,
and has thus strong order of convergence v = 0.5.

For the numerical experiments we ran, we used CVODE as ODE solver. CVODE is a solver, writ-
ten in C, for stiff and nonstiff initial value problems for systems of ordinary differential equations.
The underlying integration methods used in CVODE are variable-coefficient forms of the Adams
and BDF (Backward Differentiation formula) methods, for nonstiff and stiff problems, respectively.
The interested reader may refer to [3] for a detailed presentation of CVODE and may download it
from http://www.netlib.org/ode/cvode.tar.gz.



6 Numerical performance

In this section we will examine the numerical performance of the proposed numerical technique.
Thus, we report numerical results for eighth test equations.

For the first four equations we shall focus on the accuracy of the algorithm. To measure the
accuracy of the algorithm we use the mean of the absolute error M (h) and the strong convergence
rate Ry, defined by

N
1 i i M(h
M= X x| =2
1=0

where X lgi) is the numerical approximation to Xt(z)

For each test equation we carried out a numerical simulation to get the 90% confidence intervals
[M(h) — AM(h), M(h) + AM(h)]

for the mean of the absolute error M (h). In order to do this , 20 batches, each with 100 trajectories,
were run.

In the other hand, for the last four test equations we shall mainly be concerned with the qualitative
behavior of the simulated paths.

Test equation 1: This test equation is a one-dimensional nonlinear problem, taken from [12].
The nonlinear Stratonovich equation is given by,

dX, = —a(l — X3)ds + (1 — X2 odW,,  Xo=0.5, teo,2] (21)
with @« = —1 and 8 = 1. The exact solution of this equation is

(1 + Xo) exp(—Zat + QﬂWt)) + Xo —1
(1 + X()) exp(—2at + QﬂWt) - X(] +1

X =

Notice that (21) is a particular case of (15) and thus the numerical scheme should produce the
exact solution. Table 1 presents the simulation results for the first test equation. For step size
h = 1 the mean absolute error is of order le-11 which is in contrast with the mean absolute error
of order 0.01 for step size h = 2710 reported in [12], where Runge-Kutta type methods were used.

Table 1: Error and convergence rate of (21)
h  M(h) Ry AM(h)
1 4.21e-11 4.21e-11 6.43e-12

Test equation 2: The second test equation is a nonlinear SDE given by,

dXs=a(l+ X2 odW, Xo=1 t€][0,1] (22)

The exact solution is [2]

X = tan(aW; + arctan Xo)

Notice that (22) is equation (15) with f(z) = a(1 + 2%) and a = 0. Table 2 gives means of the
absolute error M (h) and the radius Ah of the confidence interval, for time steps h = 1 and a



Table 2: Mean of the absolute error for (22)

a M) AM(h)

0.15 1.05471e-12  1.05471e-12
02  1.88595¢-11 1.88595e-11
0.25 2.32104e-08 2.32104e-08

ranging from 0.15 to 0.25. The mean of the absolute errors is of very small order, which confirms
the results obtained in section 4.

Test equation 3: The third test equation, taken from [7], is a linear two-dimensional system,
whose Stratonovich form is,

1 1 1 1

aY} = (— 0%+ Y2) = 02V = Y)dt+ 5o (V) + V) 0 dW + Sp(V! = YR) o dWE (23)
1 1 1 1

A2 = (—70% (¥ + Y2) + 02 (V) = Y)dt+ So(V) +Y) 0 dW — Sp(Y;! = Y2) o dWW}

Yo =[1,00"  te€][0,2] (24)

The exact solution of this equation is

(X! + X7)
2 b

Xi — X?)

le le(
t t 9

where

2 2
X} = (Y + Y exp(— Tt +0W)) and X7 = (Y] = Y§) exp(=t + o))

Table 3: Mean of the absolute error of (23) with p =1 and h = 2. M; is for ¥;! and M, for Y;2

o M(h) AM; (h) M>(h) AM;(h)

2 9.31181e-10 5.85832e¢-10  9.06894e-10  5.86207e-10
4 6.8013e-11 3.22031e-11  6.19549e-11  3.21785e-11
6 4.91244e-10  4.85428e-11  4.88165e-10  4.88422e-11
8 8.33034e-10  1.43609e-10 8.32726e-10  1.43649e-10
10 1.04796e-09 1.65114e-10 1.04779e-09 1.65181e-10

Table 3 gives means of the absolute error for each of the two variables with h = 2, o € [1, 10]
and p = 1. The mean of the absolute errors is of a very small order, which suggests that the
solution method returns the exact solution of the equation. This is in contrast with the numerical
instabilities produced by the Euler approximation, as reported in [7].

Test equation 4: This test equation is a 2-dimensional linear SDE system, presented in [2], whose
Stratonovich form is given by

1
dX; = (U - 2v2) Xydt +VXi0dW,,  Xo=[1 057,  te[0,1] (25)

where U and V are matrices



The exact solution of this equation is

5 [exp(pt (1)) 0
Xe=FP10 7 expot (1)

where p*(t) = (—u — v® £ u)t + vW; and P = P!

11 -1
—1 _
PlX,, P_—\/E L _J,

The stiffness of this system increases quadratically in terms of v. Table 4 gives the mean of the
absolute error M of the numerical solution of (25) with u =5, v ranging from 1 to 5 and stepsize
h = 1. As v increases, the error magnitude does not increase and the stability of the solutions
is maintained. This is in contrast with the poor stability properties of some Runge-Kutta type
methods reported in [2] for v > 3. The great accuracy obtained suggests that the method converges
exactly for this test equation.

Table 4: Error and convergence rate of (25) with uw =5 and h =1, M; is for X} and M, for X7

v Mi(h) AM, (h) My (h) AM;(h)

1 4.39168e-11 8.31936e-12  3.5004e-11 8.00839e-12
2 4.33394e-10  4.8326e-10 4.23236e-10  4.83385e-10
3 7.51537e-10 8.06515e-10 7.46363e-10  8.06445e-10
4 6.99382¢-10 1.02481e-09 6.97279¢-10 1.02468e-09
5 1.17071e-10 1.60928e-10 1.16575e-10  1.60903e-10

Test equation 5: This test equation corresponds to the interest rate model of Cox-Ingersoll-Ross
(CIR) [4] for stochastic interest rates, whose Stratonovich form is

X(] >= 0

1
dX; = [a+ 0% + bXJdt + 0/ X 0 dWW:, (26)

where a > 0, b € R and o > 0 are parameters. It is known that the solutions are nonnegative.
However, as well as some well known numerical techniques, the proposed numerical scheme pro-
duces trajectories which take negative values (see Figure 1). A nonnegative preserving numerical
algorithm for the solution of (26) is presented in [9].

X()

Figure 1: A sample path of (26) fora=b=1,0 =2, h=0.002 and X(0) =1

Test equation 6: The sixth example is the phased-locked loop (PLL), from the filering theory
[1]. The PLL is an important FM demodulator, whose model is



dy1 = —((¢)Y3y; + sinya)dt + \/co dW}! — /co dW? (27)
1
dys = —(§y1 —sinyp)dt +/co th2

The deterministic model has stable equilibria at y; = 0, y2 = 27n(n = 0,+£1,...). Any trajectory
that begins in the domain of attraction of a stable equilibria will not leave this domain. However,
in the stochastic model, small perturbations can cause a crossing of this domain. This is known
as the phenomenon of slipping cycles. For small ¢ slipping cycles are infrequent, but for big ¢ they
become more frequent. Figure 2 shows two trajectories produced by the proposed method. The
numerical solution conserves the qualitative properties of the exact solution.

20
y2()

0.2 0 02 04 06 08 1
yiO

Figure 2: Phase plane of the PLL model with ¢ = 0.001(left) and ¢ = 10 (right)

Test equation 7: The seventh test equation is the stochastic duffing equation

dy, = (pty; — y2)dt +bo dW, (28)

It is important to study the relationship between p and b. For example if b > p the paths move
back and forth between ++/ut before settling down on one branch [1]. Figure 3 plots the numerical
solution obtained with h = 0.01, u = 0.03 and b = 0.25,0.75. The solutions follow the previously
describe characteristics.

Figure 3: Plots y vs. t for the stochastic duffing problem. Left: = 0.03, b = 0.25. Right ¢ = 0.03,
b=0.75

Test equation 8: The last test equation is the Kubo oscillator whose Stratonovich form is

dX} = —aX}dt —oX?odW, Xt =2a! (29)
dX? = aX}dt +oX} odW, X3 =2



where a and o are costants, and W} is a one-dimensional Brownian motion. The quantity H (z', 2%) =
(x1)? + (22)? is conservative for the system; i.e,

H(X}!, X?)=H(z',2%) fort>1 (30)

Therefore, the phase flow of this system preserves symplectic structure and its phase trajectory
belongs to the circle with center at the origin and with radius /H (z!,22). For a discussion on
stochastic systems preserving symplectic structure and symplectic numerical methods for such sys-
tems see [8].

We are interested in observing if the proposed numerical method preserves the conservative prop-
erty (30). Figure 4 presents a sample phase trajectory of (29) with initial conditions ! = 1, and
2% = 0. For these initial conditions the exact phase trajectory belongs to the unit circle with center
at the origin. The trajectory obtained does not conserve H(z!,z?), but stays close to the unit
circle.

Figure 4: A sample phase trajectory of (29) with X} =1, X2 =0, fora =2, 0 = 0.3, h = 0.02 on
the time interval [0, 200]

7 Conclusions

In this paper, we have presented a Wong-Zakai type numerical method for the solution of stochastic
differential equations. The main feature of the this method is that it uses the rather well developed
and available numerical techniques for the simulation of ordinary differential equations. This allows
one to implement it in any computer package that provides an ordinary differential equation solver.

We have also found a particular class of SDE for which the method produces the exact solution.
The performance of the method was tested with several 1-dimensional and 2-dimensional equations.
The results from the test problems suggested that the method produces very accurate approxima-
tions, and that it almost always keeps the qualitative behavior of the solution paths.

It still remains to be investigated the general strong convergence rate of the method and the
extension of the method for general SDE where the diffusion term is a function of state and time.
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